
ORIGINAL RESEARCH
published: 24 November 2020

doi: 10.3389/fneur.2020.548305

Frontiers in Neurology | www.frontiersin.org 1 November 2020 | Volume 11 | Article 548305

Edited by:

Fernando Cendes,

Campinas State University, Brazil

Reviewed by:

Stefan Rampp,

University Hospital Erlangen, Germany

Robert LeMoyne,

Northern Arizona University,

United States

*Correspondence:

Chunhong Shen

2513109@zju.edu.cn

Lijun Yao

lyao@tongji.edu.cn

Specialty section:

This article was submitted to

Epilepsy,

a section of the journal

Frontiers in Neurology

Received: 02 April 2020

Accepted: 14 October 2020

Published: 24 November 2020

Citation:

Guo Y, Liu Y, Ming W, Wang Z, Zhu J,

Chen Y, Yao L, Ding M and Shen C

(2020) Distinguishing Focal Cortical

Dysplasia From Glioneuronal Tumors

in Patients With Epilepsy by Machine

Learning. Front. Neurol. 11:548305.

doi: 10.3389/fneur.2020.548305

Distinguishing Focal Cortical
Dysplasia From Glioneuronal Tumors
in Patients With Epilepsy by Machine
Learning

Yi Guo 1,2, Yushan Liu 3, Wenjie Ming 2,4, Zhongjin Wang 2,4, Junming Zhu 2,5, Yang Chen 3,

Lijun Yao 6*, Meiping Ding 2,4 and Chunhong Shen 2,4*

1Department of General Practice, School of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, China,
2 Epilepsy Center, School of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, China, 3 School of

Computer Science, Fudan University, Shanghai, China, 4Department of Neurology, School of Medicine, Second Affiliated

Hospital, Zhejiang University, Hangzhou, China, 5Department of Neurosurgery, School of Medicine, Second Affiliated

Hospital, Zhejiang University, Hangzhou, China, 6 Shanghai Pudong New Area Mental Health Center, Tongji University School

of Medicine, Shanghai, China

Purpose: We are aiming to build a supervised machine learning-based classifier, in

order to preoperatively distinguish focal cortical dysplasia (FCD) from glioneuronal tumors

(GNTs) in patients with epilepsy.

Methods: This retrospective study was comprised of 96 patients who underwent

epilepsy surgery, with the final neuropathologic diagnosis of either an FCD or GNTs.

Seven classical machine learning algorithms (i.e., Random Forest, SVM, Decision Tree,

Logistic Regression, XGBoost, LightGBM, and CatBoost) were employed and trained

by our dataset to get the classification model. Ten features [i.e., Gender, Past history,

Age at seizure onset, Course of disease, Seizure type, Seizure frequency, Scalp EEG

biomarkers, MRI features, Lesion location, Number of antiepileptic drug (AEDs)] were

analyzed in our study.

Results: We enrolled 56 patients with FCD and 40 patients with GNTs, which included

29 with gangliogliomas (GGs) and 11 with dysembryoplasic neuroepithelial tumors

(DNTs). Our study demonstrated that the Random Forest-based machine learning model

offered the best predictive performance on distinguishing the diagnosis of FCD from

GNTs, with an F1-score of 0.9180 and AUC value of 0.9340. Furthermore, the most

discriminative factor between FCD and GNTs was the feature “age at seizure onset” with

the Chi-square value of 1,213.0, suggesting that patients who had a younger age at

seizure onset were more likely to be diagnosed as FCD.

Conclusion: The Random Forest-based machine learning classifier can accurately

differentiate FCD from GNTs in patients with epilepsy before surgery. This might lead to

improved clinician confidence in appropriate surgical planning and treatment outcomes.
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INTRODUCTION

