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Abstract

Background: Blowflies have relevance in areas of forensic science, agriculture, and medicine, primarily due to the
ability of their larvae to develop on flesh. While it is widely accepted that blowflies rely heavily on olfaction for
identifying and locating hosts, there is limited research regarding the underlying molecular mechanisms. Using next
generation sequencing (Illumina), this research examined the antennal transcriptome of Calliphora stygia (Fabricius)
(Diptera: Calliphoridae) to identify members of the major chemosensory gene families necessary for olfaction.

Results: Representative proteins from all chemosensory gene families essential in insect olfaction were identified in
the antennae of the blowfly C. stygia, including 50 odorant receptors, 22 ionotropic receptors, 21 gustatory receptors,
28 odorant binding proteins, 4 chemosensory proteins, and 3 sensory neuron membrane proteins. A total of 97
candidate cytochrome P450s and 39 esterases, some of which may act as odorant degrading enzymes, were also
identified. Importantly, co-receptors necessary for the proper function of ligand-binding receptors were identified.
Putative orthologues for the conserved antennal ionotropic receptors and candidate gustatory receptors for carbon
dioxide detection were also amongst the identified proteins.

Conclusions: This research provides a comprehensive novel resource that will be fundamental for future studies
regarding blowfly olfaction. Such information presents potential benefits to the forensic, pest control, and medical
areas, and could assist in the understanding of insecticide resistance and targeted control through cross-species
comparisons.
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Background
In insects, volatile chemical cues (odours) provide infor-
mation about food, reproduction [1], host selection, ovi-
position (egg/larvae laying) [2,3], and toxic compound
avoidance [4]. As with other insects, olfactory-mediated
behaviours are central to the ecology of blowflies [5-7].
Characterised by their larvae’s ability to develop on flesh,
blowflies have significant roles in forensic entomology
[8], agriculture [9-11], and medicine [12,13], and rely
heavily on the detection of mammalian decomposition
odours. The decomposition process produces a diverse
array of inorganic gases and volatile organic compounds
(VOCs). The VOCs produced cover almost all chemical
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families, including cyclic and non-cyclic hydrocarbons,
oxygenated compounds (alcohols, ketones, aldehydes),
nitrogen and sulfur containing compounds, acids/esters,
halogens, and ethers [14-20]. It is believed that blowflies
are capable of detecting decomposition odour immedi-
ately after death [21]. While it is acknowledged and ac-
cepted that chemical cues play a significant role in
mediating many aspects of blowfly behaviour, the spe-
cific odours responsible are still to be elucidated.
Behavioural and physiological studies have shown the

olfactory attraction of blowflies to whole host samples
(e.g. liver, mice, pigs, etc.) [5,22] as well as their ability
to detect (“smell”) individual odour molecules emitted
from those samples [23-26]. Of the numerous VOCs
available for detection, sulfur compounds appear to be
some of the most important. Sulfides are consistently
identified within the odour space of mammalian decom-
position [14,17,19,27-29], are produced by plants that
mimic decomposition odour [30], and have been shown
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to elicit physiological and behavioural responses in a var-
iety of blowfly species [16,23,31-33]. Knowledge regard-
ing the underlying molecular mechanisms regulating
blowfly olfaction, however, is severely limited.
Insects, including blowflies, sense odours via olfactory

receptor neurons (ORNs) that are housed within chemo-
sensory sensilla located primarily on the antennae and,
to a lesser extent, the maxillary palps (Figure 1) [34]. Ol-
factory signal transduction – where environmental
chemical signals are converted into electrical signals
interpreted by the nervous system – starts with the
binding of odour molecules by receptor proteins bound
to ORN dendrites. There are three antennal receptor
protein gene families that bind odour molecules, namely
odorant receptors (ORs) [35], gustatory receptors (GRs)
[36,37], and ionotropic receptors (IRs) [38]. Several non-
receptor protein families have also been identified to be
involved in invertebrate olfaction, including: sensory
neuron membrane proteins (SNMPs) [39,40]; odorant
binding proteins (OBPs) [41,42]; chemosensory proteins
(CSPs) [43,44]; and odorant degrading enzymes (ODEs)
[45]. Extensive information regarding the genes involved
in olfaction, including their characteristics and potential
roles, are provided by [37-39,44,46,47].
Figure 1 Scanning electron micrograph of the head of a male C. stygi
(mp), are located between the compound eyes (ce) and the base of the pr
Because of the sequence diversity of olfactory genes,
their identification has largely been only possible with
insects for which genomic data is available [48,49]. How-
ever, recent advances in RNA-Seq and computational
technologies have opened up such identifications in
non-model organisms. This has resulted in the identifi-
cation of olfactory genes in a wide range of insects for
which no sequenced genome is available [50-56]. With
respect to blowflies, very few chemosensory genes have
been identified [57,58]. For example, the co-receptor
crucial for the appropriate function of ligand-binding
ORs has been identified in various blowfly species
[59-61] along with two candidate ligand-binding ORs
[62]. Candidate genes from the OBP, IR, and GR families
have also been identified [59,63]. However, no research
regarding the functional characterisation of individual
olfactory genes has been published and the ligands for
these candidate genes remain unidentified.
This research investigated the antennal chemosensory

