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Emerging data indicate that free heme promotes inflammation in many different disease

settings, including in sickle cell disease (SCD). Although free heme, proinflammatory

cytokines, and cardiac hypertrophy are co-existing features of SCD, no mechanistic links

between these features have been demonstrated. We now report significantly higher

levels of IL-6 mRNA and protein in hearts of the Townes sickle cell disease (SS) mice

(2.9-fold, p ≤ 0.05) than control mice expressing normal human hemoglobin (AA). We

find that experimental administration of heme 50 µmoles/kg body weight induces IL-6

expression directly in vivo and induces gene expression markers of cardiac hypertrophy

in SS mice. We administered heme intravenously and found that within three hours

plasma IL-6 protein significantly increased in SS mice compared to AA mice (3248± 275

vs. 2384 ± 255 pg/ml, p ≤ 0.05). In the heart, heme induced a 15-fold increase in

IL-6 transcript in SS mice heart compared to controls. Heme simultaneously induced

other markers of cardiac stress and hypertrophy, including atrial natriuretic factor (Nppa;

14-fold, p ≤ 0.05) and beta myosin heavy chain (Myh7; 8-fold, p ≤ 0.05) in SS mice.

Our experiments in Nrf2-deficient mice indicate that the cardiac IL-6 response to heme

does not require Nrf2, the usual mediator of transcriptional response to heme for heme

detoxification by heme oxygenase-1. These data are the first to show heme-induced

IL-6 expression in vivo, suggesting that hemolysis may play a role in the elevated IL-6 and

cardiac hypertrophy seen in patients and mice with SCD. Our results align with published

evidence from rodents and humans without SCD that suggest a causal relationship

between IL-6 and cardiac hypertrophy.
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INTRODUCTION

Sickle cell disease (SCD) is a complex hematological disorder that
affects ∼100,000 Americans and millions of people worldwide,
especially in sub-Saharan Africa and India (1). Hemolysis
and chronic inflammation are major components of the
pathophysiology of SCD. Hemolysis is caused by erythrocyte
injury due to secondary defects in erythrocyte fragility,
deformability and increased endothelial adhesion resulting in
release of hemoglobin and heme (2, 3). Chronic inflammation
in SCD is partly due to leukocytosis with the abnormally
high leukocytes and monocytes that secrete proinflammatory
cytokines. In addition, products of hemolysis act as damage-
associated molecular patterns (DAMPs) potentiating activation
of many inflammatorymechanisms (4). Additionally, products of
intravascular hemolysis such as free hemoglobin and arginase-1
impair nitric oxide bioavailability, endothelial function and organ
function in SCD (2). Limited data indicate that heme can induce
production of proinflammatory cytokines such as interleukin-6
(IL-6) by stimulating immune responses and inflammatory
reactions (5). Hemolysis and inflammation are components of
a wide spectrum of other clinical conditions including sepsis
(6, 7), malaria (8, 9), and preeclampsia (10, 11). Common to
patients with all these syndromes is an increased risk of cardiac
dysfunction (12–15). Notable among proinflammatory cytokines
elevated in SCD is IL-6. Serum levels of IL-6 are elevated
both at steady state and during vaso occlusive crisis in both
children and adults with SCD (16–20), concurrently with severe
anemia and increased markers of hemolysis. Furthermore, IL-6
is associated with cardiomyopathies such as cardiac hypertrophy
and fibrosis in experimental animals (21, 22) and in the general
human population (23, 24). Importantly, cardiopulmonary
complications are one of the leading causes of death in SCD
(25, 26). This accounts for about 26% of deaths in adults with
SCD (27), with left ventricular hypertrophy (LVH) found in over
60% of children and 37% in adults with SCD (28, 29). No prior
publications have investigated any potential linkage between IL-6
and hemolysis in mice and patients with SCD, particularly in
cardiac disease. In this study, we assess direct heme induction
in vivo of IL-6 and genes relevant to cardiac hypertrophy in the

heart of sickle cell mice. Our study shows that IL-6 is highly
expressed in the circulation and in the heart of sickle cell mice at
steady state. Furthermore, administration of extracellular heme
further increased IL-6 and cardiac hypertrophy genes expression.
To gain insight of the mechanism by which heme induces IL-6,
we investigated the role of nuclear factor (erythroid derived 2)-
like 2 (Nfe2L2 or Nrf2). Nrf2 is the master regulator of the
cellular oxidative defense system and plays a significant role in
the regulation of multiple heme-induced genes (30, 31).

