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Commensal bacteria and other microorganisms that reside in the human body are closely
associated with the development and treatment of cancers. Recently, tumor microbiome
(TM) has been identified in a variety of cancers such as pancreatic, lung, and breast
cancers. TM has different compositions in different tumors and has different effects on
tumors. TM plays an important role in the formation of the tumor microenvironment,
regulation of local immunity, and modification of tumor cell biology, and directly affects the
efficacy of drug treatment for tumors. TM is expected to be a biomarker for tumors, and
engineered tumor-targeting bacteria and anti-cancer microbial agents (GEN-001) have an
important role in the treatment of tumors. This paper reviews the relevant studies on TM in
recent years and describes its distribution in different tumors, its correlation with clinical
features, its effect on local immunity, and the research directions of TM in tumor treatment.
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1 INTRODUCTION

The collective genomes and by-products of all microorganisms that inhabit the human body are
called the human microbiome, which includes bacteria, viruses, fungi, etc (1). Located in the human
mouth, skin, gut, and other parts of the body, these microbiota affect how you digest food, help train
your immune system, and may even influence your mood and behavior (2–4). There is an
evolutionary partnership between humans and the microbiota that is essential for metabolism,
tissue development, and host defense (5). Microbiota is directly or indirectly associated with
metabolic disorders, cardiovascular diseases, neurological disorders, and even psychological
disorders such as schizophrenia (6–8). In recent years, more attention has been paid to its role
in cancer.

Microbiota plays an important role in the development, diagnosis, and treatment of many
human tumors (9). Many microorganisms are responsible for the development of cancer in humans
(10). Helicobacter pylori (HP) infection can lead to gastric inflammation and even gastric
malignancies such as gastric ulcers, gastric cancer (GC), and gastric mucosa-associated lymphoid
tissue (MALT) lymphoma (11). Microbiota, especially gut microbiota, modulates response to cancer
treatment and susceptibility to toxic side effects (12). The gut microbiota can affect local and distant
tumors by influencing the immune environment, inflammation, and metabolic patterns of the
tumor9. Gut microbiota has also been associated with the development and treatment of acute
leukemia and may predict the development of graft-versus-host disease (GVHD) in allogeneic
org July 2022 | Volume 13 | Article 9358461
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hematopoietic stem cell transplant patients (13). As more studies
of the microbiota were conducted, it was discovered that the
microbiota was also present within tumor tissues once thought to
be sterile (14). This paper focuses on an overview of the current
status of research on the tumor microbiome (TM) and the
opportunities and challenges it faces.
2 MICROBIOMES ARE EVERYWHERE,
EVEN INSIDE TUMOR CELLS

The microbiota in the human body is surprisingly large. An adult
man weighing 70 kg consists of about 3.0x1013 human cells, and
the number of microorganisms symbiotic with this person is
about 3.8x1013 - the same order of magnitude as the number of
human cells (15). The presence of bacteria in tumor tissues was
identified more than 100 years ago (16). In recent years,
microbiota has been found in a variety of cancer tissues,
including breast, lung, colorectal, and prostate cancers (PCA)
(17–20). However, characterization of tumor microorganisms
remains challenging due to their extremely low biomass (16). In
recent years, with the application of next-generation sequencing
technology, the characteristics of the internal microbiota of
tumors have been studied more intensively.

To determine the presence or absence of microbiome within
the tumor tissue, the first step is to rule out the possibility of
contamination after the sample leaves the organism; after all,
microorganisms are everywhere. There are two main types of
contaminants when performing sequencing tests (21). External
contamination comes from outside the sample being tested,
including the researcher’s body, laboratory surfaces, air,
instruments, and reagents (21). Cross-contamination of samples
may occur during sample processing or sequencing. Davis et al.
introduced and validated an easy-to-use open source R package,
decontam, which identifies and removes external contaminants
from sequencing data (21). It has been found that a unique
microbiome exists in the placenta and that the placental
microbiome profile is most similar to that of the human
oral microbiome. Women with severe periodontal disease are
also at higher risk for adverse pregnancies, and periodontal
pathogens may colonize the placenta through hematogenous
infection (22–25). Davis et al. applied decontam to a recently
published dataset to confirm and extend their conclusion that
there is little evidence of an indigenous placental microbiome and
that some low frequency taxa that appear to be linked to preterm
birth are contaminants (21, 26). Negative controls processed with
the samples and paraffin blocks without tissue (taken from the
edges of the paraffin blocks used in the study) also need to be
tested to exclude contamination (16). Nejman et al. studied 1526
tumors of seven cancer types and their adjacent normal tissues and
found that each tumor type has a unique microbiome
composition, with breast cancer (BC) having a particularly rich
and diverse microbiome16. Most of the bacteria within the tumors
were intracellular and were present in both cancer cells and
immune cells (16). Interestingly, electron microscopy showed
that the bacteria within the cells were largely devoid of cell
Frontiers in Immunology | www.frontiersin.org 2
walls, suggesting an L-form–like state (16, 27, 28). Mycoplasma
is also a member of the TM and also has no cell wall. It has been
shown that in hepatocellular carcinoma (HCC), mycoplasma
infection promotes tumor progression through the interaction of
the mycoplasma protein p37 with epithelial cell adhesion
molecules (29). In PCA, mycoplasma has also been shown to
promote its progression, as we will discuss in detail in section
3.1 (30).

It is certain that some types of cancer cells contain microbiota,
but where do they come from? After tumor formation, the special
tumor microenvironment attracts the microbiota to accumulate? Or
is some microbiota itself involved in the process of tumor
formation? Both of these possibilities exist. Why do bacteria
gather in tumor tissues and cells after tumor formation in the
human body? There are several reasons: 1. Cancer cells evade the
recognition of immune cells through various mechanisms, resulting
in insufficient strength of immune cells inside the tumor, and the
interior of the tumor provides a refuge for microorganisms to avoid
immune clearance. 2 The hypoxic nature of the interior of many
solid tumors results in a low oxygen content compared to normal
tissue, providing an environment for anaerobic bacteria to survive.
3. Highly disorganized neovascularization, slow blood flow, and
blood leakage inside the tumor lead to bacteria in the blood
circulation entering the tumor tissue. 4. Bacteria enter directly
through ducts that are connected to the outside world, for
example, bacteria enter the pancreas from the duodenum. 5. The
tumor tissue is highly nutritious inside and has some metabolites
(such as ribose, aspartic acid, etc.) to attract bacteria (Figure 1A)
(31, 32).