gene families of the blowfly Calliphora stygia (Fabricius)
(Diptera: Calliphoridae) via transcriptomic analysis. C. sty-
gia is native to Australia and is primarily carrion-
dependent with respect to its feeding and reproductive be-
haviour [64]. Previous research with C. stygia has focused
a. The main olfactory organs, the antennae (an) and maxillary palps
oboscis (p), respectively. Scale bar: 1 mm.



Figure 2 (See legend on next page.)
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(See figure on previous page.)
Figure 2 Distribution of C. stygia antennal transcriptome data in GO terms. GO analysis of 8,709 (8,628 male, 8,609 female) transcripts for their
predicted involvement in molecular functions (A) and biological processes (B) or as cellular components (B). GO categorisation for molecular functions
is presented at level 3 and at level 2 for biological processes and cellular components. Annotated genes are depicted as percentages of the total
number of transcripts with GO term assignments.
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primarily on factors affecting its growth throughout its
lifecycle [65-68]; there is no information regarding its ol-
factory abilities. Identification of members of the primary
gene families mediating insect olfaction permits a better
understanding of the molecular basis of blowfly olfaction.
Such knowledge could ultimately lead to the identification
of new targets of control strategies [11,57], an improved
understanding of how blowflies recognise, locate, and col-
onise hosts, as well as improved methods for estimating
post-mortem interval [7].

Results
Antennal transcriptome
The combined Trinity assembly of the male and female
C. stygia antennal transcriptomes led to the generation
of 75,836 contigs, from which 16,522 non-redundant pu-
tative transcripts were predicted. Searches against the
NCBI non-redundant protein database returned 14,094
transcripts showing sequence similarity to known pro-
teins (Additional file 1). Of these, 8,709 (~53% of all pre-
dicted proteins) were assigned at least one GO term
(Figure 2). There was no significant difference between
the male and female data sets with respect to GO annota-
tion therefore the male and female data sets are presented
together. The most abundant GO term associations were
in relation to basic cell functions; however, GO terms as-
sociated with olfaction (e.g. “odorant binding”, “response
to stimulus”, and “signal transducer activity”) and enzyme
activity (e.g. “hydrolase activity”, “transferase activity”, etc.)
were also represented within the data sets. The large num-
ber of transcripts without associated GO terms (7,813
transcripts, ~47%) potentially represent orphan genes.

Identification of candidate odorant receptors
Analysis of the C. stygia antennal transcriptomes identified
48 and 50 candidate OR proteins in the male and female
data sets respectively (combined total of 50 candidates
[GenBank accession numbers KJ702047-KJ702096], with
CstyOR118 and CstyOR119 being absent from the male
data set). Additional file 2: Table S1 summarises transcript
name, length, best BLASTx hit, predicted domains, and
male or female specificity. Twenty-four of the putative
CstyORs likely represent full-length sequences. The
majority of partial length transcripts possess overlap-
ping regions with low amino acid sequence identity,
which indicates that they represent separate individual
proteins. However, the possibility that the remaining non-
overlapping transcripts represent fragments of individual
proteins cannot be excluded; therefore, based on se-
quence alignments and subsequent fragment location
(i.e. C-terminus, internal, or N-terminus), the total
number of CstyORs reported could be reduced by two.
Consistent with the diversity of the OR gene family