MATERIALS AND METHODS

Mouse Strains and Treatment
Male and female Townes’ knocked-in transgenic sickle mouse
(SS) and strain controls expressing normal humanHb (AAmice),
C57BL/6J (Nrf2+/+) and Nrf2−/− mice were used. C57BL/6
mice were obtained from the Jackson Laboratory (stock #000664)

while SS, AA and Nrf2−/− mice were obtained from a colony
maintained by Dr. Solomon Ofori-Acquah’s laboratory in our
institution. Mouse genotypes were confirmed by PCR. Hemin
[Fe(III)PPIX, Sigma-Aldrich, St. Louis, MO] was prepared as
described elsewhere (32, 33). Freshly prepared hemin solution
was protected from light and injected into 12–16 week old mice.
A range of doses and times were tested and 3 h after injection
produced consistent survival with no adverse effects on all strains
of mice in this study. The mice were injected in the tail vein with
a hemin dose of 50 µmoles/kg body weight for SS and AA mice,
and 120 µmoles/kg body weight for Nrf2+/+ and Nrf2−/− mice.
Higher doses were needed for Nrf2+/+ and Nrf2−/− mice to be
able to neutralize the endogenous hemopexin and other heme-
binding proteins and mimic the increase in circulating heme
in chronic hemolysis. This allows comparable assessment of the
transcriptional response. Control mice received sterile vehicle
containing 0.25M NaOH adjusted to pH 7.5 with HCl used in
preparation of hemin.

Plasma Analysis
Freshly collected blood samples were centrifuged at 1,200 × g
for 15min to separate blood plasma. Plasma IL-6 concentration
was measured using the mouse IL-6 ELISA kit (Sigma-Aldrich)
following the manufacturer’s instructions.

Real-Time PCR
Whole organs were harvested from mice 3 h after hemin
injection. Freshly isolated organs (300mg) were snap-frozen
and kept at −80◦C until use. Organs were homogenized in
Qiazol lysis reagent using the Next Advance Bullet Blender
(Next Advance, Inc. Troy, NY). Clear lysates were obtained by
centrifuging homogenized samples at 18,800 × g for 10min.
All tissue processing was carried out at 4◦C. Total RNA was
extracted from the tissue lysates using the miRNeasy Mini
Kit (#217004, QIAGEN, Germantown, MD) and quantified
using the Nanodrop 8000 microvolume spectrophotometer
(ThermoFisher Scientific). Real-time PCR reactions were set-
up in duplicates using 50 ng of RNA. Genes of interest
were evaluated using the TaqMan R© Gene expression assay
(ThermoFisher) and the TaqMan R© RNA-to-CtTM 1-Step Kit
(ThermoFisher) according to the manufacturer’s instructions.
Relative quantification was calculated with the standard 11Ct
method; amplification signals from target gene transcripts were
normalized to those from beta-glucuronidase (Gusb) transcripts.
Relative fold induction was calculated by further normalization
to gene transcripts from vehicle treated animals. Gusb gene
expressions were similar across all mouse strains used and
across all organs within a given mouse strain. Gusb gene
expression in organs from control mice was similar to that
from the corresponding organs from hemin-injected mice.
We have previously published this in different organs from
SS mice here (32) and in the heart of AA control mice in
Supplementary Figure 1 in this study.

IL-6 Protein Quantification
Mice were perfused with phosphate-buffered saline under
anesthesia. Harvested organs (300mg) were homogenized
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in RIPA buffer using the Next Advance Bullet Blender
(Next Advance, Inc. Troy, NY). Homogenized samples were
centrifuged at 18,800 x g for 10min to obtain clear lysates.
All tissue processing was carried out at 4◦C. Heart IL-6
concentration was measured using the mouse IL-6 ELISA kit
(Sigma-Aldrich) following the manufacturer’s instructions. Total
protein was quantified in the lysates using the BCA assay kit
(ThermoFisher Scientific, #23225).