In a study of pancreatic cancer (PC), it was found that the gut
microbiota can colonize pancreatic tumors, altering tumor
bacterial composition and modulating immune function,
ultimately affecting the natural course and survival of PC (32).
Microorganisms are involved in tumor formation, and 10
microorganisms were identified by the International Agency for
Research on Cancer as carcinogenic to humans in 2012. They are
Schistosoma haematobium, HP, Opisthorchis viverrini, Clonorchis
sinensis, human papillomavirus (HPV), hepatitis B virus (HBV),
hepatitis C virus (HCV), human T-cell lymphotropic virus type 1
(HTLV-1), human herpes virus type 8 (HHV-8; also known as
Kaposi’s sarcoma herpes virus), and Epstein-Barr virus (EBV) (10,
33). In 2020, human immunodeficiency virus-1 was added to the
list34. In 2018, about 2.2 million new cancer cases were attributed
to infections of microorganisms, accounting for 13% of all cancer
cases, mainly HP infection leading to GC, HPV interference
leading to cervical cancer, and HBV and HCV infection leading
to HCC (34). HP produces multiple virulence factors such as
cytotoxin-associated gene A (CagA) and its pathogenicity island
(Cag PAI), and vacuolating cytotoxin A (VacA), which may
dysregulate intracellular signaling pathways in the host and
decrease the threshold of tumor transformation11. Péneau et al.
analyzed the genome of 177 tumor tissues from HCC patients and
found that HBV gene integration was present in 88% of patients,
with the vast majority (82%) of tumors having at least one clonal
HBV integration, compared to 11% in non-tumor liver tissue (35).
A high percentage of HBV integrations in tumors affect cancer
July 2022 | Volume 13 | Article 935846
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driver genes, such as TERT, TP53, and MYC, and tumors with
high numbers of HBV integrations are associated with poor
prognosis (35). HPV expresses oncogenic proteins E6 and E7,
and gene expression levels of oncogenes and pathways are higher
inHPV+ cervical cancer tissues compared to cervical cancer tissues
without HPV integration (33, 36).

The link between TM and cancer has been demonstrated by
four main mechanisms: 1. increased gene mutations directly
promoting tumorigenesis, 2. regulation of oncogenes or
oncogenic pathways, 3. modulation of the host immune
system, and 4. production of small molecules or metabolites
that influence cancer development, progression, and response to
therapeutic agents (Figure 1B) (32, 33, 35–38).
3 STUDIES OF TM IN DIFFERENT
CANCERS: DISTRIBUTION OF
MICROBIOTA, RELATIONSHIP WITH
CLINICAL FEATURES, EFFECTS ON
TUMOR IMMUNITY

3.1 Prostate Cancer
Many studies have confirmed the presence of microbiota in PCA
tissues that are different from normal prostate tissues and that
some mycoplasma and viruses can promote the development of
PCA. In a study of PCA, researchers tested 170 prostate tissue core
samples from 30 cancer patients for 16S rDNA gene sequences
and found the presence of 83 different microorganisms, but
because most individual tissue core samples were negative, the
researchers concluded that there was regional heterogeneity of
bacteria and a lack of a universal or ubiquitous prostate flora (20).
Frontiers in Immunology | www.frontiersin.org 3
After further culturing tissue samples from the patients, they
found that the species present in the prostate had a “non-
culturable” nature, and the researchers concluded that the 16S
rDNA sequencing results may have come from non-viable bacteria
(20). There were significant differences in specific microbial
populations in tumor/peri-tumor and non-tumor prostate
specimens, with Propionibacterium spp. being the most
abundant among the genera and Staphylococcus spp. being more
abundant in the tumor/peri-tumor tissues (39). Feng et al. studied
the macrogenome and supertranscriptome of 65 PCA tumors and
benign paracancerous tissues, and found that Escherichia,
Propionibacterium, Acinetobacter, and Pseudomonas were
abundant, and the expression profile of 10 Pseudomonas genes
was correlated with those of eight host small RNA genes; three of
these RNA genes may be negatively correlated withmetastasis, and
Pseudomonas infection may impede metastasis (40). However,
further studies are needed. Some mycoplasma infections may
promote the development of PCA. Mycoplasma genitalium and
Mycoplasma hyorhinis infections can lead to increased migration
and invasion of human benign prostate cells and malignant
transformation (30). Testing of specimens from patients with
PCA and benign prostate disease revealed significant differences
in the prevalence ofMycoplasma genitalium infection between the
PCA cohort and the benign prostatic hyperplasia cohort (41).
Infection with viruses such as HPV and polyomavirus BKmay also
promote the occurrence of PCA (42, 43).

Some microorganisms can be used as biological markers and
therapeutic targets for PCA, and the TM of PCA can influence
the efficacy of its immunotherapy. Human endogenous
retroviruses (HERV) can be used as potential biomarkers and
therapeutic targets for prostate, breast, and colon cancers (44).
HERV-K Gag expression was significantly increased in
A

B

FIGURE 1 | The causes of TM formation in tumors and its effects on tumors. (A) The abundant blood supply, hypoxic environment, abundant nutrients, and reduced
immune cells help the bacteria to colonize the tumor tissue. Bacteria can also enter through the ducts, for example, from the duodenum into the pancreas. (B) TM can
affect tumor characteristics by increasing gene mutations, regulating the function of immune cells, modulating signaling pathways, and influencing drug resistance.
July 2022 | Volume 13 | Article 935846
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malignant regions of men with PCA compared to benign regions
and men without PCA, and 85.2% of PCA donors
showed upregulation of HERV-K Gag RNA associated
with malignancy (45). A patient-derived prostate-specific
uropathogenic Escherichia coli named CP1, when combined
with anti-PD-1 immunotherapy, increases survival and reduces
tumor burden in MYC and PTEN-mutated PCA models (46).
CP1 also increases T-cell toxicity and immune death of tumor
cells, and CP1 increases infiltration of activated CD8 T cells,
Th17 T cells, mature dendritic cells, M1 macrophages, and NK
cells into tumors, and intraurethral administration of CP1
specifically enters and colonizes the tumor without causing any
systemic toxicity (46). There have also been many studies using
microbes as targets for PCA (47–49).