(with the exception of Orco), full length putative C. sty-
gia ORs shared between 9% and 49% amino acid identity
(average 16%). Predictive software also indicated full-
length candidate CstyOR transcripts possess between
three and eight transmembrane domains. Depending on
the length of the partial transcripts, the remaining
CstyORs were predicted to have zero to seven transmem-
brane domains (Additional file 2: Table S1).
Importantly, the highly conserved co-receptor Orco was

identified in the C. stygia transcriptomes, sharing ~88%
to ~99% amino acid sequence identity with Orco’s from
Drosophila melanogaster and other blowfly species. As
expected, greater sequence identity was observed with
other blowfly Orco’s than with Drosophila (Figure 3).
Putative D. melanogaster orthologues could be assigned
for the majority of the presumably ligand-binding
CstyORs; however, 13 appear to have no D. melanoga-
ster counterpart. Of these 13, ten could be assigned pu-
tative orthologues (based on reciprocal best hits) in
other species, including Anopheles gambiae Bombyx
mori, Danaus plexippus, and other Drosophila species.
Interestingly, a putative orthologue of DmelOR67d, a
pheromone specific receptor, was identified in C. stygia
(sharing ~43% amino acid sequence identity).
In absolute terms (i.e. presence or absence), there

were no significant differences in the number of candi-
date OR proteins identified in the respective male and
female data sets. Quantitative differences in the relative
transcript abundances were observed (Additional file
3). Of the identified candidate OR transcripts, nine ap-
pear to be enriched (i.e. double the normalised FPKM
value) in the female data set, while 15 are enriched in
the male data set.

Identification of candidate gustatory receptors
Twenty-one candidate GR transcripts were identified in
the combined male and female C. stygia transcriptomes
(Additional file 2: Table S2) (a total of 20 male and 20 fe-
male candidates [GenBank accession numbers KJ702097-
KJ702117]). The majority of candidate CstyGRs were
partial fragments (only five represent full-length pro-
teins), encoding overlapping but distinct sequences.
This establishes the proteins as being fragments of



Figure 3 Odorant and gustatory receptors. Maximum-likelihood tree of candidate C. stygia ORs and GRs (red) with ORs and GRs (putative GR
orthologues only) identified in Drosophila melanogaster (dark blue) and various blowfly species, including Musca domestica (Mdom), Calliphora
vicina (Cvic), Chrysomya megacephala (Cmeg), Chrysomya rufifacies (Cruf), Lucilia sericata (Lser), and Stomoxys calcitrans (Scal) (grey). Distinct Orco
and GR clusters are apparent.
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independent genes. Consistent with other insect GRs
[69], transmembrane domain and topology predictions
in full-length transcripts indicated between six and
eight domains with an intracellular N-terminus and
extracellular C-terminus being the most likely configur-
ation. The eight candidate CstyGR transcripts included
in the phylogenetic analysis formed a distinct clade
(Figure 3); none clustered within the OR clades thus in-
dicating that the transcripts are more related to GRs
than ORs. The CstyGRs were also observed to group with
their presumed Drosophila orthologues, which have been
shown to have roles in carbon dioxide detection (GR21a
and GR63a) [36,70] and thermosensation (GR28b) [71], or
are members of the candidate sugar GR64 receptor sub-
family (GR64b and GR64e) [72]. Several of the partial
length candidate CstyGRs also show high sequence amino
acid similarity to known sugar (DmelGR43a) and bitter
(DmelGR66a and DmelGR93a) Drosophila receptors
(Additional file 2: Table S2).

Identification of candidate ionotropic receptors
Twenty-two candidate IRs were identified in both the
male and female C. stygia antennal transcriptomes
(Additional file 2: Table S3 [GenBank accession numbers
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KJ702118-KJ702139]). Structural analysis and amino acid
sequence alignments revealed that most candidate CstyIRs
shared the structural organisation of insect IRs and iGluRs
(in the case of co-receptors IR8a and IR25a) (Figure 4A
and B). The most conserved sequence regions were the
three transmembrane domains and the ion channel pore
(Figure 3C) [38,73]. Characteristic variability of the
glutamate-binding residues located in the ligand-binding
S1 and S2 domains was also present (Figure 5A and B).
Only two CstyIRs (CstyIR8a and CstyIR64a) retain all resi-
dues characteristic of iGluRs (R, T and D/E) [38]; all other
IRs have a diversity of amino acids at one or more of these
positions indicating variable ligand binding properties.
However, it should be noted that some of the putative
CstyIRs with incomplete sequences could not be assessed
for the presence of these crucial residues.
Phylogenetic analysis revealed that the candidate