Statistical Analysis
GraphPad Prism 7 software was used for all statistical analyses.
Results are reported as mean ± SEM. Group means were
compared using parametric tests, such as t-test (for 2 groups)
and One-way ANOVA for more than two conditions. Statistical
significance was set at p values of < 0.05.

RESULTS

High Basal Expression and Heme-Induced
Cardiac IL-6 in Sickle Cell Mice
We investigated the basal expression of IL-6 transcripts in the
heart of Townes SS mice and AA control mice. IL-6 expression
was 2.9-fold higher in the heart of Townes SS mice compared
to AA controls (Figure 1A, p ≤ 0.05). Hmox1 expression was
significantly elevated in the heart (2.1-fold) of untreated Townes
SS mice compared to AA controls (Figure 1B, p ≤ 0.01). We
tested the hypothesis that products of hemolysis, specifically
heme, would promote IL-6 expression in the AA heart to mimic
the SS steady state expression. Injection of heme as previously
described (32, 34) increased cardiac IL-6 transcript expression
to levels comparable to vehicle-treated SS mice (Figure 1C,
p < 0.05). This suggests that heme release in SS mice may be the
critical factor that stimulates high SS basal IL-6 expression. SS
mice were even more responsive to heme injection, with cardiac
IL-6 transcripts rising 15.4-fold higher in heme-treated SS mice
compared to vehicle controls (Figure 1D, p≤ 0.05) and by about
53% in SS mice compared to AA mice controls (Figure 1C, p ≤

0.001). We confirmed these mRNA results with analysis of IL-
6 protein, which documented a 34% increase in IL-6 protein in
the heart of SS mice injected with heme compared to vehicle
controls (Figure 2A, p≤ 0.05). These data support a role of heme
in cardiac IL-6 regulation at steady-state and during acute heme
increase in sickle cell disease.

Increased Levels of Circulating IL-6 in
Heme-Treated Sickle Mice
Elevated heme (3, 35) and IL-6 (16, 18) have been individually
reported in the serum of SCD patients. We hypothesized that
increase in extracellular heme rapidly upregulates IL-6 in the
plasma of SS and AA mice. Heme treatment significantly
increased plasma IL-6 protein levels about 25-fold in both AA
and SS mice 3 h after heme injections. The heme-induced IL-
6 level was significantly higher in SS mice than AA mice (3249
± 276 vs. 2385 ± 256 pg/ml, p ≤ 0.05, Figure 2B). These data
indicate a role for free heme in systemic regulation of IL-6.

Heme-Induced Cardiac IL-6 Expression Is
Negatively Regulated via Nrf2 Pathway
Our recent studies confirmed that the Nrf2 pathway mediates
heme induction of cardiac Hmox-1 expression in SS mice (32),
human monocytes (36), and keratinocytes (37). This led us to
investigate whether the same pathway regulates cardiac IL-6
expression and its response to heme. We find no significant
differences in cardiac IL-6 mRNA expression in vehicle-treated
Nrf2+/+ and Nrf2−/− mice (Figure 3A). Treatment with heme
significantly augmented cardiac IL-6 mRNA levels in both
strains (Figure 3A, p ≤ 0.001). Unexpectedly, IL-6 mRNA rose
significantly higher in the hearts of the heme-treated Nrf2-
deficient mice compared to the heme-treated Nrf2+/+ control
mice. Confirming this mRNA finding, cardiac IL-6 protein was
about 51% higher in heme-treated Nrf2−/− mice compared to
heme-treated Nrf2+/+ mice (p < 0.01, Figure 3B). The result
shows that Nrf2 is not required for heme induction of cardiac
IL-6 expression.

