Pneumologie

G. Michels

```
11.1 Akute Dyspnoe - 202
11.2 Aspiration - 204
11.3 Beinahe-Ertrinken - 207
11.4 Inhalationstrauma - 208
11.5 Asthma bronchiale - 210
11.6 Akute Exazerbation der COPD (AE-COPD) - 217
11.7 ARDS (»Acute respiratory distress syndrome«) und ALI (»acute lung injury«) - 222
11.8 Pneumothorax - 227
Literatur - 229
```

11.1 Akute Dyspnoe

Ätiologie (□ Tab. 11.1)

■ Tab. 11.1. Akute Dyspnoe

Kardiovaskuläre Genese

- Akutes Koronarsyndrom (ACS)
- Linksherzinsuffizienz → Asthma cardiale, u. a. zusätzlich reflektorische Bronchokonstriktion
- Arrhythmien (supraventrikulär, ventrikulär)
- Schrittmacherdysfunktion
- Arterielle Hypertonie, Cor hypertensivum
- Akutes Vitium, z. B. akutes Mitralvitium durch Sehnfadenabriss
- Endokarditis, Myokarditis
- Perikarderguss, Perikardtamponade

Pulmonale Genese

- AE-COPD (»acute exacerbation of chronic obstructive pulmonary disease«) mit und ohne Emphysem
- Asthma bronchiale (allergisch, nicht-allergisch, Mischformen, Churg-Strauss, Karzinoid)
- Postinfektiöse bronchiale Hyperreaktivität (mit Husten)
- Restriktive Lungenerkrankungen
- Lungenembolie
- Lungenödem
- Pneumo-, Hämato-, Hydro-, Chylothorax
- Bronchitis, Tracheobronchitis
- Pneumonie
- Alveolitis
- Pleuraerguss
- Pleuritis
- Pleuraschwarte
- Thoraxtrauma
- Bronchiale Tumoren
- Pulmonale Hypertonie
- Inhalationstrauma (z. B. Rauchgasintoxikation)
- Lungenblutung
- Exogen-allergische Alveolitis (EAA)
- ARDS (»acute respiratory distress syndrome«)

Mechanische Genese

- Fremdkörperaspiration
- Trachealstenose bzw. Stenosen der zentralen Atemwege
- Struma, retrosternale Struma
- Rippenfrakturen, instabiler Thorax
- Glottisödem, akute Laryngitis, Anaphylaxie
- Versagen der Atemmuskulatur, z. B. myasthene Krise
- Abdominelles Kompartmentsyndrom (unphysiologische Erhöhung des intraabdominellen Drucks mit Einschränkung der Atmung, z. B. Aszites, Darmischämie, Pankreatitis, Peritonitis)

Psychogene Genese

- Hyperventilationssyndrom
- Panikattacken
- Angst
- Schmerz

Neurologische Genese

- (Neuro-)muskuläre Erkrankungen
- Erhöhter Hirndruck
- Meningitis, Enzephalitis
- Schlaganfall
- Intrazerebrale Blutung
- Intoxikationen

Andere Ursachen

- Hyperthyreose
- Anämie
- Urämie
- Coma diabeticum
- Fieber, septisches Geschehen
- Metabolische Azidose
- »Vocal cord dysfunction« (funktioneller Laryngospasmus)
- Kyphoskoliose
- Säureaspiration bei gastroösophagealer Refluxkrankheit (GERD) assoziiert mit chronischem Husten
- Abdominelle Raumforderung (z. B. Hepatosplenomegalie, Adipositas)

Diagnostik (□ Tab. 11.2–11.4)

■ Tab. 11.2. Diagnostik bei akuter Dyspnoe

Methode	Fragestellung
Anamnese/Fremdanamnese	 Vorerkrankungen: Asthma bronchiale, COPD, Anämie, pulmonale Hypertonie, Z.n. TVT?
Körperliche Untersuchung	 Inspektion: Ödeme, Zyanose, Halsvenenstau Perkussion: hypersonor bei Pneumothorax Auskultation: Zeichen der Obstruktion (AE-COPD, Asthma)? Einseitig aufgehobenes Atemgeräusch beim Pneumothorax? Herzgeräusch?
Basismonitoring	– Puls, Blutdruck, Temperaturmessung, $\rm O_2$ -Sättigung (fraktionierte und partielle $\rm S_aO_2)$
EKG (12-Kanal-Ableitung, links- und rechtspräkordiale Ableitung, ggf. Nehb)	Arrhythmien?Akutes Koronarsyndrom?Zeichen der Rechtsherzbelastung?Niedervoltage?
Labordiagnostik (Notfalllabor)	 Elektrolyte: endokrinologische Entgleisung, Addison? Glukose: Coma diabeticum? Kleines Blutbild: Anämie oder Polyglobulie? D-Dimere: Thrombose oder Lungenembolie? BNP, NT-ProBNP: Herzinsuffizienz oder Lungenembolie? Herzenzyme, Troponin: akutes Koronarsyndrom oder Lungenembolie? Entzündungsparameter (CRP, Procalcitonin): SIRS, Sepsis? Urin (Ketonkörper, Drogenscreening) Ggf. Abnahme von Blutkulturen: SIRS, Sepsis?
Blutgasanalyse	 pH-Wert, Bikarbonat, Anionenlücke: ketoazidotisches Koma? Anionenlücke Partialdrücke: respiratorische Partial- oder Globalinsuffizienz? Fraktionierte S_aO₂: CO-Hb?
Echokardiographie	 Eingeschränkte Kontraktilität? Vitium? Rechtsherzbelastungszeichen? Perikarderguss? Endokarditiszeichen? Aortendissektion?
Abdomensonographie plus Pleuraraum	Hepatosplenomegalie, abdominelles Kompartmentsyndrom?Pleuraergüsse?Aszites?
Bildgebung	 Röntgen-Thorax: Erguss, pulmonalvenöse Stauung, Infiltrate, Pneumothorax? CT-Thorax: Lungenembolie, interstitielle Lungenerkrankung? Ggf. CCT: Blutung oder Ischämie?
Flexible Bronchoskopie	- Zur Diagnostik und Therapie
Weitere Diagnostik nach Verdachtsdiagnose	 Lungenfunktionstests (Spirometrie, CO-Diffusionskapazität): obstruktive oder restriktive Lungenerkrankung? Ggf. Herzkatheteruntersuchung Ggf. Lungen-Perfusions-Szintigraphie im Verlauf

□ Tab.	☐ Tab. 11.3. Borg-Dyspnoe-Skala		
0	Keine		
0,5	Sehr sehr leicht		
1	Sehr leicht		
2	Leicht		
3	Mäßig		
4	Ziemlich		
5	Schwer		
6	Sehr schwer, Stufe 1		
7	Sehr schwer, Stufe 2		
8	Sehr schwer, Stufe 3		
9	Sehr sehr schwer		
10	Maximal		

■ **Tab. 11.4.** Skala der American Thoracic Society (ATS) für Dyspnoe

0: Keine Dyspnoe	Keine Beschwerden beim raschen Gehen in der Ebene oder leichtem Anstieg, außer bei deutlicher kör- perlicher Anstrengung
1: Milde Dyspnoe	Kurzatmigkeit bei raschem Ge- hen in der Ebene oder leichtem Anstieg
2: Mäßige Dyspnoe	Kurzatmigkeit. In der Ebene langsamer als Altersgenossen, Pausen zum Atemholen auch bei eigenem Tempo
3: Schwere Dyspnoe	Pausen beim Gehen nach einigen Minuten oder nach etwa 100 m im Schritttempo
4: Sehr schwere Dyspnoe	Zu kurzatmig, um das Haus zu verlassen. Luftnot beim An- und Ausziehen