3.2 Pancreatic Cancer
The presence ofmicrobiota similar to that of duodenum in PC tissue
can affect the outcome and prognosis of PC. A study of 113 human
PC samples and 20 normal human pancreas samples found that
bacterial DNAwas detected in 86/113 (76%) PC samples and in 3/20
(15%) normal pancreas controls (38). The most common microbial
species (51.7%) belonged to the class Gammaproteobacteria; most
were members of the Enterobacteriaceae and Pseudomonadaceae
families, and patients who underwent pancreatic duct
instrumentation had significantly more bacteria in their tumors
than those who did not undergo instrumentation. Proteobacteria
are abundant in the duodenum, and retrograde bacterial migration
from the duodenum to the pancreas may be the source of bacteria
within the tumor tissue (38). A study by Pushalkar et al. also found
that fluorescently labeled Enterococcus faecalis, gfp-labeled
Escherichia coli can translocate from the intestine to the pancreas
(50). They analyzed PC tissues and found that Proteobacteria (45%),
Bacteroidetes (31%), and Firmicutes (22%) were the most abundant
and prevalent in all samples, and that the bacterial composition in
human PC was different from that of the normal human pancreas
(50). In a mouse model, aseptic colonization reduced pancreatic
dysplasia, intratumoral fibrosis, and pancreatic weight in mice
compared to control mice. Tumor burden was reduced by
approximately 50% in mice treated with an ablative oral antibiotic
regimen, and bacteria promoted progression of pancreatic
tumorigenesis in both pre-infiltrative and infiltrative models (50).
The microbiome promoted the progression of PC by inducing
peritumoral immunosuppression, and microbial ablation led to a
significant increase in the proportion of intra-tumoral T cells and a
decrease in the proportion of myeloid-derived suppressor cells
(MDSC). Both CD4+ and CD8+ T cells in the tumors of antibiotic-
inactivated mice also showed increased expression of PD-1 and
CD44, and the use of feces from PC mice repopulated with
microbiome after antibiotic ablation reversed the immunogenic
changes in the tumors associated with bacterial ablation. Whole-
pancreaticNanostring arrays confirmed that genes associatedwithT-
cell proliferation and immune activationwere upregulated in tumors
from antibiotic-treated mice (50).

Most patients with pancreatic adenocarcinoma (PDAC) survive
for less than5years, but somepatients survive for a long time (51).A
study compared the TM of long-term survivors (LTS, median
survival of 10.1 years) who survived more than 5 years after
Frontiers in Immunology | www.frontiersin.org 4
surgery with short-term survivors (STS, median survival of 1.6
years) who survived less than 5 years after surgery (32). The alpha-
diversity of the TM was found to be significantly higher in LTS
patients compared to STS, and overall survival was significantly
longer in patients with high alpha-diversity (median survival: 9.66
years) than in patients with low alpha-diversity (median survival:
1.66 years). Clinico-pathological features, bodymass index, gender,
smoking, adjuvant therapy, and antibiotic usewere not significantly
associated with TM diversity (32).

LTS tumors were dominated by Alphaproteobacteria
Sphingobacteria and Flavobacteria. In contrast, PDAC STS cases
were predominant with Clostridia and Bacteroidea. The prognosis
of PDAC patients with a higher abundance of the three genera,
Saccharopolyspora, Pseudoxanthomonas, and Streptomyces, was
significantly better. The diversity of the TM and the presence of
these three genera in tumors may contribute to the antitumor
immune response by favoring the recruitment and activation of
CD8+Tcells. ComparedwithSTSpatients, LTSpatients hadgreater
densities of CD3+ and CD8+ T cells, and LTS patients had
significantly higher numbers of granzyme B+ cells, while no
significant differences were found in regulatory T cells,
macrophages, or MDSC (32).

Pushalkar et al. showed that the gut microbiome can promote
the progression of PC by inducing peritumor immunosuppression
and that these gut microbiomes may translocate into the pancreas
(50). Riquelme et al., on the other hand, found that some
microorganisms in PC tissues (e.g., Alphaproteobacteria,
Sphingobacteria, and Flavobacteria) may contribute to the anti-
tumor immune response by favoring the recruitment andactivation
of CD8+ T cells, leading to a good prognosis (32). The TM is clearly
associatedwith the development andprogression ofPC, and the use
of anti-cancer therapy targeting these microorganisms is an
important direction for future research.

3.3 Breast Cancer
Microbiota can be found in normal human breast tissue, breast
cancer tissue, and benign breast disease tissue (52). The microbiota
within BC is different from that of normal breast tissues. The
bacteriaMethylobacterium radiotolerans was relatively enriched in
BC tissues, whereas the bacterium Sphingomonas yanoikuyae was
relatively enriched in paired normal tissues, and the relative
abundance of these two bacteria was inversely correlated in
paired normal breast tissues, but not in BC tissues17. Another
study found a higher relative abundance of Bacillus and
Enterobacteriaceae in BC tissues (53). The proportion of
Pseudomonadaceae and Enterobacteriaceae was much higher in
BC tissues compared to other tissues. In contrast ,
Propionibacterium and Staphylococcus were the major
components of healthy controls and tumor adjacent normal
tissues, but were rare in BC tissues (54). BC has a richer and
more diverse microbiota than other tumors such as PC and
melanoma, with an average of 16.4 bacteria species detected per
sample in BC, compared to an average of <9 detected in all other
tumor types (16). The bacterial load and abundance in BC was
higher than in normal breast samples, while normal breast tissue
adjacent to the tumor was in between. The researchers further
collected fresh breast tumor samples from five women who
July 2022 | Volume 13 | Article 935846
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underwent breast surgery, cultured them, and grew 37 different
bacterial species, 11 of which were consistent with the previous test
results (16). Four freshly excised human breast tumor sections
were cultured in vitro in the presence of fluorescently labeled d-
alanine or dimethyl sulfoxide controls. D-alanine is an important
component of the bacterial cell wall and is not utilized by
mammalian cells, and intracellular labeling was detected in all
four tumors, further supporting the hypothesis that viable bacteria
are present in the tumors (16).

Significant differences in the TM were found between
subtypes of BC, including Human epidermal growth factor 2
(HER2)- vs. HER2+, estrogen receptor (ER)- vs. ER+, and triple
negative (TNG) vs. not-TNG (16). Compared with ER- BC, the
abundance of seven genera (Alkanindiges, Micrococcus,
Cau lobac te r , Pro teus , Brev ibac i l lus , Kocur ia , and
Parasediminibacterium) of ER+ BC was lower. The abundance
of seven genera (Clostridium, PRD01a011B, Alloprevotella,
Stakelama, Filibacter, Blastomonas, Anaerostipes) of HER2+

tumors was significantly higher than that of HER2- tumors. Six
of the seven genera (except Micrococcus) that were relatively
reduced in ER+ tumors were enriched in TNG BC (54).
Lymphovascular invasion in BC was positively correlated with
Lactobacillus and negatively correlated with Alkanindiges,
whereas node-positive status was positively correlated with
Acinetobacter and Bacteroides and negatively correlated with
Achromobacter (54). A significant amount of TM was also
found to be present in the BC model in mice, and removal of
the TM obviously reduced lung metastasis but did not affect the
growth of the primary tumor (55). Intratumoral bacteria (mainly
Staphylococcus and Lactobacillus) carried by circulating tumor
cells can promote BC cell lung metastasis by reorganizing the
actin cytoskeleton to enhance resistance to fluid shear stress (55).