Heme Upregulates Markers of Cardiac
Hypertrophy in Sickle Mice
Our results above showed elevated basal expression of cardiac
IL-6 in SS mice, which was further elevated by increase in
extracellular heme. Elevated IL-6 is associated with higher risk
of left ventricular dysfunction and progression to heart failure
in humans (38), and hypertrophy in rodents (39). Furthermore,
in SCD patients LV dysfunction was an independent risk factor
for death (40, 41), while diastolic dysfunction and myocardial
fibrosis were reported in sickle cell mouse model (42). Therefore,
we hypothesized that heme might induce cardiac hypertrophy
genes in sickle cell mice. We evaluated expression of atrial
natriuretic factor (Nppa) and β-Myosin heavy chain 7 (Myh7),
known to be associated with cardiac hypertrophy (43). Baseline
expression of both Nppa and myh7 were similar in the hearts
of AA and SS mice (Supplementary Figure 2). Heme treatment
resulted in a 14.8-fold increase in Nppa transcripts and 8.1-
fold increase in Myh7 transcripts in the heart of SS mice 3 h
after injection of heme (Figures 4A–C), but not AA control mice
(Figure 4C). The heart in SCD appears to be more sensitive to
heme induction of these two cardiac hypertrophy genes.

DISCUSSION

Intravascular hemolysis is an important modifier of outcome
and pathogenesis of SCD (2). The plasma cell-free hemoglobin
and heme are elevated at steady state in SCD and are associated
with disease severity and end organ damage (2, 44). Cardiac-
related complications represent a leading cause of death in SCD
(26). In SCD patients, there is also a dysregulated expression of
IL-6 and other inflammatory cytokines linked to vaso-occlusive
crisis and other complications (18, 20). In this study, we report
for the first time elevated basal cardiac IL-6 mRNA and protein
levels in SS mice compared to AA controls. We also showed that
experimental increase in circulating heme further elevates cardiac
and plasma IL-6 expression in control mice and even more so in
SS mice. Our result is consistent with earlier studies that reported
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FIGURE 1 | Cardiac expression of IL-6 and Hmox1 in SS mice. Heart mRNA expression of (A) IL-6 and (B) Hmox1 in naïve in 14 week old SS mice compared to

age-matched AA mice (n = 3). The SS mice Hmox1 data was published here (32). (C) Heme induced cardiac IL-6 mRNA in SS and AA mice (n = 3–10). (D) Relative

fold change in heme-induced cardiac IL-6 mRNA expression in heme treated AA and SS mice (n = 6–10). For DeltaCt, lowest value = highest expression and highest

value = lowest expression. Target gene transcripts were normalized to Gusb for all mRNA expression levels. Gusb expression was similar in all mice strains used and

in all of these organs in animals injected with either vehicle or hemin. For relative fold change, samples were further normalized to vehicle control gene transcripts.

Unpaired Student’s t-test or one-way ANOVA. Error bars indicate SEM. *p ≤ 0.05; **p ≤ 0.01. #p < 0.05 AA vs. SS. V, Vehicle and H, Heme.

elevated serum IL-6 in SCD patients (16, 18), but those studies
did not investigate the heart. It is possible that cardiomyocytes
and non-cardiomyocytes including fibroblasts and macrophages
in the heart as well as cells in other organs may be contributing to
the elevated plasma IL-6 after heme injection.

Hemopexin, the endogenous scavenger of free heme, is
depleted from the serum of both human (45, 46) and mice
(34, 47) with SCD, making them more susceptible to acute
increases in heme concentration. This promotes the elevated
circulating heme levels reported in human (35) and mice
with SCD (34). Once the plasma heme scavenging system is
saturated, circulating heme can generate reactive oxygen species,
resulting in tissue injury. Our results indicate that heme also

upregulates inflammatory cytokine IL-6. Our finding of heme
induction of cardiac IL-6 complements a recent report of higher
cardiac IL-6 transcripts in hemopexin deficientmice compared to
wildtype control (48). The protective effect of hemopexin in heme
injection experiments in sickle cell and hemopexin deficient mice
has previously been published by our group (34, 49) and other
authors (47, 50).