Focal cortical dysplasia (FCD) is a distinctive malformation of
cortical development that is highly associated with refractory
epilepsy. Around 12–40% of patients with FCD were submitted
to surgery for refractory epilepsy (1). Neuropathological findings
have also reported glioneuronal tumors (GNTs) are another
important cause of refractory epilepsy in children and young
adults, including gangliogliomas (GGs) and dysembryoplastic
neuroepithelial tumors (DNTs) (2). Previous studies have
demonstrated that patients with FCD and GNTs have different
postoperative seizure outcomes. Up to 80% patients with GNTs
could achieve seizure-free during the follow-up. However, only
40–50% patients with FCD experienced no seizures after surgery
(3, 4). As for the surgical protocol in many patients with FCD,
wide cortical resection over the MRI-delineated lesion with
invasive electroencephalography is frequently recommended,
due to obscure histologic boundary and poor prognosis (5).
In contrast, recent studies on tumor-associated epilepsy have
emphasized that total surgical resection of the tumor is sufficient
and effective for seizure control in most patients with GNTs
(6). Thus, it is crucial to make the differential diagnosis
of FCD and GNTs preoperatively. However, their clinical
manifestation and imaging findings could be similar, especially
in cases of mass-like FCD (7). What’ more, type III FCD was
accompanied by an additional brain lesion as noted in the
classification system by the International League Against Epilepsy
(ILAE) (8).

Some factors have been reported to differentiate FCD
from GNTs before surgery. Rácz’s et al. study indicated that
age at epilepsy onset was younger in patients with FCD
compared to those with GNTs (9). Though 18F-FDG PET
can’t contribute to the differentiation of FCD and GNTs, 11C-
methionine PET identified a significant difference between them
(10). But, up to now, 11C-methionine PET was unavailable
in most hospitals worldwide. Several surface EEG biomarkers
were also revealed to be significantly correlated with an
underlying cortical dysplasia (11). Despite these factors, it
remained a challenge to effectively differentiate FCD from
GNTs preoperatively.

Machine learning, as an important branch of artificial
intelligence, has been applied to automated seizure detection
(12), prediction of antiepileptic drugs (AEDs) response
(13), pre-surgical planning and surgical outcome prediction
(14). In the present study, we adopted supervised machine
learning-based algorithms to train the classifier to differentiate
FCD from GNTs, using seven representative classification
algorithms, i.e., Decision Tree (15), Random Forest (16),
Logistic Regression (17), Support Vector Machine (SVM)
(18), XGBoost (19), Catboost (20), and LightGBM (21). In
addition, we included several features to predict different
pathological results, attempting to identify the most valuable
feature. Based on our results, one can use the trained
classifier to make a diagnosis prediction of FCD or GNTs
before surgery, hence helping clinicians to make better
surgical planning.

METHODS

Patients and Definitions
The study was retrospectively conducted from January 2013 to
December 2018 in the Second Affiliated Hospital of Zhejiang
University, a tertiary referral hospital in Zhejiang, China. All
the patients underwent epilepsy surgery at the Epilepsy Center.
Inclusion criteria were as follows: (1) patients were diagnosed
as epilepsy according to the guidelines for the Classification and
Diagnosis of Epilepsy of ILAE (22). (2) the neuropathologic
diagnosis of either FCD or GNTs was established by two senior
neuropathologists (8, 23), discrepancies were discussed and
resolved by verification from a third senior neuropathologist. (3)
all the patients underwent a non-invasive pre-surgical evaluation,
including long-term video-EEG monitoring, high-resolution
MRI with epilepsy sequence and PET-CT for some of them; for
patients whose surgical protocols were with difficulties, invasive
evaluation with the stereo-electroencephalography was carried
out. Among 308 patients who underwent epilepsy surgery from
January 2013 to December 2018 in our center, 98 patients met
inclusion criteria, 2 patients did not obtain informed consent,
and 96 patients were included in the final analysis. Informed
consents were obtained from all the participants, and the study
was approved by the Second Affiliated hospital of Zhejiang
University School of Medicine Ethics Committee.

The information of ten features (i.e., Gender, Past history,
Age at seizure onset, Course of disease, Seizure type, Seizure
frequency, Scalp EEG biomarkers, MRI features, Lesion location,
Number of AEDs) were recorded. Past history included
encephalitis, perinatal brain injury, febrile convulsion, traumatic
brain injuries and other known secondary causes. Seizure type
was classified according to the new operational classification
by ILAE (24), and seizure frequency was grouped into four
categories: every few years, once a year, once few months and
several times a month (25). Video EEG (VEEG) was performed
using digital VEEG systems (Nicolet, VIASYS, United States and
Biologic, NATUS, United States), with scalp electrodes placed
according to the international 10–20 system. All the patients
were monitored for at least 24 h. For the patients with long-
term monitoring, the first 24 h recordings were chosen without
AEDs tapering. Two EEG experts were blind to the MRI results