The microbiome in BC may affec t the immune
microenvironment within the tumor. Compared to normal
controls, tumor tissues were enriched in total T cells, CD8+ T
cells, natural killer (NK) cells, and neutrophils, but reduced in
dendritic cells and macrophages (54). Three genera (Methylibium,
Pelomonas, Propionibacterium) were identified as nodes in the
microbiome-immune gene and microbiome-cytokine networks
(54). In BC tissues, Methylibium showed a significant negative
correlation with T cell abundance, the oncogene TRAF4 was
negatively correlated with Staphylococcus, while the pro-
angiogenic factor VEGF-A was positively correlated with
Pelomonas and negatively correlated with Bradyrhizobium (54).
Fusobacterium nucleatum (F. nucleatum) binds to BC samples via
lectin Fap2-dependent binding, and inoculation with F. nucleatum
inhibited the accumulation of tumor-infiltrating T cells and
promotes tumor growth and metastatic progression (56).
Metronidazole prevented tumor enlargement and pro-metastatic
effects inmice inoculatedwithF. nucleatum56. The use of the intra-
TM as a biomarker for assessing prognosis and for the treatment of
BC is a future research direction.

3.4 Lung Cancer
The bacterial composition of the pulmonarymicrobiota is different
from the gut or skin microbiota, but has considerable similarity to
Frontiers in Immunology | www.frontiersin.org 5
the upper respiratory tract and oral microbiota (57). People with
lowermicrobial diversity haveahigher riskofLCcompared to those
with higher oral microbiota diversity (58). Saliva of squamous cell
carcinoma (SCC) and adenocarcinoma (AC) patients had
significantly altered levels of Capnocytophaga, Selenomonas,
Veillonella, and Neisseria compared to healthy controls, with
significantly higher levels of Capnocytophaga and Veillonella, and
elevated levels of these two bacteria in saliva of lung cancer (LC)
patients could be potential biomarkers for disease detection (59).
Microbiota in bronchoalveolar fluid also showed differences
between patients with LC and those with benign mass-like
lesions, with Veillonella and Megasphaera genera being
significantly increased in patients with LC, showing potential as
biomarkers for predicting LC (60). Normal lung tissue had lower
microbiome alpha diversity than tumor tissue and non-tumor
adjacent tissues, and a separate set of taxa were identified in SCC,
in which Acidovorax was enriched in smokers (18). Acidovorax
showed a higher abundance in SCC cases with TP53 mutations.
This may be because tumors carrying TP53 mutations can impair
epithelial function (18). A study compared the bacterial functions
found in non-small cell lung cancers (NSCLCs) from 100 current
smokers with those found in NSCLCs from 43 never-smokers.
Seventeen pathways were found to be significantly enriched in the
tumors of current smokers, pathways that degrade chemicals in
cigarette smoke, and eight pathways related to biosynthesis of
metabolites that can be used by plants, possibly because some
plant-associated bacteria or their DNA are present in cigarette
tobacco and therefore enriched in the lung tumors of smokers.
Bacteria expressing these functions are mainly found in the
Proteobacteria, Actinobacteria, and Cyanobacteria phyla (16).

The microbiota of the lung is not only distributed differently
in LC and normal lung tissues, but also has a close association
with the occurrence, prognosis, and immune modulation of LC.
A study that sequenced lung tumor and normal samples from the
same lobe/segment of 19 NSCLC patients found that tumor
tissue had lower bacterial abundance and diversity than paired
normal tissue (61). In normal tissues, a higher abundance of
family Koribacteraceae was associated with increased recurrence-
free (RFS) and disease-free survival (DFS), whereas higher
abundance of families Bacteroidaceae, Lachnospiraceae, and
Ruminococcaceae were associated with decreased RFS or DFS.
However, the diversity and overall composition of tumor tissues
were not associated with RFS or DFS61. This study suggested
that the diversity and composition of the lung microbiota were
not associated with LC prognosis, but the sample size was too
small and needs to be expanded for further exploration.

Other studies suggest that the lung microbiome can influence
the prognosis of LC. The lower airways of LC patients are enriched
with oral taxa (Streptococcus and Veillonella) and the enrichment
of these bacteria may be associated with upregulation of ERK and
PI3K signaling pathways, and in vitro exposure of airway epithelial
cells to Veillonella, Prevotella, and Streptococcus also led to
upregulation of these signaling pathways (62). This lower airway
dysregulation feature is more prevalent in the stage IIIB-IV tumor
node metastasis LC group and is associated with poor prognosis.
This dysregulation of the lower airway microbiota was associated
July 2022 | Volume 13 | Article 935846
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with upregulation of the IL-17, PI3K, MAPK, and ERK pathways
in the airway transcriptome, with Veillonella parvula being the
most abundant taxon driving this association (63). In vitro
experiments found that increased Veillonella parvula in the
lower airway microbiota can lead to decreased survival,
increased tumor burden, IL-17 inflammatory phenotype, and
activation of checkpoint inhibitor markers (63). And the
dysregulation of lung microbiota induced by Veillonella parvula
led to the recruitment of Th17 cells, increased levels of IL-17
production, increased expression of PD-1+ T cells, and
recruitment of neutrophils (63). Alterations in the LC
microbiome modulate host immunity in LC and affect tumor
progression and prognosis. Commensal bacteria from LC
stimulated Myd88-dependent IL-1b and IL-23 production by
myeloid cells, inducing proliferation and activation of
Vg6+Vd1+gd T cells, which produce IL-17 and other effector
molecules to promote inflammation and LC cell proliferation (64).

Smoking and some genes (e.g., TP53) can alter the microbiome
composition of LC patients, and the lung microbiome in turn can
alter the expressionof signalingpathways (e.g., IL-17, PI3K,MAPK,
and ERK pathways) and alter the local immunemicroenvironment
of LC tissues.

3.5 Gastric Cancer
Chronic HP infection leads to reduced gastric acid secretion,
which may cause different bacterial communities to grow in the
stomach. Is there a change in the composition of the gastric
microbiota in patients with GC versus those with chronic gastritis?
A study analyzing the gastric microbiota of 54 patients with GC
and 81 patients with chronic gastritis found reduced microbiota
diversity, reduced abundance of Helicobacter, and enrichment of
gut commensal-dominated bacterial genera in GC (65). Intestinal
epithelial metaplasia of the gastric is a precancerous lesion of GC,
and it is worth exploring whether there is any connection between
the enrichment of intestinal commensal bacteria in the gastric and
intestinal epithelial metaplasia.