Our findings show that Nrf2 is dispensable for heme induction
of IL-6 expression. Further investigation of this pathway was
beyond the scope of this current investigation, with several
possible mechanisms that might be involved in this heme
response. Multiple regulatory elements in the promoter region
of the IL-6 gene may contribute to its regulation in a cell
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FIGURE 2 | Heme induces IL-6 protein with a more pronounced effect in SS mice compared to AA controls. (A) Heme induced cardiac IL-6 protein in SS mice

(n = 3–4). (B) Plasma IL-6 in SS and AA mice injected (IV) with 50 µmoles/kg body weight heme or vehicle (n = 5–7). Unpaired Student’s t-test or one-way ANOVA.

Error bars indicate SEM. *p < 0.05, ****p < 0.0001. #p < 0.05 AA vs. SS. V, Vehicle and H, Heme.

FIGURE 3 | Nrf2 is not required for heme-induced cardiac IL-6. Heme-induced cardiac IL-6 in Nrf2+/+ and Nrf2−/− mice. (A) RNA (B) Protein. Nrf2+/+ and Nrf2−/−

mice were injected with vehicle or heme (120 µmoles/Kg body weight). For DeltaCt, lowest value = highest expression and highest value = lowest expression. Target

gene transcripts were normalized to Gusb for all mRNA expression level. Gusb expression was similar in all mice strains used and in all of these organs in animals

injected with either vehicle or hemin. This dose was selected after standardization for producing consistent survival with no adverse effects on both strains of mice.

One-way ANOVA. Error bars are SEM. ***p ≤ 0.001; ****p ≤ 0.0001, vehicle vs. heme within strain. #p ≤ 0.05 ##p ≤ 0.01 Nrf2+/+ vs. Nrf2−/− (n = 3–7; 14–16 weeks

old). V, Vehicle and H, Heme.

type-specific manner (51). Nrf2 might act as a transcriptional
repressor or it might regulate another transcriptional inhibitor
of IL-6 expression (52). Additionally, reduced inducibility in
Nrf2−/− mice of cardiac Hmox1, the principal enzyme in heme
catabolism (32), could result in slower degradation of heme
leading to prolonged heme-induced activation of IL-6 through
an Nrf2-independent pathway. Chronic long-term signaling of
IL-6 induces inflammation and promotes cardiac hypertrophy in
other models (53). Both features are risk factors for morbidity
and mortality in SCD (29, 40, 54), although their relationship to
each other has not been investigated in SCD.

Our pilot analysis of other cardiac mRNAs shows a concurrent
induction of transcripts of cardiac hypertrophy genes Nppa
and MyH7 by heme in the heart of SS mice. Additional

inflammatory cytokines such as PlGF contributes to cardiac
hypertrophy through IL-6 signaling (55) and it is a predictor
of increased left ventricular mass in non-hemolytic diseases
such as chronic kidney disease (56). We recently published
evidence of elevated basal cardiac expression of PlGF in SS mice
with further inducibility by heme (32). These results support a
hypothetical model that chronic hemolysis induces expression
of both PlGF and IL-6, and this elevation of inflammatory
cytokines might contribute to the development of LVH in SCD
through a yet to be experimentally identified mechanism. The
association of hemolysis, IL-6 induction and organ damage in
SCD is supported by previous published research. A recent
report showed an association between a polymorphism in the
IL-6 gene and development of leg ulcer in SCD patients (57),
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FIGURE 4 | Heme induces high expression of transcripts of cardiac hypertrophy markers in SS mice. Heme induced the expression of (A) Nppa (B) Myh7 in the heart

of SS mice 3 h after heme or vehicle injection (C) Myh7 in the heart of SS and AA mice 3 h after heme (50 µmoles/kg body weight) or vehicle injection. For DeltaCt,

lowest value = highest expression and highest value = lowest expression. Target gene transcripts were normalized to Gusb for all mRNA expression level. Gusb

expression was similar in all mice strains used and in all of these organs in animals injected with either vehicle or hemin. For relative fold change, samples were further

normalized to vehicle control gene transcripts. Unpaired student’s t-test and one-way ANOVA. Error bars indicate SEM. ***p ≤ 0.001; **p ≤ 0.001, vehicle vs. heme

within strain. #p ≤ 0.05 AA vs. SS (n = 3–8; 14–16 weeks old). V, Vehicle and H, Heme.

while previous publications showed hemolysis as a risk factor
for leg ulcer in these patients (2, 58). Taken together, these
suggest that increased hemolysis and inflammatory cytokines
including IL-6 may play an important role in organ injury and
pathophysiology of SCD.