and underlying histopathology. EEG recordings were evaluated
in both referential and bipolarmontages, and positive biomarkers

were considered to be present when consensus between two
independent EEG experts was achieved. The positive biomarkers
of FCD were defined as the presence of continuous epileptiform
discharges, two types of rhythmic epileptiform discharges,
polyspikes, repetitive activity and polyspikes, frequent rhythmic

bursting epileptiform activity, or repetitive discharges according
to Epitashvili’s et al. study (11). Examples of positive EEG

biomarkers were shown in (Supplementary Figure 1). As for
MRI protocols, patients were conducted on a 3.0T scanner
(MR750, GE Healthcare, United States) with an 8-channel
brain phased array coil. High resolution coronal T2-weighted
images perpendicular to the long axis of the hippocampus
were acquired using spoiled gradient echo sequence with
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TR/TE = 5,518/176ms, flip angle = 110◦, slice thickness =

2mm, matrix = 512 × 512. Sagittal 3D T1-weighted images
were acquired using brain volume imaging (BRAVO) sequence
with TR/TE = 8.2/3.2ms, TI = 450ms, flip angle = 12◦, slice
thickness = 1mm, matrix = 256 × 256. High resolution axial
T2-weighted images and fluid-attenuated inversion-recovery
(FLAIR) sequence were also obtained. Contrast-enhanced images
T1-and T2-weighted images were obtained, if necessary. Typical
MRI characteristics of FCD type I included subtle white matter
signal changes and regional reduction of the white matter
volume. TypicalMRI characteristics of FCD type II included focal
cortical thickening, blurring of the gray-white matter interface,
focally increased signal on T2-weighted imaging, and a tail of
increased signal from the cortex to an underlying ventricle on
T2-weighted imaging (transmantle sign) (26, 27). GGs usually
presents as a cyst with an enhancing mural nodule, with minimal
to no surrounding edema and no significant mass effect. Foci
of calcification are frequent (40–50%) in GGs and areas of
cortical dysplasia can be seen adjacent to the tumor (28, 29).
On MRI, DNTs appear well-demarcated and frequently wedge
shaped, hypointense on T1WI, and hyperintense on T2WI, lack
of edema and mass effect. Calcifications can be seen in 20%
DNTs, and 20% DNTs have nodular or ring-like enhancement
(28, 29). Typical characteristics of GGs and DNTs on MRI
imaging were considered as typical characteristics of GNTs (28,
29). TypicalMRI characteristics of FCD orGNTswere considered
when consensus between two independent neuroradiologists was
achieved. Examples of MRI for FCD and GNTs were shown in
(Supplementary Figure 2).

Machine Learning
Our work was aiming to build a binary classification model
capable of distinguishing FCD from GNTs. The process of
the supervised machine learning-based analysis included the
following steps, i.e., data preprocessing, feature selection,
algorithm selection, parameter tuning, and performance
evaluation. The method was as the same as our previous study
(13). The workflow of data preparation and machine-learning
based modeling was shown in the (Supplementary Figure 3).

Data Preprocessing
In our analysis, 56 patients with FCD and 40 with GNTs
were recruited. To solve the unbalanced sample problem,
we over-sampled the minority type to 56 by using the
SMOTE technique (30). (https://www.jair.org/index.php/jair/
article/view/10302). Then we randomly split the entire dataset
into a training and validation dataset and a test dataset. The
training and validation dataset were used to train and validate
the prediction model, while the test dataset was applied to
evaluate the prediction performance of the trained model. We
used 50% of patients for training and validation, the rest for
test. The aim of the training and validation stage is to find
an optimal set of parameters that can achieve the highest
prediction performance. We further applied the 5-fold cross-
validation method by randomly dividing the training and
validation dataset into 5 subsets with equal sample sizes. The
cross-validation process was repeated for 5 rounds. For each

round, one of the 5 subsets were retained as the validation
data to evaluate the model, and the remaining 4 subsets were
used for training. We have made our dataset available to
the public via Harvard Dataverse (https://dataverse.harvard.edu/
dataset.xhtml?persistentId=doi:10.7910/DVN/6F7QPP).