CstyIRs were more closely related to IRs then iGluRs, with
all candidate CstyIRs assessed clustering with their pre-
sumed “antennal” orthologues (Figure 6). This analysis
identified representatives from 10 of the 13 orthologous
“antennal” IR groups conserved across the protostome
species analysed by Croset et al. [73]. Thus, orthologues
Figure 4 Ionotropic receptors. Predicted protein domain organisation of IRs
with associated Pfam predicted domains (adapted from [23,54]). (C) MAF
transmembrane (M2) domains of candidate C. stygia IRs (red) and Drosop
of the remaining three conserved groups (IR21a, IR60a,
and IR68a) are either lacking from the C. stygia transcrip-
tome assembly (due to their low expression levels [38,74]
which could result in them being missed during ran-
dom sequencing) or are yet to be identified within the
putative CstyIRs represented by partial sequences (e.g.
CstyIR101 and CstyIR106 share 78% and 70% identity
with DmelIR21a, respectively). Notably, transcripts pu-
tatively encoding IR8a, IR25a, and IR76b – which are
thought to function as IR co-receptors [38,75] – were
found in C. stygia antennae. No candidate CstyIRs clus-
tered within the “divergent” clade.
Identification of candidate sensory neuron membrane
proteins
Analysis of the male and female C. stygia antennal tran-
scriptomes identified three candidate SNMPs present in
both data sets (Additional file 2: Table S4 [GenBank ac-
cession numbers KJ702172-KJ702174]), two of which
(CstySNMP1 and CstySNMP3) likely represent full-
length genes. Notably, a putative orthologue to the D.
melanogaster protein, SNMP1, which has been shown to
and iGluRs/IR co-receptors illustrated in diagram (A) and linear (B) form
FT amino acid alignment of the ion channel pore (P) and second
hila melanogaster IRs and iGluRs (blue).



Figure 5 Ligand-binding S1 and S2 domains. Important glutamate-interacting residues are lacking in the ligand binding domains of most C. stygia
IR candidates. MAFFT amino acid alignments of the S1 (A) and part of S2 (B) ligand binding domains of candidate C. stygia IRs and Drosophila
melanogaster IRs and iGluRs. The key binding residues in iGluRs are boxed.
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have an important role in pheromone detection [39],
was present in the C. stygia data sets (Figure 7).

Identification of putative odorant binding proteins
Twenty-eight candidate OBP transcripts were identified in
C. stygia (Additional file 2: Table S5), all of which were
present in both the male and female data sets [GenBank
accession numbers KJ702140-KJ702167]. Of the 18 full-
length CstyOBPs, 15 exhibited the classic arrangement of
conserved six-cysteines, 1 was the Plus-C gene motif
(CstyOBP23), and 2 were Minus-C (CstyOBP25 and
CstyOBP27) (Figure 8) [76,77]. A further 6 Classical, 2
Plus-C (CstyOBP22 and CstyOBP24), and 1 Minus-C
(CstyOBP26) type transcripts could be allocated from the
partial CstyOBP transcripts. Notably, while the CstyOBPs
classified as Minus-C do lack one or more of the cysteine
residues in the conserved classic locations, additional cys-
teines (conserved in the CstyOBP Minus-C motif se-
quences) were present in nearby positions that may act as
an alternative.
Phylogenetic analysis revealed that all candidate

CstyOBPs clustered in accordance with their respective
sub-families (Figure 9). This analysis also indicated
that D. melanogaster orthologues were likely to be
present for many of the putative CstyOBPs, although a
few small C. stygia specific clades potentially indicate a
level of divergence within the blowfly. The low average
amino acid identity exhibited by the candidate CstyOBPs
is consistent with that of other species [76,78] and aligns
with the notion that their role involves interacting with a
range of diverse odour molecules. Interestingly, one par-
ticular candidate CstyOBP shared significant amino acid
sequence identity to the D. melanogaster OBP LUSH
(DmelOBP76a) (55% identity), which, in addition to its
role in driving the avoidance of high alcohol concentra-
tions [79], has been shown to play a role in pheromone
sensitivity [39,80].

Identification of candidate chemosensory proteins
Four transcripts encoding candidate CSPs were identi-
fied in both the male and female C. stygia transcrip-
tomes (Additional file 2: Table S6), three of which likely
represent full-length proteins [GenBank accession num-
bers KJ702168-KJ702171]. All of the identified amino
acid sequences possessed a signal peptide and the highly
conserved four-cysteine profile (Figure 10).