Therapie

Allgemeinmaßnahmen

- O₂-Gabe (2–41/min) über Nasensonde oder O₂-Maske
- Lagerung: Oberkörperhochlagerung bzw. aufrecht sitzende Haltung
- Patienten beruhigen, ggf. vorsichtige medikamentöse Anxiolyse (Midazolam oder Morphin)
- Ggf. Intubation und Beatmung
- Ggf. flexible Bronchoskopie

Spezielle Maßnahmen (einige Beispiele)

- β₂-Sympathomimetika, Theophylline und Kortikosteroide bei Bronchoobstruktion
- Diuretika, Nitrate bei V.a. akutes Lungenödem bis NIV-Beatmung
- Sofortige antibiotische Therapie nach vorheriger Abnahme von Blutkulturen bei V.a. Sepsis
- Dialysetherapie bei klinischen Zeichen der Urämie und/oder der Überwässerung
- Lysetherapie bei V.a. Lungenembolie
- Perikardpunktion bei nachgewiesenem Perikarderguss
- Notfallherzkatheteruntersuchung bei V. a. akutes Koronarsyndrom
- Antiarrhythmische Therapie und/oder Kardioversion/Defibrillation bei Arrhythmien

11.2 Aspiration

Definition

- Transglottisches Eindringen von Fremdmaterial in das Tracheobronchialsystem
- Penetration bezeichnet den Übergang zur Aspiration, d. h. das Aspirat berührt zwar die supraglottischen Strukturen bzw. tritt in den Aditus laryngis ein, ohne jedoch die Rima glottidis zu passieren.
- Akute Aspiration von Fremdkörpern, Flüssigkeiten (Süßwasser, Salzwasser; ► Kap. 11.3). Sehr heterogenes Krankheitsbild. Je nach Aspirat entsteht eine chemische Pneumonitis (Säureaspiration), bakterielle Pneumonie, mechanische Obstruktion (Aspiration korpuskulärer Anteile) und ggf. reflektorischer Glottisverschluss (Spasmus) oder eine Kombination der genannten Situationen. Typische Klinik
- Chronische Aspiration von Fremdkörpern. Wenig typische klinische Symptomatik folgt nach einem symptomarmen Intervall. Ausbildung einer lokalen granulozytären Entzündung als Reaktion auf einen festsitzenden Fremdkörper, ggf. chronische Pneumonie mit Bildung einer Atelektase oder einer Retentionspneumonie. Gehäuft bei neurologischen Krankheitsbildern mit Dysphagie und/oder fehlendem Hustenreflex.

Allgemeines

Inzidenz: Kinder > Erwachsene (Männer:Frauen = 2:1)

- Prädilektionsalter im Kindesalter: während des 2. Lebensjahres
- Prädilektionsalter im Erwachsenenalter: während der 6. Lebensdekade
- Häufige Fremdkörper (bei Erwachsenen): Nahrung, Zahnersatz

Ätiologie

Verminderte bis fehlende Schutzreflexe

- Bewusstlosigkeit (!)
- Während epileptischer Anfälle
- Drogen-, Alkoholabusus
- Frühzeitige Nahrungsaufnahme nach ambulant-zahnärztlichem Eingriff unter großzügiger Infiltrationsanästhesie

Störungen des Schluckaktes bzw. Dysphagie

- Neurogene Dysphagien: z. B. Apoplexie oder Schädel-Hirn-Trauma mit Schädigung der zentralen Schluckzentren der Formatio reticularis (Pons, Medulla oblongata) und der für den Schluckakt beteiligten Hirnnervenkerne (Ncl. motorius n. trigemini, Ncl. motorius n. facialis, Ncl. ambiguus, Ncl. tractus solitarii, Ncl. dorsalis n. vagi)
- Neuromuskuläre Erkrankungen: z. B. Achalasie
- Tumoren des Pharynx oder des Larynx
- Dysphagie nach Operationen: z. B. Tumoren in Mund- und Halsregion
- Erkrankungen des oberen Gastrointestinaltrakts

Störungen des Glottisverschlusses oder des oberen Ösophagussphinkters

- Tracheostoma oder liegende Magensonde (Pflegeheim-Patienten)
- Rezidivierendes Erbrechen

Klinik

- Symptomatik abhängig von Lage und Größe des Fremdkörpers
- Leitsymptome: plötzlicher Reizhusten und akute Dyspnoe
- Erstickungsangst, Unruhe bis Panik
- Atmung
 - Flache und frequente Atmung mit oder ohne thorakale Schmerzen
 - Dyspnoe bis Orthopnoe (mit Einsatz der Atemhilfsmuskulatur)
 - Frustrane Atemexkursionen bis Apnoe beim Bolusgeschehen
- Evtl. inverse Atmung

- Zyanose (Warnsignal, d. h. ≥5 g/dl deoxygeniertes Hämoglobin)
- Stridor
 - Inspiratorischer Stridor: hochsitzender Fremdkörper oder Stenosen im laryngotrachealen Bereich
 - Exspiratorischer Stridor: tief sitzender Fremdkörper oder bronchiale Obstruktion
- Bronchospasmus mit bronchialer Hypersekretion: bei Magensaft-Aspiration
- Hämodynamik: Tachykardie, initiale Hypertonie bis Hypotonie
- Bewusstlosigkeit: Eine Bolusaspiration (z. B. verschlucktes Wurststück) kann innerhalb kürzester Zeit zu zerebralen Krampfanfällen bis hin zum reflektorischen Herz-Kreislauf-Stillstand führen.
- Chronische Fremdkörperaspirationen: das Aspirationsereignis bleibt zunächst klinisch unbemerkt, später (Wochen/Monate!) treten wenig charakteristische Zeichen auf wie chronischer Reizhusten, rezidivierende bronchopulmonale Infekte und evtl. Ausbildung sekundärer Bronchiektasen, ggf. mit Bildung einer Atelektase oder einer Retentionspneumonie.

Diagnostik

- Anamnese
 - Akuter Verlauf: evtl. nur Fremdanamnese möglich
 - Vorerkrankungen: neurologische Krankheitsbilder mit Schluckstörungen
 - Hinweis: rezidivierende Pneumonien gleicher Lokalisation können durch chronische Aspiration (festsitzender Fremdkörper) entstehen
- Körperliche Untersuchung:
 - Inspektion: Mundhöhle und Pharynx (bei Bewusstlosigkeit zusätzlich Laryngoskopie), äußerliche Verletzungen, Struma, atypische bzw. asymmetrische Thoraxexkursionen, Haut (ggf. Zyanose)
 - Auskultation der Lunge: fortgeleitete Atemgeräusche wie Giemen und Brummen, einseitig abgeschwächtes Atemgeräusch bei Atelektasenausbildung, unerklärbare seitendifferente Befunde oder grobe Rasselgeräusche bei Aspiration von Flüssigkeiten (DD: kardiales und nicht-kardiales Lungenödem; Aspiration überwiegend in die rechte Lunge [Unterlappen])
- Bildgebung: Röntgen-Thorax und evtl. CT-Thorax
- Ggf. Tracheobronchoskopie