Chen et al. analyzed mucosa-associated microorganisms from
62 pairs of matched GC tissues and adjacent non-cancerous tissues
and found increased microbial abundance and diversity in cancer
tissues. The bacterial taxa enriched in cancer samples were mainly
represented by oral bacteria (such as Peptostreptococcus,
Streptococcus, and Fusobacterium), while lactic acid producing
bacteria (e.g., Lactococcus lactis and Lactobacillus brevis) were
more abundant in adjacent non-tumor tissues, and the abundance
changes of oral microbiota in the stomach may be related to the
development or progression of GC (66). Gunathilake et al.
analyzed 268 GC cases and 288 healthy controls and found
significant differences in the composition of the non-HP
microbiota among the groups. Participants with higher relative
abundance of Actinobacteria species showed a markedly increased
risk of GC (67). Differences existed between GC patients and
healthy controls not only in the TM, but also in the serum
microbiome. The structure of the serum microbiome of GC
patients was significantly different from that of patients with
atypical hyperplasia, patients with chronic gastritis and healthy
controls, with an enrichment of Acinetobacter, Bacteroides,
Haemophilus parainfluenzae in GC patients, and an enrichment
Frontiers in Immunology | www.frontiersin.org 6
of Sphingomonas, Comamonas, and Pseudomonas stutzeri in
healthy controls (68). The structure of the serum microbiome
also showed differences in GC-Non-lymphaticMetastasis and GC-
Lymphatic Metastasis (68).

The GC microbiome can promote antitumor immune
responses through multiple mechanisms. Infection with HP
increased PD-L1 expression in gastric epithelial cells, and
exposure to HP inhibited the proliferation of CD4+ T cells
isolated from the blood, and this inhibition could be blocked
by anti-PD-L1 antibodies (69, 70). Wu et al. confirmed that HP
infection enhanced PD-L1 expression in human gastric epithelial
cells and that co-culture experiments of HP-infected gastric
epithelial cells with primary human T cells or Jurkat T cells
induced T cell apoptosis (71). HP infection may result in non-
specific suppression of circulating T cells, including tumor-
specific T cells (70).

3.6 Ovarian Cancer
Ovarian cancer (OC) is characterized by dysbiosis, in which the TM
are found in many sites, including the tumor tissue itself, the upper
and lower portions of the female genital tract, the serum, the
peritoneum, and the intestines (72). A study analyzed the diversity
and composition of themicrobiota of 25OC samples and 25 normal
distal fallopian tube tissues.This study founda significantdecrease in
the diversity and richness indexes of OC tissues and a significant
increase in the proportion of Proteobacteria/Firmicutes phyla in OC
compared to normal distal fallopian tube tissues (73). Wang et al.
tested ovarian tissues from six patientswithOCand 10 patientswith
non-cancerous ovarian disease and confirmed the presence of
bacteria in ovarian tissues by immunohistochemical staining with
antibacterial lipopolysaccharide (LPS) antibody, with more
Aquificae and Planctomycetes composition and reduced
Crenarchaeota in OC (74). Age and BRCA1 germline mutations
are known risk factors for OC, and lactobacilli species are critical for
producing protective low vaginal Ph (75, 76). Nené et al. dividedOC
and control samples into those with at least 50% of the lactobacilli
present (L community type) and those with less than 50% of the
lactobacilli present (O community type). They found that the
prevalence of community type O microbiota was higher in women
aged 50 years or older than in those younger than 50 years, that the
prevalenceof community typeOmicrobiotawas significantly higher
in women younger than 50 years with OC than in age-matched
controls, and that in theBRCAgroup,womenyounger than50 years
with BRCA1 mutations were also more likely to have community
type O microbiota than age-matched controls (76). This study
suggested that having a community type O cervicovaginal
microbiota was significantly associated with the patient’s age and
BRCA1 germline mutation (76).

Bacteria are present in OC tissues and can produce LPS74. LPS
stimulation of OC cells enhances invasion and induces production
of EMT-associated cytokines, and overall survival of OC treated
with LPS is evenworse than that of untreated controls (77, 78). LPS
is an oncogenic bacterial product in OC72. It was found that
inhibition of Toll-like receptor 4 (TLR4) induced OC cell cycle
arrest and apoptosis and prevented the proliferation of cancer cells
(79). L. lactis probiotics downregulated the expression levels of
TLR-4, miR-21, and miR-200b, thereby inducing apoptosis and
July 2022 | Volume 13 | Article 935846

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Chen et al. Tumor Microbiome in Cancers
inhibiting migration in OC cells80. Vaginal isolates of probiotic
strains have great potential to controlOC andmay have a beneficial
impact on the clinical management of OC (80). The ovarian
microbiota has both a promotive and inhibitory role in the
development of OC.

3.7 Melanoma
Mrázek et al. compared the composition of the skin microbiome in
the skin andmelanoma of theMelanoma-bearing LibechovMinipig
model, and they found that the bacterial composition anddiversity of
the skin and melanoma microbiomes were significantly different,
with Fusobacterium and Trueperella genera significantly more
abundant in the melanoma samples (81). Propionibacterium genus
was the most common bacterial genus in melanoma, followed by
Staphylococcus and Corynebacterium (82). Another study suggested
that only Corynebacterium was significantly associated with
melanoma in patients with stage III/IV compared to those with
stage I/II lesions (83). Compared with stage T1/T2 melanoma, a
significant increase inCorynebacteriumwas detected in patients with
stage T3/T4 melanoma, and more IL-17-positive cells were detected
in Corynebacterium-positive patients (83). IL-17 promoted
proliferation of melanoma cells through upregulation of IL-6 and
signal transducer and activator of transcription (STAT) 3 (84). IL-17
induces the production of inflammatory mediators (mainly
neutrophils) and stimulates the expansion and tissue infiltration of
myeloid cells, thereby promoting cancer progression, and it has also
been associatedwith the tumormicroenvironment, immunotherapy,
and resistance of tumor cells to radiation therapy and chemotherapy
(85).The interactionof IL-17withTMin tumorprogressiondeserves
further study in a variety of tumors. The skin microbiota of
melanoma differs from that of normal skin, and Corynebacterium
may accelerate the progression of melanoma.

3.8 Bone Tumors
Researchers have detected bacterial DNA in bone tumors that are
not directly linked to the external environment, and analysis of
the predicted MetaCyc metabolic pathway revealed that
degradation of hydroxyprolines by bacteria (MetaCyc PWY-
5159) was enriched in bone tumors (16). Bone collagen is a
major source of hydroxyproline, and bone tumors have been
shown to cause an increase in hydroxyproline levels (16, 86).

3.9 Brain Tumors
Bacterial DNA was present in two out of 40 glioblastoma
multiforme (GBM) samples (16). Because of the blood-brain
barrier, microorganisms cannot enter the brain directly, and
when the gut homeostasis is perturbed, the function of the
gastrointestinal tract and other organ systems (including the
brain) can be impaired (87). The gut microbiota is thought to
contribute to the disruption of the blood-brain barrier and the
pathogenesis of neurodegenerative diseases (87). Gut microbiota
metabolite alterations affect systemic and central nervous system
(CNS) immunity via the Gut-Brain Axis (88, 89).