Figure 6 Phylogenetic tree of a selection of Dipteran IRs. Neighbour-joining tree of candidate C. stygia IRs (red) with IRs from Anopheles gambiae
(light blue), all iGluRs and IRs from Drosophila melanogaster (dark blue) and the single IR identified in Musca domestica (grey). The identified IR
candidates of C. stygia cluster with their presumed orthologues within the “antennal IR” clades and the IR25a/8a subgroup.
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Identification of candidate odorant degrading enzymes
GO annotation of the transcriptomes indicated an enrich-
ment of proteins involved in catalytic activity. Further ana-
lysis of the combined male and female transcripts
identified 136 candidate Cytochrome P450s and esterases
(Additional file 2: Table S7 [GenBank accession numbers
KJ702175-KJ702310]). Of the 39 candidate esterases (37 of
which were annotated from both the male and female data
sets), 17 likely represent full-length sequences. Ninety-
three of the 97 candidate P450s were present in both sexes
with 28 sequences predicted to be full-length.
Phylogenetic analysis revealed that the candidate Csty-

Ests clustered within all three of the major functional
groups of the esterase gene family (based on the classifi-
cation system of [47]) (Figure 11). This indicates that the
CstyEsts have possible functions in neurodevelopment
(non-catalytic enzyme group), detoxification (mostly
intracellular enzyme group), and hormone and phero-
mone processing (mostly secreted enzyme group) [47].
This analysis also indicated that D. melanogaster ortho-
logues were likely to be present for many of the candi-
date CstyEsts, with no apparent C. stygia specific clades
or expansions. Candidate CstyCyps were also distributed
throughout the four major Cytochrome P450 gene fam-
ily groups, specifically the CYP2, CYP3, CYP4, and mito-
chondrial clades (as classified by [81]) (Figure 12). Genes



Figure 7 Phylogenetic relationships of SNMPs. Maximum-likelihood tree of candidate C. stygia SNMPs (red) with SNMPs from Drosophila melanogaster
(dark blue) and Anopheles gambiae (light blue).
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from the CYP3 clade, in which the majority of CstyCyps
clustered (31 transcripts), have been shown to be in-
volved in xenobiotic metabolism and insecticide resist-
ance [82]. Additionally, some genes from the CYP4
clade have been associated with the metabolism of
odorants or pheromones [82]. Candidate NADPH-
Cytochrome reductases, proteins required for the re-
duction of P450s, were also identified. Notably, several
of the candidate enzymes shared significant amino acid
sequence identity to CYP450s and esterases specifically
associated with pesticide resistance and detoxification.
For example, the candidate esterase CstyEst7 was a best
BLASTx hit to Lucilia cuprina’s E3 (sharing 89% amino
acid identity), an enzyme shown to be a prime candidate
for pesticide resistance [83,84]. Additionally, CstyCyp83
Figure 8 Candidate C. stygia OBPs exhibit all three motif sub-types. T
potential alternative conserved cysteines in the Minus-C sub-group and the
was a reciprocal best hit to D. melanogaster’s CYP6g1,
which has been associated with DDT resistance [85].
While it is possible that many of the candidate enzyme
transcripts are ODEs, significant biochemical analysis is
necessary to identify their specific physiological roles.

Discussion
This research represents the first comprehensive analysis
of a blowfly antennal transcriptome for the purpose of
identifying members of the major chemosensory gene
families necessary for olfaction. The reported gene sets
therefore represent a significant addition to the data re-
garding the molecular basis of blowfly olfaction. Due to
the importance of olfaction in blowfly behaviour, the
identified genes could represent novel targets for future
he conserved six cysteines present in the classic motif are boxed. The
additional cysteines present in the Plus-C motif are in bold text.



Figure 9 Odorant binding proteins. Phylogenetic tree of candidate CstyOBPs (red) with Drosophila melanogaster OBPs (dark blue). CstyOBPs cluster
within their respective OBP sub-families with classic CstyOBPs spread throughout various clades. Squares indicate the putative blowfly specific clades
related to DmelOBP22a and DmelOBP19b-d.

Figure 10 Alignment of candidate C. stygia CSPs. All candidate C. stygia CSPs exhibit the highly conserved four-cysteine profile. The four conserved
cysteine residues are boxed.
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Figure 11 Phylogenetic tree of esterases. Maximum-likelihood tree of candidate C. stygia esterases (red) with esterases from Drosophila
melanogaster (dark blue). The candidate esterases identified in C. stygia are spread throughout all three of the major esterase gene family
groups [47], indicating a variety of possible antennal functions.
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population control methods as well as providing oppor-
tunities for improving post-mortem interval estimations
through a greater understanding of the odour related
factors that favour or inhibit blowfly detection and
colonisation.
Classification of predicted functions of the male and