Differenzialdiagnostik

- Akute Dyspnoe
- Inspiratorischer Stridor: Ursachen der Obstruktion der proximalen unteren Atemwege (Hypopharynx, Larynx, Subglottis)
 - Beispiele: hochsitzender Fremdkörper, Krupp (Synonyme: Epiglottitis, Laryngitis supraglottica), Pseudokrupp (Synonyme: stenosierende Laryngotracheitis, Laryngitis subglottica), Larynxödem (entzündlichtoxisch oder angioneurotisch, Quinke-Ödem), funktioneller Laryngospasmus (»vocal cord dysfunction«), Retropharyngealabszess, Nasopharynxtumor (benigne oder maligne [Schmincke-Regaud]) oder Larynxtumor (ein Drittel supraglottisch, zwei Drittel glottisch, selten subglottisch)
- Inspiratorisch-exspiratorischer Stridor: Trachealstenose, z. B. Struma-bedingt
- Exspiratorischer Stridor: Ursachen der Obstruktion der distalen unteren Atemwege (Bronchien, Bronchiolen)
 - Beispiele: tief sitzender Fremdkörper, akutes Asthma bronchiale, toxisches Lungenödem, Bronchitis. Bronchiolitis

Maßnahmen/Vorgehen bei Aspiration von Fremdkörpern

Kreislaufstabiler und nicht-bewusstloser Patient

- Patienten beruhigen, ggf. Sedation (Diazepam, Valium i.v.)
- Analgesie (Opioide) bei Schmerzen, z. B. bei Fischgräten-Aspiration
- Oberkörperhochlagerung
- Kurze Anamnese und differenzialdiagnostische Abklärung
- Körperliche Untersuchung: Inspektion der Mundhöhle und Lungenauskultation
- Optimierung der Oxygenierung: Nasensonde (bis 61 O₂/min: F_iO₂ 0,2–0,4) oder besser Maske (>6–151 O₂/min: F_iO₂ 0,4–0,7)
- Patienten zum Husten auffordern
- Ggf. Heimlich-Handgriff bei tief sitzenden Fremdkörpern
- Ggf. empirische Gabe von Glukokortikoiden
- Ggf. initial flexible Bronchoskopie, Fremdkörperextraktion in starrer Bronchoskopietechnik
- Hinweis: im Röntgen-Thorax werden strahlentransparente Fremdkörper ggf. übersehen (!)

Kreislaufinstabiler oder bewusstloser Patient

- Kontrolle von Bewusstsein (Schmerzreiz setzen), Atmung (Sehen, Fühlen, Hören, S_aO₂) und Hämodynamik (Puls, Blutdruck)
- Bei Herz-Kreislauf-Stillstand: sofortiger Beginn der kardiopulmonalen Reanimation: bedingt durch die Herzdruckmassage gelingt es in einigen Fällen, den tief sitzenden Fremdkörper bzw. Bolus zu lockern und in Richtung Pharynx zu mobilisieren
- V.a. hochsitzender Fremdkörper: Notfalltracheotomie
- Mund- und Racheninspektion: bei ersichtlichem Aspirat (z. B. Erbrochenes)
 - Digitale Ausräumung des Rachenraumes
 - Oropharyngeales Absaugen in Kopftieflage
 - Fremdkörperextraktion aus Larynx mittels Magill-Zange und Absaugung unter laryngoskopischer Sicht
 - Bei Massenaspiration Freisaugen mittels Endotrachealtubus und anschließende endotracheale Intubation
- Absaugmanöver unter ständiger Kontrolle der Vitalparameter und pulmonaler Auskultation
- Atemwegsmanagement bei fehlender Eigenatmung:
 - Endotracheale Intubation und ggf. Fremdkörper mit dem Tubus vor- bzw. tiefer schieben, so dass zumindest eine Lunge beatmet werden kann
 - Oft sind hohe Beatmungsdrücke notwendig
 - Ggf. manuelle Exspirationshilfe durch Thoraxkompression
 - Vorsichtige Maskenbeatmung falls keine endotracheale Intubation möglich: eine langsame und kräftige Beatmung unter anteroposteriorem Krikoiddruck (Sellik-Handgriff) kann eine Luftinsufflation neben dem Fremdkörper erlauben
- Ggf. Bolusentfernung durch kräftige Schläge zwischen die Schulterblätter oder durch Anwendung des Heimlich-Handgriffs
 - Durchführung: Ausübung eines subdiaphragmalen bzw. epigastralen nach kranial gerichteten Druckstoßes, der über eine intrathorakale Druckerhöhung den Fremdkörper bzw. Bolus herausschleudern soll
 - Indikation: ultima ratio bei lebensbedrohlicher Erstickung durch Fremdkörperaspiration
 - Kontraindikationen: fortgeschrittene Gravidität, extreme Adipositas, Säuglingsalter

- Gefahr: Verletzung innerer Bauchorgane und Strukturen (Leber, Milz, Aorta, etc.)
- Endoskopie:
 - Sofortige starre Bronchoskopie als Methode der Wahl
 - Ggf. Inspektion der Atmwege in flexibler Bronchoskopietechnik und Lokalanästhesie, Extraktion von Fremdkörpern nach Wechsel auf starre Bronchoskopietechnik und Vollnarkose, Einsatz von Bergungsgeräten (z. B. Fangkorb, Fasszange), ggf. sind blutstillende Maßnahmen notwendig
 - Nur kleine, gut fassbare Fremdkörper können in ausschließlich flexibler Bronchoskopietechnik geborgen werden.
 - Eine routinemäßige Gabe eines Antibiotikums (z. B. Ampicillin/Sulbactam 1,5 g/8 h i.v.) für zumindest 3 Tage empfohlen
- Thorakotomie: als ultima ratio bei Versagen der endoskopischen Techniken

11.3 Beinahe-Ertrinken

Definition

- Beinahe-Ertrinken: Versagen der Atmung durch Atemstillstand in Flüssigkeiten oder Aspiration von Flüssigleiten, und zumindest »temporärem« Überleben der Situation
- Ertrinken: Tod durch Ersticken infolge Untertauchens in einer Flüssigkeit

Klinische Stadien

- Ertrinkungsablauf: unerwartetes Untertauchen
 → willkürliche Apnoe → Aspiration geringer
 Wassermengen führt zum Laryngospasmus (in
 10–15% d.F. persistiert der Laryngospasmus) →
 Panik → Aspiration großer Wassermengen →
 Erbrechen → Hypoxie
- 10% reflektorischer Laryngospasmus und Bewusstseinsverlust (»trockenes Ertrinken«)
- 90% Wasseraspiration (»nasses Ertrinken«)
- Pulmonale Schädigung:
 - Alveolarkollaps: Verdünnung und Denaturierung des Surfactant-Faktors
 - Lungenödem: interstitiell, intraalveolar, Schädigung der alveolo-kapillaren Grenzschicht
 - Zunahme des intrapulmonalen Shunts, Hypoxämie, Hyperkapnie, Azidose
 - Schocklunge und ARDS

- Hypoxisch-ischämische Hirnschädigung: Hypoxie und Hirnödem
 - Zusammenbruch des oxidativen Energiestoffwechsels, Folge: zytotoxisches Hirnödem (Einlagerung von Wasser und Elektrolyten nach intrazellulär durch Ausfall der Na+-K+-Pumpe)
 - Vasogenes Hirnödem (Aufhebung der Blut-Hirn-Schranke)
 - Fazit: Anstieg des intrakraniellen Drucks

Protektive Effekte der Hypothermie

- Auskühlung im Wasser erfolgt >30fach schneller als in der Luft bei gleichen Temperaturen
- Kerntemperatur <32 °C: Vasokonstriktion, Bradykardie, Abnahme der O₂-Aufnahme (VO₂), Erhöhung der zentralen Hypoxietoleranz
- Abhängigkeitsfaktoren: Wassertemperatur, Verweildauer, Körperoberfläche bestimmen die Auskühlungsgeschwindigkeit
- Aus therapeutischer Sicht wird bei Beinahe-Ertrinken kein Unterschied zwischen Salzund Süßwasser gemacht.
- Cave

Das Ausmaß der zerebralen Anoxie bestimmt die Prognose. Bei Ertrinken im kalten Wasser unbedingt prolongierte Reanimation (>1 h), sofortige Verlegung in ein Zentrum mit Erfahrung von Hypothermie-Patienten.