Our study has several limitations. We did not evaluate the
hemopexin levels in plasma or the heart and we did not
test whether hemopexin would be protective against heme
induction of IL-6. We did not determine a specific cell type
in the heart in which heme activates IL-6 expression, and
this is a future goal. The mechanism of heme-induced IL-
6 expression remains to be determined, although our present
evidence unequivocally demonstrates that Nrf2 is not required.
An alternative mechanism might involve the activation of the
Toll-like receptor 4 (TLR4) induction of MyD88, activator
protein-1 (AP-1) and nuclear factor–κB (NF-κB) pathways (59–
61). The specific mechanisms by which hemolysis-induced IL-6
contributes to the development of cardiac hypertrophy in SCD
warrants future investigation. Despite these limitations, the
findings of this study are novel and set the stage for detailed
mechanistic studies of heme induction of cardiac IL-6 in SCD.
This may lead to the development of novel therapeutic targets
for ameliorating or preventing heme-induced IL-6 and cardiac
dysfunction in SCD.

In conclusion, we show for the first time direct induction
of IL-6 by heme in the plasma and heart of SS mice, in a
mechanism that does not require Nrf2. We also show for the first
time that heme induces cardiac expression of genes associated
with cardiac hypertrophy, a clinically significant complication
found in SCD patients with especially severe chronic hemolysis.
These new observations provide the basis for a previously
unknown heme/IL-6 axis in the development of cardiac disease
in patients with SCD. This new model provides potential
therapeutic targets for intervention in the heme response and
IL-6 pathways to prevent cardiac disease in SCD that merit
additional investigation.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

ETHICS STATEMENT

The animal study was reviewed and approved by
University of Pittsburgh Institutional Animal Care and Use
Committee (IACUC).

AUTHOR CONTRIBUTIONS

OG and GK designed the research project, analyzed, interpreted
data, and drafted the manuscript. OG performed the
experiments. MK and SG assisted with the experiments. FV
and SO-A supervised experiments, and interpreted data. All
authors critically reviewed and approved the final version.

FUNDING

GK received support from NIH grants HL133864, MD009162
and from the Institute for Transfusion Medicine Hemostasis
and Vascular Biology Research Institute at the University of
Pittsburgh School of Medicine. SO-A is supported by NIH
grants R01HL106192, U01HL117721, and U54HL141011. FV
is supported by NIH grants R01EB026966, R01HL146465,
UG3HL143192, and R01HL125777.

ACKNOWLEDGMENTS

We thank Diane Lenhart, Bethany Flage, and Danielle Crosby for
technical assistance.

Frontiers in Immunology | www.frontiersin.org 6 August 2020 | Volume 11 | Article 1910

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Gbotosho et al. Heme, IL-6 and the Heart in SCD

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fimmu.
2020.01910/full#supplementary-material

Supplementary Figure 1 | GUSB expression in vehicle and haem-injected mice.

Endogenous GUSB expression in vehicle and hemin-treated AA mice (n = 3–6).

For Ct, lowest value = highest expression and highest value = lowest expression.

All values are mean ± SEM. Exp, Expression. There were no significant differences

between vehicle control and hemin treated values.

Supplementary Figure 2 | Similarity in baseline transcripts of markers of cardiac

hypertrophy in AA and SS mice. Baseline expression of Nppa and Myh7 in the

heart of AA and SS mice. For DeltaCt, lowest value = highest expression and

highest value = lowest expression. Target gene transcripts were normalized to

Gusb for all mRNA expression level. All values are mean ± SEM. Exp, Expression.
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