Algorithm Selection and Parameter Tuning
For machine learning algorithm selection, we included classical
algorithms such as Random Forest, SVM, Decision Tree and
Logistic Regression, as well as new algorithms, i.e., XGBoost,
LightGBM, and CatBoost. For each algorithm, we should
determine an optimal set of parameters. Based on the training
and validation dataset, we applied grid search to go through
the parameter space, which covers a finite set of parameter
combinations. For each parameter combination, we evaluated the
model’s prediction performance using the training and validation
dataset. We record the parameters leading to the highest F1-
score. To train and evaluate the classificationmodel (31), we used
the scikit-learn library, a representative open source machine
learning toolkit, written in the Python programming language.
This library supports a number of supervised machine learning
algorithms, including Decision Tree, Random Forest, Logistic
Regression, Support VectorMachine (SVM), XGBoost, Catboost,
and LightGBM. After selecting a specified algorithm, the scikit-
learn library is able to process the training and validation dataset
to obtain a classification model. Then this model can be further
applied to the test dataset.

Performance Evaluation
Based on the test dataset, we used precision, recall, F1-score, and
the AUC (Area Under the ROC Curve) value to evaluate the
predictive performance of our trained model (32). Precision was
the fraction of patients with FCDwhowere finally diagnosed with
FCD. Recall was the fraction of patients with FCD who have been
adequately identified by the model. F1-score was the harmonic
mean of precision and recall, with its best value at 1 and worst
value at 0. F1-score was calculated as follows:

F1 =
2 · precision · recall

precision+ recall

From the perspective of clinicians, high precision means that
our prediction rarely over-reports or over-represents the fraction
of patients with predicted FCD who are in fact diagnosed with
FCD. Meanwhile, high recall means the fraction of patients
with FCD who are uncovered accurately. A higher value of
F1-score indicates a better overall predictive performance of
a classifier. AUC is another important metric for evaluating a
classificationmodel’s performance, which denotes the probability
that a machine learning algorithm will rank higher of a random
positive instance than a randomly chosen negative instance. The
value of AUC is between 0 and 1. For a perfect classifier, the AUC
value will be 1. For a completely random classifier, the AUC value
will be 0.5. If the AUC value is smaller than 0.5, we could invert
all the outputs of the classifier and obtain a new AUC value larger
than 0.5. An AUC value close to 1 indicates that themodel is good
at distinguishing FCD from GNTs.
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Statistical Analysis
Statistical analysis was performed using python. Continuous
variable (course of disease) with normal distribution was
represented as mean ± standard deviation (SD), non-normal
variable (age at seizure onset) was reported as median
[interquartile range (IQR)]. Categorical variables were described
in the form of frequency and percentage. Independent student’s
t-test were conducted to compare the means of the continuous
variables with normal distribution whileWelch’s t-test was used if
the data was not normally distributed. Chi-Squared (χ2) Statistics
was used to compare the frequencies of categorical variables
between FCD and GNTs Groups. And we calculated the Chi-
Square (χ2) Statistics to evaluate the dependence of each selected
feature on different pathological results (33). A larger χ

2 value
indicated a better discriminative power of the feature. A value of
p < 0.05 was considered significant. All the tests were two tailed.

RESULTS

Patient Characteristics
A total of 96 patients who underwent epilepsy surgery were
analyzed in our study, including 56 patients with FCD (FCD
I: n = 16; FCD II: n = 40) and 40 patients with GNTs (GG:
n = 29; DNTs = 11). Ten features were reviewed and recorded;
the details were shown in Table 1. The median age at seizure
onset (months) in FCD group was much lower than that in
GNTs group (77 vs. 155, P = 0.002, also see Figure 1); Course
of disease (months) in FCD group was longer than that in GNTs
group, but not statistically significant (105 vs. 69, P = 0.12,
also see Figure 1). Thirty-five (62.5%) patients with FCD showed
scalp EEG biomarkers of FCD, whereas only 13 (32.5%) patients
with GNTs had the positive biomarkers (p = 0.04, also see
Figure 1). Thirty six (64.3%) patients with FCD had typical MRI
characteristics of FCD, and 29 (72.5%) patients in GNTs group
had typical MRI characteristics of GNTs (p < 0.001, also see
Figure 1). As for AEDs, 37 (66.0%) patients in FCD group were
taking more than 3 kinds of AEDs, while only 6 (15.0%) patients
in GNTs group were taking 3 or more kinds of AEDs (p < 0.001,
also see Figure 1). However, there were no significant differences
in gender, past history, seizure type, seizure frequency, and lesion
location between two groups with FCD and GNTs.