Klinik/Diagnostik

- Anamnese/Fremdanamnese
- Körperliche Untersuchung: Begleitverletzungen (insbesondere Wirbelsäule)?
- Monitoring: Atmung, Puls, Blutdruck, Temperaturmessung (rektal oder über Blasenkatheter)
- Klinik nach Temperatur:
 - 31–35 °C: Zittern, Zyanose, Diurese
 - 29–31 °C: Konfusion, Muskelrigidität, Hypotonie
 - 25–29 °C: Ödem, Koma, Areflexie, weite reaktionslose Pupillen, Arrhythmien
 - = <25 °C: Apnoe, Asystolie

Differenzialdiagnostik

- Ertrinken nach Schädel-Hirn-Trauma
- Plötzlicher Herztod
- Grand-Mal-Epilepsie

Therapie

- Aufrechterhaltung der Vitalfunktionen, wie z. B. prolongierte maschinelle PEEP-Beatmung
- Reanimation unter Hypothermie
 - Die Diagnose des Kreislaufstillstandes ist unter Hypothermie erschwert.
 - Bei Körperkerntemperaturen unter 30 °C besteht erhöhte Gefahr für Kammerflimmern.
 - Es gilt der Grundsatz: Reanimation bis zur Normothermie.
 - Das hypotherme Herz reagiert bei Körperkerntemperaturen unter 30 °C ungenügend bis gar nicht auf Medikamente, weder auf elektrisches Pacing noch auf Defibrillationsversuche.
 - Keine i.v.-Applikation von Medikamenten bei Temperaturen unter 30 °C, erst ab einer Körperkerntemperatur von über 35 °C können Medikamente wieder nach dem Standardalgorithmus eingesetzt werden.
 - Beschränkung der Anzahl der Defibrillationsversuche bei Temperaturen unter 30 °C auf 3
- Im Zweifelfall immer kardiopulmonale Reanimation: »No one is dead until warm and dead«(!)

Unterkühlung:

- Verhinderung weiterer Abkühlung bzw.
 Schutz vor weiterer Auskühlung (»afterdrop effect«)
- Flachlagerung (Horizontallage, um eine schnelle Temperaturumverteilung zu vermeiden)
- Entkleiden: nicht im Erschöpfungs- und Lähmungsstadium

Wiedererwärmung:

- Hypothermiebehandlung bei niedriger Körperkerntemperatur unter 33 °C: sofortige Kontaktaufnahme mit einem Zentrum mit Erfahrung von Hypothermie-Patienten
- Vorsichtiges und langsames Wiedererwärmen in Abhängigkeit von der Körperkerntemperatur
- Extern: »Wärmekonvektion«, Warmwasserbäder, Strahler, Heizmatten
- Intern: »extrakorporale Zirkulation«, warme Infusionen, Dialyse
- Erwärmung nach CPR zunächst bis über 33°C
- Sorgfältige Beobachtung des Patienten für mind. 24 h. Es besteht die Gefahr des »sekundären Ertrinkens«.

11.4 Inhalationstrauma

Definition

Unter einem Inhalationstrauma versteht man die thermische und chemisch-toxische Schädigung der Atemwege und des Lungenparenchyms durch Einatmen von Hitze, Rauch- und Reizgasen.

Allgemeines

- Obwohl im Rahmen von Verbrennungen viele Organe beteiligt sein können, sind Hitzeschäden der Lunge am gravierendsten.
- Ca. 20–30% aller Brandverletzten erleiden ein Inhalationstrauma.
- Bei ca. 80% aller Brandverletzten ist das Inhalationstrauma die Todesursache.
- ARDS-Häufigkeit beatmeter Brandopfer: über 50%
- Mortalität des Inhalationstraumas alleine:
 ca. 10%
- Mortalität des Inhalationstraumas bei schwerer Verbrennung: über 50%

Ätiologie

Inhalation von Komponenten des Brandrauchs

- Rauchpartikel: Ruß, Schädigung abhängig von Partikelgröße (<1 bis >5 μm)
- Hitze- und Flammeninhalation: lokale Schädigung, nur zu 5% subglottisch, Gefahr von Larynx- und Glottisödem (max. nach 12–24 h)
- Reizgase: lokal toxisch in tiefen Atemwegen, Spätmortalität durch Reizgase vom Latenztyp und Sofortmortalität durch hydrophile Reizgase
- Erstickungsgase (toxische Stoffe): CO, CO₂, Zyanide, Schwefelwasserstoff

Inhalation von Reizgasen

- Entstehung bei Schwelbränden, Bränden in geschlossenen Räumen und Bränden mit starker Rauchentwicklung
- Reizgase vom Soforttyp (hydrophile Stoffe): Ammoniak, Chlorwasserstoff, Fluor-, Schwefel-wasserstoff → Schädigung der oberen Atemwege, zentrale Verätzungen, Larynxödem → bei massiver Exposition ödematöse Bronchitis und ggf. Lungenödem
- Reizgase vom Spättyp (lipophile Stoffe): Aldehyde, Nitrosegase oder Stickstoffoxide

- $(NO, NO_2, N_2O_3, N_2O_4)$, Ozon (O_3) , Phosgen $(COCl_2) \rightarrow Schädigung der unteren Atemwege <math>\rightarrow$ schwere ödematöse Bronchitis/Bronchiolitis mit unstillbarem Husten bis zur Orthopnoe
- Reizgase vom intermediären Typ, d. h. Verbindungen mit mittlerer Wasserlöslichkeit: Chlor (Cl₂), Brom (Br₂), Schwefeldioxid (SO₂)

Inhalation von Erstickungsgasen

- Erstickungsgase (CO, CO₂, Zyanide) und O₂-Mangel (Asphyxie) führen zur Abnahme der O₂-Transportkapazität sowie zur Störung der inneren Atmung und sind für die hohe Frühmortalität des Inhalationstraumas verantwortlich.
- Häufig kombinierte CO-Zyanid-Mischintoxikation (synergistische Toxizität)

Abhängigkeitsfaktoren der Schädigung

- Temperatur (Hitzeentwicklung)
- Expositionszeit
- Konzentration der Brand-/Rauchgase
- Löslichkeit der Substanzen

Einteilung

- Frühphase des Inhalationstraumas:
 - Auftreten: bis 72 h nach dem Ereignis
 - Organmanifestation: meist obere Atemwege bis Carina tracheae, selten untere Atemwege (frühes ARDS)
 - Klinik: Schwellung von Gesicht, Hals, Larynx mit inspiratorischem Stridor
- Spätphase des Inhalationstraumas:
 - Auftreten: 72 h nach dem Ereignis
 - Organmanifestation: meist untere Atemwege
 - Klinik: akute obstruktive Bronchitis bis bakterielle Superinfektion, ggf. multilokuläre pneumonische Infiltrate bis Sepsis (25–30% d.F.)