female C. stygia transcripts via GO assignment produced
similar results as those obtained for other invertebrates
[50,52,62,86,87]. The number of individual candidate
transcripts identified for many of the olfactory gene fam-
ilies is also comparable to those of other Dipteran,
Coleopteran, and Lepidopteran species for which the an-
tennal transcriptome has been examined [50,51,86,88-91].
Without considering the potential significance of individ-
ual genes to each species studied, the similarity of the dif-
ferent data sets does indicate a certain level of antennal
conservation with respect to gene expression.
Interestingly, the 50 candidate ORs identified in C. sty-

gia show greater similarity to the numbers identified in
Lepitopteran species (43 in Cydia pommonella, and 47
in Manduca sexa, H. armigera, and Spodoptera littoralis)
[51,86,88,92] than to the closer related D. melanogaster



Figure 12 Cytochrome P450s. Maximum-likelihood tree of candidate C. stygia Cytochrome P450s (red) with Drosophila melanogaster Cytochrome
P450s (dark blue). The identified CypP450 candidates from C. stygia cluster within the four distinct clades (CYP2, CYP3, CYP4, and mitochondrial).
Candidate NADH-Cytochrome reductases were also identified.
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(37 ORs) [91]. Additionally, the number of candidate C.
stygia GRs (20) and IRs (22) is greater than those reported
for most species [52,91-93]. While these studies also ana-
lysed antennal transcriptomes, variations in the number of
transcripts identified could arise from differences in the
sequencing methods, sequencing depth, and/or sample
preparation. The greater number of candidate ligand-
binding transcripts annotated in C. stygia could be due to
ecological differences; however, further research is re-
quired to determine the specific reason such differences
may exist. Typically, invertebrates with large numbers of
antennal GRs use their antennae for tasting purposes as
well as for olfaction (e.g. the butterfly Heliconius melpom-
ene) [94]. However, there are no reports of blowflies exhi-
biting such behaviour. Interestingly, recent transcriptomic
analysis of A. gambiae also identified GRs in addition to
the previously identified carbon dioxide receptors [90].
While primarily linked to the detection of tastants [95],
the C. stygia and A. gambiae transcriptomes, and the in-
creasing range of “non-gustatory” sensory functions being
identified for these proteins [96], suggests antennal GRs
could have far more diverse roles.
Functional analysis of D. melanogaster IRs has demon-

strated their role in the detection of amines and acids



Leitch et al. BMC Genomics  (2015) 16:255 Page 13 of 17
[38,97], which are significant compounds emitted dur-
ing biological decomposition [14,19,28,98]. Candidate
C. stygia IRs putatively orthologous to D. melanogaster
IRs shown to respond to individual decomposition
compounds (e.g. propanoic acid, ammonia, butyric acid,
and putrescine) [93] were present amongst the male
and female C. stygia data sets. Predicting the ligands to
which olfactory receptors will respond based on empir-
ical data from other receptors is problematic due to
their extensive divergence. Therefore, determining re-
ceptor ligands can only be achieved experimentally. Ul-
timately, the reason for such a large number of ORs,
GRs, and IRs in C. stygia is unknown and additional
molecular biology and functional experiments are re-
quired in order to confirm the expression and role of
these genes. Overall, the comparable and/or greater
number of genes identified within each of the olfactory
gene families suggests that a comprehensive antennal
data set has been obtained for C. stygia. Such results
also illustrate the sensitivity and value of transcriptomic
analysis via next generation RNA-Seq for non-model
organisms.
Notably, the C. stygia transcriptome data indicates that

the chemosensory gene repertoire is largely similar in
the male and female. This indicates that male and female
C. stygia share similar odour-coding capacity. Quantita-
tively, the range of relative expression levels (i.e. low to
high expression) of the candidate ligand-binding ORs in
C. stygia, in relation to Orco, are similar to those re-
ported for other Dipteran species [91,99,100]. However,
preliminary data suggests that there is a difference in the
relative levels of expression of individual ORs between
male and female C. stygia (Additional file 3). Therefore,
while male and female antennae likely perceive similar
odour stimuli, their sensitivities, and hence the odour
significance to the male and female, may differ. This is
consistent with previous studies, which show that elec-
trophysiological responses can be elicited from males
and females by a particular odour [23,101], while lead-
ing to sex-based behavioural differences [22,102-104].
Additional biological repeats and experimental valid-
ation (e.g. quantitative PCR) are required to confirm
the expression data. Further research, such as in situ
hybridization and single-sensilla recordings, would also
be beneficial to determine the distribution and fre-
quency of ORs within the antennae.
Sexually dimorphic expression of chemosensory genes