Machine Learning Algorithms Used to
Distinguish FCD From GNTs
With the current dataset, we adopted supervised machine
learning algorithms to preoperatively predict pathological
diagnosis of patients with epilepsy. A wide variety of machine
learning algorithms were selected to build classification models,
including Random Forest, Catboost, SVM, XGBoost, LightGBM,
Logistic Regression, and Decision Tree. As shown in Table 2,
the F1-scores of these seven models (Random Forest, Catboost,
SVM, XGBoost, LightGBM, Logistic Regression, and Decision
Tree) were 0.9180, 0.9000, 0.8621, 0.8667, 0.8750, 0.8889, and
0.8000, and the AUC values were 0.9340, 0.9515, 0.9055, 0.9630,
0.8531, 0.9132, and 0.7873, respectively. The precision/positive
predictive value and recall/sensitivity for each model were also
described in Table 2. Overall, our data revealed that Random

Forest and Catboost were most effective in distinguishing
patients with FCDs from those with GNTs. Furthermore,
Random Forest-based classifier achieved the highest F1-score
of 0.9180 and an AUC value of 0.9340, providing the best
discriminatory ability in the prediction of pathological diagnosis.

The Features Used to Distinguish FCD
From GNTs
Next, the Chi-Square analysis was employed to identify the
discriminative power of each feature to preoperatively make
the diagnosis of FCD or GNTs. The top 5 ranked features that
effectively contributed to distinguishing FCD from GNTs were
Age at seizure onset, Course of disease, MRI features, Number
of AEDs, and Scalp EEG biomarkers, with the Chi-square values
of 1,213.000, 334.800, 19.969, 13.946, and 4.200, respectively
(Table 3).

To visualize the difference between patients with FCD and
GNTs, we analyzed in terms of Age at seizure onset, Course
of disease, MRI features, Number of AEDs and Scalp EEG
biomarkers as shown in Figure 1. Age at seizure onset was
revealed to be the most discriminative feature to distinguish
between patients with FCD and GNTs, meaning that younger age
at seizure onset would increase the probability of the diagnosis
of FCD.

DISCUSSION

In the present study, we demonstrated that the Random Forest-
based machine learning model provided the best predictive
performance on distinguishing FCD from GNTs, with an F1-
score of 0.9180 and AUC value of 0.9340. Of ten included
features, “Age at seizure onset” was revealed to be the
most discriminative feature. With this supervised machine
learning-based approach, one would accurately differentiate
FCD from GNTs in patients with epilepsy before surgery,
allowing clinicians to make the surgical planning properly
and individually.

For all the patients who underwent epilepsy surgery, the
ultimate desired outcomes were complete seizure freedom
without further AEDs. Therefore, accurate preoperative
diagnosis of FCD or GNTs based upon clinical features was
of great importance, when planning the extent of resection
and choosing the invasive evaluation as noted above. With
widespread use in image recognition, language processing, and
data mining, machine learning-based techniques have received
increasing attention in medical applications, including the use
of epilepsy (14). One challenge is that there are a series of
potential supervised ML algorithms which could be selected. To
our knowledge, which algorithm is the most suitable one for
our problem is unknown. Our study focused on the differential
diagnosis of FCD and GNTs before surgery, indicating that two
classification algorithms (Random Forest and Catboost) were
quite effective to predict between FCD and GNTs. Particularly,
the Random Forest-based model performed best in prediction.
Logistic regression was a widely used statistical method with
an F1-score of 0.8889 in our study, which was much lower
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TABLE 1 | Clinical characteristics of included patients with FCD and GNTs.