Klinik

- Hustenreiz, Heiserkeit
- Dyspnoe
- Inspiratorischer Stridor bis Bronchospasmus
- Ggf. Larynxödem
- Retrosternale Schmerzen
- Zeichen der Reizgasbeteiligung:
 - Reizgasbeteiligung vom Soforttyp (stechender Charakter) mit pharyngolaryngealer Symptomatik: Reizhusten, Würgen, Nausea,

- Augentränen (Konjunktivitis), Rhinitis, Kopfschmerzen, Larynxödem
- Reizgasbeteiligung vom Latenztyp (teilweise vom süßlichen Charakter) mit »symptomfreiem Intervall« bis zu 36 h, danach: Dyspnoe, Fieber, toxisches Lungenödem (blutig-schaumig), Bronchospasmus bis Schock

Diagnostik

- Anamnese/Erhebung des Unfallhergangs: Verbrennung im geschlossenen Raum
- Körperliche Untersuchung:
 - Inspektion von Haut und Schleimhäuten: Mundhöhle, Pharynx, Nase (Schwärzung), Rötungen, Blässe oder Rußablagerungen der oropharyngealen Schleimhäute, Ödembildung (Gefahr des Glottisödems), verbrannte Wimpern und Nasenhaare
 - Auskultation: evtl. Rasselgeräusche, Giemen und Brummen
- Labor: arterielle BGA, inklusive Bestimmung von CO-Hb-Anteil, Met-Hb, pH-Wert und Laktat
- Röntgen-Thorax
- Ggf. flexible Bronchoskopie zur Diagnose einer »burnt lung«
- Ggf. Lungenfunktionsuntersuchung (inkl. Diffusion) im Verlauf

Falsch hohe Werte in der Pulsoxymetrie, da das Pulsoxymeter nicht zwischen $\rm O_2$ -Hb und CO-Hb differenzieren kann (partielle $\rm O_2$ -Sättigung). Mittels arterieller BGA (fraktionelle $\rm O_2$ -Sättigung) lässt sich der CO-Hb-Anteil bestimmen. Dies bedeutet, dass z. B. trotz eines hohen CO-Hb-Anteils in der BGA (z. B. 70% CO-Hb und 30% $\rm O_2$ -Hb) die pulsoxymetrische $\rm O_2$ -Sättigung immer noch über 90% liegen kann.

Differenzial diagnostik

- Zyanid-, CO-Monointoxikation
- Reizgasintoxikation
- Schwerer Asthmaanfall

Therapie

Adäquate Oxygenierung: >6 l O₂/min über Maske Analgosedierung: z. B. Fentanyl (Fentanyl-Janssen)

Intubation und Beatmung

- Indikation: sicheres Inhalationstrauma, zirkuläre thorakale Verbrennungen (Compliance ↓), begleitende 2- bis 3-gradige Gesichtsverbrennung (schnelles Anschwellen der Halsweichteile), Bewusstlosigkeit, zunehmender inspiratorischer Stridor, therapierefraktäre Hypoxämie und Dyspnoe, Verbrennungen von mehr als 50–60% der Körperoberfläche
- Wenn möglich »nasale« Intubation mittels großlumigem Tubus
- Keine »prophylaktische«, sondern »notwendig frühzeitige« Intubation (Gefahr: oropharyngeales Schleimhautödem)
- Frühzeitige Tracheotomie bei problematischer tracheobronchialer Absaugung

Glukokortikoide beim Inhalationstrauma

- Inhalative Glukokortikoide: Obwohl die Gabe von inhalativen Glukokortikoiden primär nicht empfohlen wird, kann in Einzelfällen und bei sicheren Zeichen eines Inhalationstraumas die Applikation z. B. von Beclometason (Junik, Ventolair) eine symptomatische Besserung schaffen.
- Systemische Glukokortikoide hochdosiert, umstritten (!)
- Ggf. Hydroxocobalamin (Cyanokit, hohe Kosten) bei Rauchgasintoxikation (Zyanid-CO-Mischintoxikation); die Kombinationstherapie aus 4-DMAP und Natrium-Thiosulfat ist nur bei gesicherter Zyanid-Monointoxikation indiziert

Prophylaktisches Antibiotikum bei schwerem Mukosa-Schaden, umstritten:

- Ampicillin/Sulbactam 1,5 g/8 h i.v.
- Cephalosporin der 2. Generation (z. B. Cefuroxim 1,5 g/8 h)

Ggf. Bronchospasmolytika

- Theophyllin (Euphyllin), unterstützt u. a. die mukoziliare Clearance
- Inhalative oder systemische β₂-Sympathomimetika
- Bei V.a. ein Inhalationstrauma sollte auch bei Beschwerdefreiheit aufgrund der latenten Gefahr des toxischen Lungenödems eine Überwachung für mind. 24 h erfolgen.
- Bei Entwicklung eines ARDS: ➤ Kap. 11.7
- Bei sicherem Inhalationstrauma: Kontaktaufnahme mit Verbrennungsklinik

11.5 Asthma bronchiale

Definitionen

— Asthma bronchiale:

- Akute variable und reversible Atemwegsobstruktion
- Auf einer bronchialen Hyperreagibilität und (chronischen) Entzündung der Bronchialschleimhaut beruhend
- Schwieriges Asthma (ENFUMOSA), Erfüllung von mind. 3 der folgenden Kriterien:
 - Betreuung durch Spezialisten in den letzten 2 oder mehr Jahren
 - Persistierende Symptome und deutlich eingeschränkte Lebensqualität
 - Maximale Asthmatherapie nach gültigen Richtlinien, inkl. hochdosierte inhalative Glukokortikoide und gesicherte Therapiecompliance
 - Episoden von schwerer respiratorischer Insuffizienz/Intubation/Reanimation
 - Wiederholte Lungenfunktionseinschränkungen FEV1 <70% vom Sollwert
- Status asthmaticus (»fatal asthma«: Asthmaanfall, der nicht prompt auf β₂-Mimetika reagiert):
 - Akutes schweres Asthma (»acute severe asthma«)
 - Lebensbedrohliches Asthma (»life threatening asthma«, »near fatal asthma«, »acute asphyxic asthma«)
 - Es handelt sich dabei um einen über mehrere Stunden anhaltenden Anfall von Asthma bronchiale mit vitaler Gefährdung des Patienten.
- Brittle-Asthma: Subgruppe des lebensbedrohlichen Asthma bronchiale mit sehr rascher und unvorhersehbarer Entwicklung (hohes Mortalitätsrisiko)

Allgemeines

- Inzidenz: ca. 0,4-1,2% pro Jahr
- Prävalenz: 5% bei Erwachsenen und 10% bei Kindern
- Mortalität schwerer Asthmaanfälle: 10%
- Asthmaformen (■ Tab. 11.5)
 - Allergisches Asthma bronchiale
 - Nicht-allergisches Asthma bronchiale
 - Mischformen aus extrinsischem und intrinsischem Asthma (»mixed asthma«)
- Mortalität: ca. 0,5–1/100.000 (oft junge Erwachsene)