could indicate roles in sex-specific behaviours, includ-
ing those mediated by pheromones. Invertebrate phero-
mone detection mediates various behaviours including
aggregation, mate recognition, and sexual behaviour
[105]. In D. melanogaster, reception of the male volatile
pheromone, cis-vaccenyl acetate, is achieved with
LUSH, OR67d, and SNMP1 [1,39,80]. The identification
of putative orthologues of these three proteins in C. sty-
gia could indicate potential functional pheromone de-
tection in this species. Proteins sharing high sequence
similarity to LUSH and DmelOR67d have also been iden-
tified in Stomoxys calcitrans (stable fly) [62]. Candidate
blowfly pheromones have been described for several spe-
cies [106-108]; however, all have been non-volatile cuticu-
lar hydrocarbons and therefore are more likely to be
contact pheromones. Additionally, the mechanisms that
allow pheromone reception in blowflies are not yet
known. Further characterisation of the candidate C. stygia
proteins is required to determine if they exhibit similar
chemosensory roles to the D. melanogaster genes or if
they have adapted different functions.

Conclusions
A total of 264 transcripts encoding putative chemosensory
proteins from the seven major olfactory gene families were
annotated in the blowfly C. stygia. The transcriptomic ap-
proach proved to be a highly effective strategy for the
identification of divergent blowfly chemosensory receptors
for which no genomic data is publically available. Com-
parative analysis with other species suggests that near-
complete information regarding the molecular basis of C.
stygia olfaction was obtained. This research greatly im-
proves the gene inventory for C. stygia and provides a
valuable resource for future analysis on blowfly olfaction.
Such information will be fundamental for future compara-
tive analyses that could highlight interspecies differences
underlying ecological differences and genetic adaption.

Methods
Insects
Calliphora stygia pupae were obtained from a commercial
supplier (Sheldon’s Bait, Victor Harbor, SA, Australia) and
maintained at 23°C with a 12 hr light: 12 hr dark photo-
period. Following eclosion, males and females were sepa-
rated and provided with water and protein biscuits (sugar,
eggs, powdered milk yeast, and water) as per published
procedures [109].

RNA extraction and reference transcriptome generation
Antennae were excised from adult male and female flies
(minimum 5 days old) following snap freezing in liquid ni-
trogen. Total RNA was isolated using the RNAqueous®-
Micro Kit (Ambion) with DNase treatment following the
manufacturer’s protocol. RNA quantity was determined
on a Nanodrop ND-2000 spectrophotometer (Thermo
Scientific, Waltham, MA, USA). Synthesis of cDNA and
Illumina library generation was completed at BGI – Hong
Kong Co., Ltd. using Illumina HiSeq2000 sequencing. Raw
RNA-Seq data was pre-processed, combined, and de novo
assembled using Trinity [110,111]. Open reading frames
were predicted using TranscriptDecoder software as
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implemented in Trinity. In silico expression profiles were
generated using DEW [112], which aligns data using Bow-
tie2 v.2.1.0 [113] with RNA-eXpress post-processing
[114]. Expression levels were expressed in terms of FPKM
values (fragments per kilobase per million reads).

Gene identification and annotation
An initial assessment of the combined male and female
C. stygia transcriptomes was completed via searches
against the NCBI non-redundant protein database
(using BLASTp with a 1e-10 threshold) and GO Anno-
tation with Blast2GO [115,116]. Putative chemosensory
genes were identified by custom database nucleotide
Blast profile searches (Geneious software) using known
D. melanogaster sequences as queries. Putative C. stygia
chemosensory genes were in turn used as queries to
identify additional genes (tBLASTx and BLASTp). It-
erative searches were completed until no new candi-
dates were identified. Identification of candidate genes
was verified by additional BLAST searches using the C.
stygia contigs as queries against the NCBI non-redundant
protein database (BLASTx). Protein domains (e.g. trans-
membrane domains, signal peptides, secondary structures,
etc.) were predicted by queries against InterPro using the
InterProScan Geneious software plugin running a batch
analysis (e.g. HMMPanther, SignalPHMM, Gene3D,
HMMPfam, TMHMM, HMMSmart, Superfamily, etc.)
[117]. Membrane topology was assessed with Phobius
[118]. Sequences were classified based on sequence
similarity, domain structure predictions, and phylogen-
etic analysis.

Orthology determination
C. stygia genes were defined as potential orthologues
when they were reciprocal best hits with the correspond-
ing D. melanogaster gene and subsequently grouped
within the same clade in phylogenetic trees.