3.10 Colorectal Cancer
Compared to matched normal colon tissue samples, colorectal
cancer (CRC) tissue showed increased microbial diversity in the
Frontiers in Immunology | www.frontiersin.org 7
tumor microenvironment, changes in the abundance of commensal
and pathogenic bacterial taxa, including Fusobacterium and
Providencia, and a significant enrichment of predicted virulence-
related genes in the CRC microenvironment (90). A study analyzed
CRC and matched normal tissue specimens also found a significant
excess of F. nucleatum sequences in CRC relative to control
specimens, which was positively correlated with lymph node
metastasis (19). F. nucleatum can promote CRC metastasis
through multiple pathways (including miR-1322/CCL20 axis and
M2 polarization, regulation of long non-coding RNA Keratin7-
antisense and Keratin7, and upregulation of caspase activation and
recruitment domain 3 expression to activate autophagic signaling
pathways) (91–93). F. nucleatum abundance correlates with high
glucose metabolism in CRC patients, and F. nucleatum targetes
lncRNA ENO1-IT1 promotes CRC glycolysis and tumor
progression (94). F. nucleatum induced a dramatic decrease in
m6A modification in CRC cells and patient-derived xenograft
tissues through downregulation of the m6A methyltransferase
METTL3, resulting in CRC aggressiveness (95). A study
quantified F. nucleatum DNA in 181 colorectal cancer liver
metastasis (CRLM) specimens and found that F. nucleatum-
positive CRLM showed a significantly lower density of CD8+ T
cells and a higher density of MDSCs compared to F. nucleatum-
negative CRLM, and the difference was statistically significant, but
the relationship between F. nucleatum and density of tumor-
associated macrophages (TAMs) was not statistically significant
(96). F. nucleatum may be a biomarker of CRC (97).

3.11 Papillary Thyroid Carcinoma
The presence of microbes in papillary thyroid carcinoma (PTC)
tumor tissues, which are apparently lacking in adjacent normal
tissues, may be critical in controlling immune cell expression and
regulating immune and cancer pathways to mitigate cancer
growth, and the apparent abundance of microbes in the tall
cell and male patient cohorts is also associated with higher
mutation expression and methylation of tumor suppressors (98).

3.12 Lymphomas
A study analyzed the microbiome characteristics of cutaneous T-
cell lymphoma (CTCL), with no significant differences in genus
level ormicrobial diversity compared to normal controls, and some
bacterial species (Streptomyces sp. SM17, Bordetella pertussis, etc.)
were determined to be more abundant in healthy-appearing skin
samples (99). Another study found no significant differences in
cutaneous viral or fungal communities inCTCLpatients compared
with age-matched healthy controls sampled at the same sites, but
there were differences in changes in bacterial communities, with
higher relative abundance of Corynebacterium spp. and lower
relative abundance of Corynebacterium spp. in CTCL skin and
high relative abundance of C. tuberculostearicum in stage IVA1
patients (100). Staphylococcus aureus was shown to contribute to
CTCL progression (101).

The development of MALT lymphoma is closely associated
with infection by microorganisms such as HP and
Chlamydophila psittaci (CP). Antibiotic therapy against HP or
CP is the first-line treatment, with lymphoma response rates of
75% to 80% after eradication of HP and 33% to 65% after
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antibiotic therapy for CP (102). HP infection may also be a
possible cause of ocular adnexa lymphoma (OAL). Patients with
OAL showed a significantly higher proportion of gastric Hp
infection compared to healthy cases, suggesting that chronic
local antigenic stimulation would lead to the development of
ectopic B-cell lymphoma (103, 104). Tanaka et al. analyzed the
microbiome of HP-negative MALT lymphoma and found that
compared to controls, HP-negative MALT lymphoma patients
had significantly lower alpha diversity, and Burkholderia and
Sphingomonas genera were significantly more abundant in
MALT lymphoma patients, while Prevotella and Veillonella
genera were lower (105).

TM has been identified and studied in a variety of tumors
such as PCA, LC, and BC. The microbiome is different in tumor
tissues from normal tissues and influences the biological
behavior of tumors by affecting the local immune system
(Table 1), and TM may be used as a biomarker for the
diagnosis and differential diagnosis of tumors in the future.
4. TM AND THE TREATMENT
OF TUMORS: FUTURE
RESEARCH DIRECTIONS

4.1 Effects of TM on Chemotherapy Drugs
Gemcitabine (dFdC, 2 ’ ,2 ’-difluorodeoxycytidine) is a
deoxycytidine nucleoside analogue106. It actively crosses the
Frontiers in Immunology | www.frontiersin.org 8
cell membrane, is phosphorylated more efficiently and is
eliminated more slowly, and is important in the treatment of
many tumors including PC, BC, and CRC (106–109). The
intracellular metabolism and anticancer activity of dFdC are
affected by TM. In vitro experiments revealed that the efficacy of
dFdC was significantly reduced in cultures of tumor cells
(including BC, Murine leukemia, etc.) infected with
Mycoplasma hyorhinis (M. hyorhinis) due to the rapid
catabolism of the drug by cytidine deaminase (CDD) produced
by M. hyorhinis (110). In vivo experiments also revealed a
significant decrease in the antitumor effect of dFdC observed
in BC mice whose tumors carried M. hyorhinis infection
compared to uninfected mice (110). A study by Lehouritis
et al. found that E. coli increased the effect of tegafur and
decreased the effect of vidarabine, dFdC, and etoposide
phosphate (111). They further conducted in vivo experiments
with a mouse colon cancer model and showed a significant
increase in tumor volume and a significant decrease in survival in
the dFdC + bacteria group compared to the dFdC alone group,
indicating that the antitumor activity of dFdC was reduced in
tumors containing bacteria (111). Geller et al. determined that
long form of CDD (CDDL) conferred microbial resistance to
gemcitabine and that 12 species expressing CDDL such as EHEC,
E. coli O157:H7, Citrobacter freundii, etc. were able to develop
resistance to dFdC, the only bacterium that conferred resistance
to dFdC despite expressing short form of CDD (CDDS) was M.
hyorhinis (38). CDDL-deficient E. coli lacked the ability to
metabolize dFdC, and supplementing CDDL-deficient E. coli
TABLE 1 | Composition of the TM in tumors and its relationship to clinical features and tumor immunity.

Tumor
Type

Common TM Relationship to clinical features Relationship with tumor immunity References

Prostate
Cancer

Staphylococcus,
Propionibacterium,
Acinetobacter and
Pseudomonas

Pseudomonas infection may impede metastasis CP1 increases T cell toxicity and immune death of tumor
cells

(40,46)

Pancreatic
Cancer

Enterobacteriaceae
and
Pseudomonadaceae

TM mediates resistance of tumor cells to
gemcitabine. Patients with high TM alpha-diversity
had longer overall survival.