☐ Tab. 11.5. Asthmaformen	
Allergisches Asthma bronchiale	Nicht-allergisches Asthma bronchiale
Extrinsisches Asthma	Intrinsisches Asthma
Häufig bei Kindern und Jugendlichen (oft Atopiker)	Meist bei Erwachsenen
Saisonal oder perennial wiederkehrend	Im Rahmen von chronischen Lungenerkrankungen
Erhöhte Eosinophilenzahl	Erhöhte Eosinophilenzahl (stärker ausgeprägt als beim extrinsischen Asthma)
Erhöhtes Gesamt- und allergenspezifisches-IgE	Kein erhöhtes Gesamt- und allergenspezifisches-IgE
Triggerfaktoren: Allergene	Triggerfaktoren: Infektionen der Atemwege (Viren, Chlamydien/ Mykoplasmen), Kälte, Medikamente, physische oder psychische Belastung

Abkürzung: Ig = Immunglobulin.

Ätiologie

- Polyätiologisches Krankheitsbild: genetische Prädisposition (Atopie, verschiedene Genpolymorphismen), Lebensstil (Ernährung) und Umweltfaktoren
- Atopie als größter Risikofaktor: 10- bis 20fache Risikoerhöhung; das T_{H2}/T_{H1}-Verhältnis ist zu Ungunsten der T_{H2}-Zellen verschoben mit Erhöhung von T_{H2}-typischen Zytokinen (IL-4, IL-5, IL-13). Diese führen zur Aktivierung von B-Lymphozyten (IL-4: Synthese von Immunglobulin-E) und eosinophilen Granulozyten (insbesondere durch IL-5).
- Auslöser/Trigger: Antigenexposition, vorausgehender Atemwegsinfekt (Viren, Mykoplasmen), körperliche oder psychische Anstrengung, Kälte, Medikamente (z. B. nicht-steroidale Antirheumatika, β-Blocker), mangelnde Compliance, Inhalation von Zigarettenrauch
- Allergene: saisonale (z. B. Gräserpollen) oder perenniale (ganzjährig, z. B. Hausstaubmilben, Tierhaare, Schimmel)

Vier Mechanismen der Atemwegsobstruktion

- Kontraktion der glatten Bronchialmuskulatur
- Mukosaödem der Atemwegswände
- Verstopfen der Bronchiolen durch viskösen Schleim (»mucus plugging«)
- Irreversible Umbauvorgänge (»remodeling«)

▼

Phasen des Asthma bronchiale

- Sofortreaktion (»early phase response«) oder Mediatoren-vermittelte Reaktion
 - Reaktion: innerhalb von Minuten nach Antigenkontakt
 - Dominierende Zellen: Mastzellen und basophile Granulozyten
 - Voraussetzung: vorangegangene Sensibilisierung
 - Klinik: Bronchospasmus, Schleimhautödem und Hypersekretion
- Spätreaktion (»late phase response«) oder Zellvermittelte Immunantwort
 - Reaktion: ca. 2–24 h nach der Sofortreaktion
 - Dominierende Zellen: eosinophile/ basophile Granulozyten, Monozyten und T-Lymphozyten
 - Klinik: bronchiale Inflammation und Bronchospasmus
- Chronische Reaktion bzw. Chronifizierung
 - Klinik: Atemwegsremodeling (»Asthmafixierung«) und bronchiale Hyperreagibilität

Klinik (**□** Tab. 11.6–11.8)

■ Tab. 11.6. Klinik de	es Asthma bronchiale
Kardinal- symptom	Akut auftretende AtemnotTypischerweise nachts oder in frühen Morgenstunden
Zeichen der Sofortreaktion: milde bis moderate Form	 Keine Dyspnoe beim Sprechen Atemfrequenz <25/min Herzfrequenz <110/min Peak expiratory flow (PEF) >50% des Bestwertes oder des erwarteten Wertes (Peak Flow Protokoll) Blutgase/O₂-Sättigung: p_aO₂ normal, p_aCO₂ ↓, pH alkalisch, S_aO₂ 91–95% als Ausdruck der kompensatorischen Hyperventilation
Akutes schweres Asthma	 Sprechunvermögen Dyspnoe bis Orthopnoe bei exspiratorischem Stridor Einsatz der Atemhilfsmuskulatur »Rapid shallow breathing«, d. h. schnelle oberflächliche Atmung: AF ≥25–35/min und V_T <300 ml Herzfrequenz ≥110/min FEV₁ ≤70% vom Soll oder <1 l/min Pulsus paradoxus (Abfall des systolischen Blutdrucks >10–25 mmHg während der Inspiration) PEF <50% des Bestwertes oder <200 l/min bei unbekanntem Ausgangswert Blutgase/O₂-Sättigung: p_aO₂ ↓, p_aCO₂ normal-↑, pH normal, S_aO₂ <90% (respiratorische Partialinsuffizienz)
Lebens- bedrohliches Asthma	 Silent chest Bradykardie Paradoxe thorakoabdominelle Bewegungen, d. h. inspiratorische Einziehungen der Abdominalmuskulatur (»Schaukelatmung«) Zyanose PEF <33% des Bestwertes oder <100 l/min bei unbekanntem Ausgangswert Blutgase/O₂-Sättigung: p_aO₂ ↓, p_aCO₂ ↑, pH sauer, S_aO₂ <92% (respiratorische Globalinsuffizienz) Hyperkapnie mit Somnolenz (CO₂-Narkose)

■ Tab. 11.7. Formen des fatalen Asthmas

	Typ 1 (»acute severe asthma«)	Typ 2 (»acute asphyxic asthma«)
Geschlecht	Frauen > Männer	Männer > Frauen
Auftreten	Akut (>6 h): Tage bis Wochen	Hyperakut (<6 h): Minuten bis Stunden
Häufigkeit [%]	80–85	15–20
Triggerfaktoren	Infektion	Allergene, physische oder psychische Belastung
Klinik	Progrediente Verschlechterung bei zunehmender Obstruktion	Plötzliche Verschlechterung mit perakuter Obstruktion
Tod	Innerhalb der Klinik	Präklinisch
Pathologie der Atemwege	Intensive Schleimansammlung	Leere Bronchiolen
Submuköse Entzündungszellen	Eosinophile Granulozyten	Neutrophile Granulozyten
Therapeutische Ansprechbarkeit	Langsam	Schneller

Anmerkung: Der Begriff des »Status asthmaticus« ($fatal\ asthma$: Asthmaanfall, der nicht prompt auf β_2 -Mimetika reagiert) wird heute mehr oder weniger durch die Begriffe »akutes schweres Asthma« ($acute\ severe\ asthma$) oder als gesteigerte Form »lebensbedrohliches Asthma« ($life\ threatening\ asthma$) ersetzt.