Variable FCD

(n = 56)

GNTs

(n = 40)

Overall

(n = 96)

P-value

Gender, n (%) 0.593

Female 27 (48.2%) 16 (40%) 43 (44.8%)

Male 29 (51.8%) 24 (60%) 53 (55.2%)

Past History, n (%) 0.949

Negative 52 (92.9%) 37 (92.5%) 89 (92.7%)

Positive 4 (7.1%) 3 (7.5%) 7 (7.3%)

Age at seizure onset

(months), median (IQR)

77 (31, 125) 155 (70, 270) 108 (36, 228) 0.002*

Course of disease (months), Mean ±

SD

105 ± 113 69 ± 107 90 ± 111 0.12

Seizure type, n (%) 0.978

FAS 14 (17.5%) 10 (18.2%) 24 (17.7%)

FIAS 40 (50%) 22 (40%) 62 (45.9%)

FBTCS 26 (32.5%) 23 (41.8%) 49 (36.4%)

Seizure frequency, n (%) 0.184

Every few years 2 (3.6%) 7 (17.5%) 9 (9.4%)

Once a year 0 (0%) 1 (2.5%) 1 (1.0%)

Once few months 4 (7.1%) 5 (12.5%) 9 (9.4%)

Several times a month 50 (89.3%) 27 (67.5%) 77 (80.2%)

Scalp EEG biomarkers of FCD, n (%) 0.040*

Negative 21 (37.5%) 27 (67.5%) 48 (50.0%)

Positive 35 (62.5%) 13 (32.5%) 48 (50.0%)

MRI features, n (%) <0.001*

Typical characteristics of GNTs 2 (3.6%) 29 (72.5%) 31 (32.3%)

Typical characteristics of FCD 36 (64.3%) 6 (15%) 42 (43.8%)

None 18 (32.1%) 5 (12.5%) 23 (23.9%)

Lesion location, n (%) 0.130

Frontal lobe 31 (55.4%) 3 (7.5%) 34 (35.4%)

Temporal lobe 19 (33.9%) 34 (85%) 53 (55.2%)

Parietal lobe 4 (7.1%) 2 (5%) 6 (6.3%)

Occipital lobe 1 (1.8%) 1 (2.5%) 2 (2.1%)

Insular lobe 1 (1.8%) 0 (0%) 1(1.0%)

Number of AEDs, n (%) <0.001*

None 1 (1.8%) 8 (20%) 9 (9.4%)

1 drug 3 (5.4%) 13 (32.5%) 16 (16.7%)

2 drugs 15 (26.8%) 13 (32.5%) 28 (29.1%)

≧3 drugs 37 (66.0%) 6 (15.0%) 43 (44.8%)

FCD, focal cortical dysplasia; GNTs, glioneuronal tumors; FAS, focal aware seizure; FIAS, focal impaired awareness seizure; FBTCS, focal to bilateral tonic-clonic seizure; AEDs,

antiepileptic drugs; IQR, interquartile range; SD, standard deviation; *P < 0.05 was considered statistically significant.

compared to that of Random Forest. Consequently, our Random
Forest-based model would be considered as a potential and
powerful classifier to predict the preoperative pathological
diagnosis for patients with epilepsy. Consistent with our
result, Paldino et al. have indicated that the Random Forest
classifier achieved 100% sensitivity and 95.4% specificity in
predicting language impairment with DTI-based whole-brain
tractography data from pediatric patients with malformations of
cortical development (34). A later study conducted by Grinspan
et al. has also demonstrated that the Random Forest classifier
achieved AUCs of 84.1 and 73.4% at each center in predicting

emergency department visit rates for the following year, using
a combination of demographic characteristics, insurance,
comorbidity, and medication data in medical records at two
pediatric referral centers (35). In our study, the consistent rate
between conventional preoperative diagnosis and postoperative
pathology was 76%, while the consistent rate was 89.6% when
preoperative Random Forest algorithm was used to predict
postoperative pathology, showing a statistically significant
difference (Supplementary Table 1, χ

2 = 6.184, p = 0.013). As
far as we know, this was the first study reporting that machine
learning-based algorithms could be used to differentiate FCD
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FIGURE 1 | The comparison of patients with FCD and GNTs in terms of different features. FCD, focal cortical dysplasia; GNTs, glioneuronal tumors; AEDs,

antiepileptic drugs.

TABLE 2 | The performance of different algorithms to distinguish FCD from GNTs.