The TM mediates anti-tumor immunity through activation of
CD8+T cells.

(32, 38, 50)

Breast
Cancer

Pseudomonadaceae,
Enterobacteriaceae,
Proteus

Lymphovascular invasion was positively correlated
with Lactobacillus and negatively with Alkanindiges.
In a mouse model, Staphylococcus and Lactobacillus
promote lung metastasis of BC.

Methylibium, Pelomonas, Propionibacterium were identified
as nodes in the microbiome-immune gene and microbiome-
cytokine networks

(54, 55)

Lung
Cancer

Acidovorax, Veillonella
parvula,

Acidovorax are abundant in lung cancer patients who
smoke. Veillonella parvula is associated with poor
prognosis

Veillonella parvula led to the recruitment of Th17 cells,
increased levels of IL-17 and PD-1+ T cells. Commensal
bacteria induce the proliferation and activation of gd T cells
thereby promoting the proliferation of LC cells.

(18, 63, 64)

Gastric
Cancer

Peptostreptococcus,
Streptococcus and
Fusobacterium

Changes in the abundance of oral microbiota in the
stomach may be associated with the development or
progression of GC.

HP infection enhanced PD-L1 expression in human gastric
epithelial cells and led to non-specific suppression of
circulating T cells

(66, 70)

Ovarian
Cancer

Proteobacteria,
Firmicutes, Aquificae
and Planctomycetes

LPS stimulation of OC cells enhances invasion and
induces production of EMT-associated cytokines

– (72–74)

Melanoma Propionibacterium,
Staphylococcus and
Corynebacterium

Compared with stage T1/T2 melanoma, a significant
increase in Corynebacterium was detected in T3/T4
melanoma

More IL-17-positive cells were detected in Corynebacterium-
positive patients

(83)

Colorectal
cancer

Fusobacterium and
Providencia

F. nucleatum can promote CRC metastasis through
multiple pathways

F. nucleatum-positive CRLM showed a significantly lower
density of CD8+ T cells and a higher density of MDSCs
compared to F. nucleatum-negative CRLM

(90, 96)
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with CDDL restored the ability to metabolize dFdC, confirming
that bacteria with CDDL confer resistance to dFdC.
Ciprofloxacin-treated mice (with no detectable bacteria)
showed a significant antitumor response to dFdC, while
control-treated mice (with detectable bacteria) showed rapid
tumor progression (38). The researchers further delivered
dFdC (with or without antibiotics) topically into the tumors
and found significantly more apoptosis when dFdC was given in
combination with antibiotics than when it was given alone.
Geller et al. cultured bacteria from 15 fresh human PDAC
tumors and found that 14/15 (93%) rendered RKO and
HCT116 human CRC cell lines completely resistant to dFdC
and that PDACs contain bacteria (Gammaproteobacteria) that
can potentially modulate tumor sensitivity to dFdC (38, 112).

F. nucleatum can promote CRC metastasis through multiple
pathways (91–93). F. nucleatum was enriched in the tissues of
CRC patients who recurred after chemotherapy. F. nucleatum
reduced CRC apoptosis induced by oxaliplatin and 5-fluorouracil
and induced CRC resistance to Oxaliplatin and 5-fluorouracil
(113). F. nucleatum may work on CRC by TLR4 and MYD (88),
leading to selective loss of miR-18a* and miR-4802 expression,
followed by activation of autophagy and consequently promoting
chemoresistance in CRC patients (113). Phages kill oncogenic
bacteria, modulate the immune system, and deliver toxins to the
tumor microenvironment, and the use of phages to manipulate
the TM and improve cancer treatment outcomes is a promising
therapeutic measure (114).

Doxorubicin is a chemotherapy drug used in Neoadjuvant
chemotherapy for BC (115). Chiba A’s study found that
treatment of BC cells with P. aeruginosa conditioned media (P-
CM), P-CM enhanced doxorubicin-mediated cell death in
MDA-MB-231, 4T1 and MCF7 cell lines. Lectin (metabolite of
P. aeruginosa), while having no significant overall effect on the
proliferation of MDA-MB-231 alone, enhanced chemotherapy-
mediated BC cell killing when combined with doxorubicin (115).

Some bacteria can accelerate tumor progression and cause
resistance to chemotherapeutic drugs. The combination of
antibiotics and chemotherapeutic drugs can effectively inhibit
bacterial growth in tumors, alleviate bacterial-induced cancer
resistance, and suppress tumor growth (38, 50, 91). However, the
use of antibiotics not only kills the “good” bacteria in the body,
which play an important role in food digestion, vitamin
synthesis, and gastrointestinal motility, but also affects the role
of the gut microbiota in regulating chemotherapy drugs (116–
119). Zhang et al. designed a nano-reservoir loaded with both
dFdC and ciprofloxacin and decorated with hyaluronic acid that
can be opened in a hyaluronidase-rich tumor microenvironment
(116). The nanocontainer can specifically target the tumor region
to produce significant toxicity, kill intratumor bacteria and
inhibit tumor growth, and exhibit good antibacterial and
anticancer activities in vitro and in vivo. The nanocontainer
also promoted the accumulation of active T cells in tumors and
enhanced immunotherapy of tumors (116).

We already know that the gut microbiota can colonize
pancreatic tumors, altering tumor bacterial composition and
modulating immune function, ultimately affecting the natural
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course and survival of PC (32). Since the gut microbiota has a
huge impact on tumors such as PC and CRC, the use of fecal
microbiota transplantation therapy to alter the gut microbiota
and thus TM is also a good treatment option.

The gut microbiome can influence the efficacy of a variety of
drugs such as Cyclophosphamide, Methotrexate, and PD-1
inhibitors (13, 120). In a PC model, the deletion of TM
enabled the efficacy of checkpoint-targeted immunotherapy
through upregulation of PD-1 expression (50). Microbiome-
centered interventions have great potential for the future of
immuno-oncology (121). Whether TM can influence the
efficacy of other chemotherapeutic and immunotherapeutic
agents requires additional studies.