□ Tab. 11	■ Tab. 11.8. Schweregrade nach GINA	
Grad	Klinik	
1	Intermittierend: Symptome weniger als 1-mal/Woche, kurze Exazerbationen, nächt- liche Beschwerden ≤2x/Monat, FEV ₁ oder PEF ≥80%, FEV ₁ oder PEF-Variabilität <20%	
2	Mild persistierend: Symptome <1-mal/Tag >1-mal/Woche, Exazerbationen können tägliche Aktivität und Schlaf beeinträchtigen, nächtliche Beschwerden >2-mal/Monat, FEV₁ oder PEF-Variabilität <20%-30%	
3	Mäßig persistierend: Symptome täglich, Exazerbationen können Aktivität und Schlaf beeinträchtigen, nächtliche Beschwerden >1-mal/Woche, täglicher Gebrauch von inhalativer Bedarfmedikation (SABA), FEV ₁ oder PEF 60–80%, FEV ₁ oder PEF-Variabilität >30%	
4	Schwer persistierend: Symptome täglich, häufige Exazerbationen, häufige nächtliche Beschwerden, Einschränkung der körper- lichen Aktivität, FEV ₁ oder PEF ≤60%, FEV ₁ oder PEF-Variabilität >30%	

Risikofaktoren bzw. Hinweise für ein potenziell fatales Asthma bronchiale

- Frühere Vorgeschichte von schweren Asthmaanfällen, Intubationen oder Intensivstation- Aufenthalten
- Frühere Notaufnahmen
- Häufige Hospitalisierungen
- Kontinuierlicher Gebrauch von systemischen Glukokortikoiden
- Steigender β₂-Mimetikabedarf
- Psychosoziale Probleme

Komplikationen

- Zerebrale Hypoxämie
- Akutes Cor pulmonale (Rechtsherzversagen bis kardiogener Schock)
- Lungenversagen (»respiratory arrest«)
 - Hypoxämisches Lungenversagen: p_aO₂↓,
 Lungenparenchymversagen
 - Hyperkapnisches Lungenversagen: p_aCO₂↑,
 Atempumpenversagen

- Arrhythmien: hypoxiebedingt und/oder medikamentös verursacht (z. B. β₂-Mimetika)
- Pneumothorax: durch massive Lungenüberblähung bei erhöhtem intrathorakalem Gasvolumen
- Andere: Pneumomediastinum, Pneumoperikardium, tracheoösophageale Fistel, Pneumonie/ Sepsis

Diagnostik

- Anamnese/Fremdanamnese: Husten (unproduktiver Reizhusten), pfeifendes Atemgeräusch, Luftnot, verstärkt nächtliche Beschwerden, thorakales Engegefühl, typischerweise variable Ausprägung der Symptome (im Vergleich zur COPD): mal stärker, mal schwächer. Allergien/Atopie in der Vorgeschichte, ggf. Atemwegserkrankungen (»spastische Bronchitis«), gehäuft im Kindesalter, Auslöser: z. B. kalte Luft, körperliche Anstrengung, Allergene. Gelegentlich ist ein chronischer, nicht produktiver Husten einzige klinische Manifestation (!)
- Körperliche Untersuchung
 - Inspektion: Dyspnoe (»pfeifendes Atemgeräusch«), Orthopnoe, silent chest, Sprechunvermögen, Zyanose
- Je lauter die Atemgeräusche (Giemen), desto harmloser die Situation; bei fehlendem Atemgeräusch handelt es sich um die ernstere Situation.
 - Palpation: Tachykardie, Pulsus paradoxus (Abfall des systolischen Blutdrucks
 >10-25 mmHg w\u00e4hrend der Inspiration; physiologisch ≤10 mmHg)
 - Perkussion: hypersonorer Klopfschall
 - Auskultation: verlängertes Exspirium (bis stumme Auskultation), exspiratorisches Giemen
- Monitoring: EKG, Blutdruck, S_aO₂ (respiratorische Insuffizienz, S_aO₂ <90% bei Raumluft)</p>
- Labordiagnostik: komplettes Notfalllabor einschließlich Differenzialblutbild, D-Dimere (Lungenembolie?), Herzenzyme und Troponin (Myokardinfarkt?), BNP (dekompensierte Herzinsuffizienz, Asthma cardiale?)
- 12-Kanal-EKG: Zeichen der Rechtsherzbelastung (Lungenembolie?), Myokardinfarkt mit akuter Linksherzinsuffizienz (Asthma cardiale)
- Röntgen-Thorax: Ausschluss/Nachweis anderer Differenzialdiagnosen
- Ggf. Echokardiographie: Ausschluss/Nachweis anderer Differenzialdiagnosen

Im Verlauf → Lungenfunktion:

- Nachweis einer Obstruktion (FEV₁/VC
 <70%), positiver Bronchospasmolyse-Test
- Verminderter PEF (»peak expiratory flow«, variabel: typisch sind Schwankungen von >20% bei wiederholten Messungen; Eigenmessungen mit Peak-Flow-Meter, Führen eines Peak-Flow-Protokolls: Asthma-Tagebuch)
- Wenn Lufu normal: Durchführung einer »unspezifischen Provokation« mit Metacholin – Nachweis einer bronchialen Hyperreagibilität
- Im Verlauf → allergologische Tests: Serum-IgE, Prick-Tests, ggf. RAST, selten spezifische Allergenprovokation unter stationären Bedingungen
- Asthma bronchiale Diagnostik:
 - Lungenfunktioneller Nachweis einer bronchialen Hyperreagibilität ohne typische Klinik: kein Asthma bronchiale
 - Verbesserung der FEV1 >15% (R_{spez} >20%) nach Akutbroncholyse (alternativ: die 4-wöchige Steroidinhalationstherapie): Asthma bronchiale
 - Eine normale Spirometrie schließt ein Asthma nicht aus.

Differenzial diagnostik

- Die akute Exazerbation der COPD (AE-COPD) stellt die wichtigste Differenzialdiagnose beim Erwachsenen dar. Die Differenzialdiagnose beim Kind ist dagegen stark altersabhängig (z. B. Bronchiolitis im Säuglingsalter, Krupp-Syndrom im Kindesalter oder Fremdkörperaspiration während des 2. Lebensjahres).
- Kardiovaskulär: Asthma cardiale (Linksherzinsuffizienz beim älteren Patienten)
- Pulmonal-vaskulär: Lungenembolie, Spontanpneumothorax, Bronchopneumonie, COPD-Exazerbation, postinfektiöse bronchiale Hyperreaktivität (mit Husten)
- Andere: gastroösophagealer Reflux häufig assoziiert mit chronischem Husten oder mit intermittierenden in- oder exspiratorischen Laryngospasmen (»vocal cord dysfunction«)
- Siehe Differenzialdiagnose »Dyspnoe«
 (► Kap. 11.1)

Akuttherapie

Allgemeines

- Aufrechterhaltung und Stabilisierung der Vitalfunktionen
- Lagerung: sitzende Position, beengende Kleidung öffnen
- Sedierung:
 - Für Ruhe sorgen (Umgebung, Gespräch)
 - Hypnotika bzw. Sedativa (z. B. Midazolam) sollten wegen ihrer atemdepressiven Wirkung möglichst vermieden werden (■ Tab. 11.9 u. 11.10).
- Adäquate Oxygenierung:
 - O₂-Gabe über Maske (>6–101 O₂/min: F_iO_2 0,7 ohne und F_iO_2 0,9 mit Reservoir)
 - Evtl. Versuch von Masken-CPAP, Ziel:
 S_aO₂ >92%
 - Ansonsten frühzeitige Intubation bei Zeichen der Dekompensation
- Cave

Die Anwendung von Methylxanthinen beim akuten Asthmaanfall wird nicht empfohlen.