Algorithm Precision/ Positive predictive value Recall/

Sensitivity

F1-Score AUC

Random forest 0.8750 0.9655 0.9180 0.9340

Catboost 0.8710 0.9310 0.9000 0.9515

Logistic regression 0.9600 0.8276 0.8889 0.9132

LightGBM 0.8000 0.9655 0.8750 0.8531

XGBoost 0.8387 0.8966 0.8667 0.9630

SVM 0.8621 0.8621 0.8621 0.9055

Decision tree 0.7742 0.8276 0.8000 0.7873

FCD, focal cortical dysplasia; GNTs, glioneuronal tumors.

from GNTs in patients with epilepsy. For the next step, we
will use a larger sample to train our algorithm. One practical
challenge is that different hospitals might host their patient
databases on computers with different operating systems,
including Windows, Linux and MacOSX. Our algorithm is
implemented using the scikit-learn library (https://scikit-learn.
org/stable/), which is an open source library written in the
Python programming language. Thanks to the cross-platform
nature of Python, our algorithm can be directly deployed on
computers with any mainstream operating system without

modification. Our algorithm could directly access a hospital’s
database of patient records, and read the patient information
automatically to provide the predicted diagnosis of FCD or
GNTs. In short, our algorithm has no special requirement
for either the operating system or the computer hardware.
It is convenient to be employed in clinical applications. If
the diagnosis given by the classifier is FCD, wider cortical
resection over the MRI-delineated lesion may be taken into
consideration by neurosurgeons, in order to achieve favorable
seizure outcomes. Furthermore, having a good knowledge of
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TABLE 3 | The discriminative power of different features to distinguish FCD from

GNTs.

Rank Feature Chi-square value

1 Age at seizure onset 1,213.000

2 Course of disease 334.800

3 MRI features 19.969

4 Number of AEDs 13.946

5 Scalp EEG biomarkers 4.200

6 Lesion location 2.287

7 Seizure frequency 1.760

8 Gender 0.285

9 Past history 0.004

10 Seizure type 0.001

FCD, focal cortical dysplasia; GNTs, glioneuronal tumors; AEDs, antiepileptic drugs.

the potential postsurgical outcome may improve clinicians’ and
patients’ confidence in epilepsy surgery.

As for the top 5 ranked features which contributed most
to distinguishing FCD from GNTs in patients with epilepsy,
the feature “Age at seizure onset” had the highest Chi-square
value at 1,213.000, suggesting patients who have the younger
age at seizure onset were more likely to be diagnosed as
FCD finally. This result was consistent with the study from
Rácz et al. which indicated that age at epilepsy onset was
significantly earlier in patients with FCD than that in GNTs
(9). The second feature “Course of disease” had the Chi-
square value at 334.800, suggesting that epileptic patients with
FCD had a longer course of disease compared to patients
with GNTs. A possible explanation could be that GNTs group
had a higher proportion (72.5%) of patients with typical
characteristics of GNTs and consequently underwent surgical
treatment earlier, which was also a reason for the number
difference of AEDs between two groups. As the commonly
used method to distinguish FCD from GNTs, “MRI” was
the third feature with the Chi-square value at 19.969, which
was however obviously lower than the former. Epitashvili
et al. have demonstrated that six surface EEG biomarkers
(continuous epileptiform discharges, two types of rhythmic
epileptiform discharges, polyspikes, repetitive activity, and
polyspikes, frequent rhythmic bursting epileptiform activity
or repetitive discharges) were significantly associated with
an underlying cortical dysplasia (11). However, the single
feature “Scalp EEG biomarkers” was also shown with less
significance in our study, meaning the requirement of machine
learning-based comprehensive evaluation progressed from signal
processing analyses.

The predictive performance of a model depends on the large
scale of dataset, the number and quality of features, and the
design of the algorithms. Our study had some limitations. First,
the current dataset was collected at a local tertiary hospital,
and the sample may not be representative of all the regions
in China and other countries. In the future, a prospective
multicenter study with a larger sample size should be required.

Second, ten features were included in our study, however
the weight of each feature in the final model differed, which
possibly increased the risk of overfitting or bias. Finally, some
features were not included in this work, such as multiple
seizure types, other MRI sequences (DTI) and PET-CT finding.
The diagnostic validity of machine learning-based approach
was associated with comprehensive parameters, thereby more
features were considered, the higher level of performance we
would achieve.

CONCLUSION

Taken together, this study highlighted the potential of a
supervised machine learning-based model to differentiate FCD
from GNTs in patients with epilepsy before surgery, contributing
to appropriate surgical planning. With the availability and
convenience of this model, clinicians will benefit from the novel
approach in clinical applications.
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