4.2 TM Can Be Used as Biomarkers
for Cancers
TM is part of the tumor microenvironment and can influence the
biological properties of the tumor through its metabolites, but
can also be affected by cancer treatment (9, 16, 115, 116). A study
by Kwong et al. found that bacteraemia of some microorganisms
is associated with the development of CRC, and that these
bacteria may enter the bloodstream from intestinal flora
dysbiosis and barrier dysfunction (122). They found an
increased risk of CRC in patients with the presence of
Bacteroides fragilis, Streptococcus gallolyticus, F. nucleatum, and
other bacteremia, but no increased risk in patients with
bacteremia caused by microorganisms not associated with CRC
(122). Using cell-free blood-based microbial DNA (mbDNA)
from plasma with high discriminatory performance in healthy
controls and patients with multiple types of cancer, a new class of
microbial-based cancer diagnostic tools may offer substantial
future value to patients (123). Studies in PTC have found specific
TMs associated with higher mutation expression and
methylation of tumor suppressors (98). In patients with
esophageal squamous cell carcinoma (ESCC), TM with high
levels of F. nucleatum showed a poorer response to
chemotherapy, and a high F. nucleatum burden was associated
with poor recurrence-free survival (RFS) (124). F. nucleatum is
positively correlated with metastasis in CRC and suggests a poor
prognosis (19, 125, 126). F. nucleatum also colonizes BC and
accelerates tumor growth and metastatic progression (56). These
findings suggest that the use of TM as a biomarker for cancer
is promising.

4.3 Anticancer Effects of Engineered
Tumor-Targeting Bacteria
Bacille Calmette-Guerin (BCG) is an attenuated vaccine derived
from Mycobacterium bovis and is used primarily for the
prevention of tuberculosis (127). The efficacy of intravenous
BCG after bladder tumor resection was first reported in 1976 as
superior to resection alone and resection plus intravenous
chemotherapy, and the use of BCG three times a week after
induction further significantly reduces tumor recurrence and
patient death (128). BCG has become the gold standard for the
treatment of non muscle-invasive bladder cancer (NMIBC) (129,
130). Mechanistically, BCG induces a strong innate immune
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response over several weeks, leading to durable anti-tumor
adaptive immunity (129). This is a classic success story of the
use of microbial products for oncology treatment.

Engineered tumor-targeting bacteria can specifically target
tumors, actively penetrate tissue, be easily detected, and induce
cytotoxicity in a controlled manner (131). Over the past few
decades, Salmonella, Clostridium, and other genera have been
proven to inhibit tumor growth and promote animal survival in
in vitro experiments (132, 133). There are three main types of
bacterial anticancer agents: cytotoxic agents that kill cancer cells
directly, cytokines that stimulate immune cells to kill cancer cells,
and tumor antigens that sensitize the immune system to cancer
cells (131). Systemic administration of tumor necrosis factor
alpha (TNFa) induces high levels of toxicity and causes serious
side effects. Murphy et al. studied the non-pathogenic E. coli
MG1655 strain as a tumor targeting system in order to
specifically produce TNFa in mouse tumors. Tumor growth in
three subcutaneous mouse tumor models (CT26 colon, RENCA
renal, and TRAMP prostate) was impeded by injection of E. coli
TNFa production constructs into mouse models via
intratumoral or intravenous administration (134). Din et al.
studied a specific phage strain that was programmed to
synchronize lysis and release genetically encoded cargo when
ata threshold population density was reached (135). They
Frontiers in Immunology | www.frontiersin.org 10
administered lysis strains orally to syngeneic mouse transplant
models of hepatic colorectal metastases alone or in combination
with clinical chemotherapeutic agents and found that the
combination of circuit-engineered bacteria and chemotherapy
resulted in a significant reduction in tumor activity, along with a
noticeable survival advantage over either therapy alone (135).
Treatment with live tumor-targeting bacteria offers a unique
option for the treatment of cancer (136).

4.4 GEN-001
GEN-001 (Lactobacillus lactis) is an oral microbiota candidate
therapeutic agent. Each GEN-011 capsule will contain more than
1x1011 colony-forming units (CFU). It is a live, purified
facultative anaerobic gram-positive probiotic lactic acid
bacterial strain. GEN-001 has immunomodulatory activity and
it may have promising therapeutic effects against cancer through
activation of immune cells, including CD4 or CD8 T cells and
natural killer cells, as well as synergistic effects with oxaliplatin
chemotherapy. There are currently two clinical trials related to
GEN-001 that can be found on clinicaltrials.gov. One is to
evaluate the efficacy and safety of total neoadjuvant therapy
(TNT) in combination with GEN-001 and to investigate the
dynamics of the gut microbiomes and metabolites and their
effects on immune regulation (NCT05079503). The other is to
TABLE 2 | Information about the GEN-001 clinical trial (https://clinicaltrials.gov/).

Identifier NCT04601402 NCT05079503

Sponsor Genome & Company Korean Cancer Study Group
Recruitment Status Recruiting Not yet recruiting
Conditions Solid Tumor, Non Small Cell Lung Cancer, Squamous Cell Carcinoma of Head and Neck, Urothelial

Carcinoma
Locally Advanced Rectal
Cancer

Intervention/treatment GEN-001, Avelumab GEN-001
Estimated Enrollment 93 participants 40 participants
Study Start Date October 26, 2020 December 15, 2021
Estimated Study Completion
Date

January 2024 January 30, 2024
July 2022
FIGURE 2 | The role of TM in tumor treatment. Engineered tumor-targeting bacteria can kill tumors directly (top left), some bacteria can be used as biomarkers for
treatments (top right), oral microbial antitumor agents (GEN-001) activates immune cells to synergistically kill tumors and has begun clinical trials (bottom left), TM can
produce small molecules and metabolites (e.g. CDDL) to enhance tumor cell resistance to gemcitabine (bottom right).
| Volume 13 | Article 935846

https://clinicaltrials.gov/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Chen et al. Tumor Microbiome in Cancers
evaluate the safety, tolerability, biological, and clinical activities
of GEN-001 in combination with avelumab for the treatment of
multiple cancer indications in a combination trial that is
intended to be the first human study including both dose-
escalation and expansion cohorts to assess safety and
preliminary efficacy (NCT04601402). We summarized the
relevant information of these two clinical trials (Table 2).

In the treatment of tumors, TM can influence the resistance of
tumor cells to drugs, engineered tumor-targeting bacteria are
important research directions, some bacteria can be used as
biomarkers for treatments, and oral microbial antitumor agents
have started clinical trials (Figure 2).
5 CONCLUSION

There is a large symbiotic microbiota in humans, and with
related research, it has been found that TM is also present
within many tumor tissues. TM is not only closely related to
the clinical features of tumors, tumor immunity, and
tumorigenesis and progression, but also has great potential in
the treatment of tumors. TM may promote tumor progression
and may induce chemotherapy resistance, some TM (e.g., F.
nucleatum) may become biomarkers for CRC and BC,
Frontiers in Immunology | www.frontiersin.org 11
engineered tumor-targeting bacterias are also a research
direction for tumor therapy, and clinical trials of the new oral
microbiota candidate GEN-001 for tumor treatment are
underway. We believe that as further studies on TM are
conducted, its clinical and scientific value will become more
and more significant.
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