Protein nomenclature
Candidate chemosensory transcript names are preceded
by a four-letter species abbreviation in accordance with
established conventions (e.g. [73,119]). C. stygia tran-
scripts deemed orthologous (based on sequence similar-
ity) to D. melanogaster sequences were given the same
name (e.g. DmelIR8a, CstyIR8a, DmelOrco, CstyOrco).
Multiple copies of a putative D. melanogaster orthologue
were given the same name followed by a point and num-
ber (e.g. CstyIR76a.1, CstyIR76a.2). For IRs, novel tran-
scripts (i.e. those without putative orthologues) were
numbered from 101 upward in order to avoid confusion
(D. melanogaster IRs are numbered up to IR100a). Simi-
larly, novel ORs and GRs were numbered from 99 up-
wards. Transcripts identified as putative OBPs were
named according to previously established conventions
[80]. Briefly, OBPs were numbered from one upwards in
the following order: “classical” members; “Plus-C” mem-
bers; and “Minus-C” members. OBPs unable to be classi-
fied (due to incomplete sequences) were listed last.
Candidate Cytochrome P450s and esterases were num-
bered from one upwards.

Phylogenetic analysis
Amino acid sequences were aligned using MAFFT [120].
Unrooted neighbour-joining (for IRs) and maximum-
likelihood trees (for ORs and GRs, OBPs, SNMPs, ester-
ases, and Cytochrome P450s) were constructed using
MEGA5 [121] and subsequently viewed and graphically
edited in FigTree v1.4.0 [122] and InkScape v0.48.2
[123]. Branch support was assessed using the bootstrap
method based on 1000 replicates. Incomplete transcripts
without sufficient overlap in alignments and transcripts
less than 200 amino acids in length (except for the OBPs
where full-length transcripts are generally shorter than
200 amino acids) were excluded from phylogenetic ana-
lyses to ensure that the analysed transcripts corre-
sponded to individual genes and that greater accuracy in
the analyses was maintained.
Phylogenetic trees were based on Dipteran data sets.

The IR data set contained 12 C. stygia sequences (10 tran-
scripts were omitted due to their short length and/or their
lack of predicted M1-M3 domains), one from Musca
domestica [GenBank accession number AFP89966.1], 59
IR and 14 iGluR sequences identified in D. melanogaster
[38], and 44 IR sequences from Anopheles gambiae [124].
For construction of the OBP dendogram, all 29 putative
C. stygia sequences were analysed with 52 from D. mela-
nogaster [125]. The OR and GR data set contained 43 and
eight amino acid sequences, respectively, from C. stygia
(seven OR and 13 GR transcripts were omitted due to
their short length and/or lack of overlap when aligned)
and 60 and 5, respectively, from D. melanogaster. Blowfly
OR and GR sequences available from the NCBI database
were also included. For the SNMP dendogram, all three
putative C. stygia sequences were analysed with two
SNMPs from D. melanogaster and an additional two
SNMPs from A. gambiae. The esterase and Cytochrome
P450 data sets contained 29 and 70 C. stygia sequences,
respectively (12 esterase transcripts and 27 Cytochrome
P450 transcripts were omitted due to their short length)
and 35 and 85 sequences, respectively, from D. melanoga-
ster. Protein names and GenBank accession numbers of
genes used for building phylogenetic trees are listed in
Additional file 4.

Availability of supporting data
All supporting data is included within the article and
its additional files. Candidate chemosensory genes were
submitted to the National Center for Biotechnology



Leitch et al. BMC Genomics  (2015) 16:255 Page 15 of 17
Information (NCBI) and can be access at http://www.ncbi.
nlm.nih.gov/gquery/?term=Calliphora+stygia [GenBank:
KJ702047-KJ702310]. Phylogenetic trees and the under-
lying alignments are available at the CSIRO Data Portal
(http://dx.doi.org/10.4225/08/54FF7B03DB181).

Additional files

Additional file 1: Results of Blast against NCBI non-redundant protein
database using predicted C. stygia transcripts as queries. List of
transcript ID, transcript length, and best BLASTp hit.

Additional file 2: Candidate C. stygia antennal chemosensory
genes. Tables outline gene name, length, best BLASTx hit, and predicted
domains.

Additional file 3: Antennal expression levels of candidate C. stygia
odorant receptors.

Additional file 4: GenBank accession numbers of chemosensory
genes, from organisms other than C. stygia, used in phylogenetic
analyses.
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