Beatmungsmanagement bei akutem Asthma bronchiale (© Tab. 11.11)

Allgemeines

- Asthma-Mortalität unter maschineller Beatmung: bis 10% (hohes Risiko für Barotrauma und Hypotonie bei einem V_{EL} >20 ml/kgKG)
- Druckkontrollierte Beatmung
- Initial hoher PEEP, trotz hoher Auto-PEEP
- Plateaudruck P_{Plat}<35 mbar</p>
- Spitzeninspirationsdruck $P_{Peak} \le 40 \text{ mbar}$
- Druckanstiegsgeschwindigkeit: steile Rampe
 2 s
- Permissive Hyperkapnie: Ziel: pH-Wert >7,2
 (p_aCO₂-Werte um ca. 90 mmHg können initial toleriert werden)

Indikationen zur Beatmung (relativ)

- Hohe Atemfrequenzen ≥35/min und progrediente Dyspnoe mit respiratorischer Erschöpfung
- Respiratorische Azidose pH <7,3</p>
- Zeichen der respiratorischen Globalinsuffizienz:
 p_aO₂ <55 mmHg, p_aCO₂ >55 mmHg, S_aO₂ <88%
 trotz adäquater O₂-Gabe

■ Tab. 11.9. Medikamente beim akuten Asthmaanfall

Substanzgruppe	Medikament	Dosierung
β_2 -Sympathomimetika	Fenoterol (Berotec)	Inhalativ: 2 Hübe (1 Hub = 100 μ g), ggf. Repetition alle 10–15 min
	Salbutamol (Broncho-Spray novo)	Inhalativ: 2 Hübe (1 Hub = 100 μ g), ggf. Repetition alle 10–15 min
	Reproterol (Bronchospasmin)	0,09 mg langsam i.v. Perfusor: 5 A./50 ml (9 μg/ml)
Kortikosteroide	Prednisolon (Solu-Decortin)	Initial 50–100 mg i.vBolus Anschließend: alle 4–6 h 50 mg Prednisolon i.v. oder Perfusor
Parasympatholytika	Ipratropiumbromid (Atrovent)	Inhalativ: 2 Hübe (1 Hub = 20 μ g), ggf. Repetition alle 10–15 min
Anästhetika	Ketamin-S (Ketanest-S) plus Midazolam (Dormicum) bei therapieresistentem Asthmaanfall	Ketamin: 0,3–0,7 mg/kgKG langsam i.v. und als Perfusor: 25 mg/ml, 0,3 mg/kgKG/h Midazolam: 1–3–5 mg/h als i.vPerfusor (2 mg/ml)
	Propofol (Disoprivan 2%) mit bronchodilatorischen Eigenschaften	1–3 mg/kgKG i.v. (Cave: Hypotonie-Induktion) Perfusor: 20 mg/ml

■ Tab. 11.10. Additive Maßnahmen (»second-line treatment«)

Magnesiumsulfat (Mg-5-Sulfat 50%)

- Funktion: Membranstabilisator und Blockade spannungsabhängiger Ca²⁺-Ionenkanäle der glatten Muskelzellen mit relaxierender Wirkung auf glatte Muskelzellen
- Dosierung: 1-2 g i.v. über 20 min

Adrenalin (Suprarenin)

- Funktion: Wirkt nicht nur als β₂-Mimetikum, sondern ebenfalls als α₁-Mimetikum auf die Bronchialgefäße mit abschwellender Wirkung, ebenfalls bei Zeichen des Angioödems und des Glottisödems
- Cave: systemische Nebenwirkung mit Hypertonie und Tachykardie sowie Arrhythmieneigung
- Titration: 1 mg in 10 ml NaCl 0,9% verdünnt
- Gabe: inhalativ, s.c., i.v.

Opioide

- Funktion: Dämpfung des erhöhten Atemantriebs und Senkung der Spontanatemfrequenz
- Substanz: z. B. Sufentanil

Volatile Anästhetika

- Funktion: Bronchodilatatorische Wirkung
- Substanzen: Halothan, Sevofluran, Enfluran und Isofluran

Helium-Sauerstoff-Gemisch-Inhalation

- Funktion: Reduktion des turbulenten Flusses mit Abnahme der Atemwegsresistance, keine Veränderung der bronchialen Obstruktion
- Substanz: Heliox (Helium-Oxygen): bestehend aus 80% Helium und 20% O₂
- Kosten und Verfügbarkeit limitieren aktuell diese Therapieoption

Bronchoskopie mit Bronchoalveolärlavage (BAL)

- Indikation: bei unzureichender Oxygenierung trotz maschineller Beatmung
- Absaugen schleimbedingter Atelektasen, Entfernen von »Mucous Impaction«

Ggf. extrakorporaler Kreislauf

■ Tab. 11.11. Vorschlag zur Einstellung der Beatmungsparameter

Parameter	Empfehlung
Beatmungsfrequenz (niedrig)	6–12/min
Atemzugvolumen (V_T , »tidal volume«, niedrig)	5–7 ml/kgKG (Sollgewicht)
Minutenvolumen	Steuerung nach pH- Wert (Ziel: pH >7,2)
(Externer) PEEP	5–10 mbar (PEEP _{extrin-sic} <peep<sub>intrinsic)</peep<sub>
Inspiratorischer Fluss (»flow«)	≥100 l/min
Inspiration-Exspiration- Verhältnis (I:E)	≥1:2 bis 1:4
F_iO_2	Initial: 1, danach Reduktion nach p _a O ₂

Anmerkung: Der externe PEEP ($PPEP_e$) sollte kleiner dem internen PEEP ($PEEP_i$) sein. Der externe PEEP erfüllt somit eine intrapulmonale Gerüstfunktion. Ziel: $PEEP_e$ max. 80% von $PEEP_i$.

Einleitung einer Langzeittherapie

(Tab. 11.12 u. 11.13)

- Risikofaktoren meiden (Allergenkarenz!), insbesondere Rauchen (inklusive Nikotinentwöhnung)
- Symptomatische medikamentöse Therapie:
 - »Reliever« (Bedarfsmedikamente): Broncholytika, wie kurzwirksame β₂-Mimetika, Anticholinergika
 - »Controler« (Dauermedikamente, regelmäßige Gabe): Entzündungshemmer wie Kortikosteroide, langwirksame β_2 -Mimetika oder Anticholinergika oder retardiertes Theophyllin
- Kausaltherapie: spezifische Immuntherapie (SIT, Hyposensibilisierung)
- Gewichtsreduktion bei Adipositas
- Strukturierte Patientenschulung
- Prävention von Exazerbationen
- Behandlung in Disease-Management-Programmen (DMP)
- Physikalische Therapie (Atemgymnastik; Asthmasportgruppen) körperliches Training verringert Asthmasymptomatik und verbessert Belastbarkeit/Lebensqualität
- Stationäre Behandlung in spezialisierten Kurkliniken

■ Tab. 11.12. Stufentherapie des Asthma bronchiale nach GINA

Stufe	Maßnahmen
1	Initiale Therapie bei Diagnosestellung nach klinischem Schweregrad: - Bedarfstherapie: schnellwirksame β2-Agonisten (SABA) - Strukturierte Patientenschulung (Peak-Flow-Protokoll, usw.) - »Umweltkontrolle« (Expositionen vermeiden) - Indikation zur Kausaltherapie prüfen
2	Wie Stufe 1, plus Dauertherapie: niedrige Dosis eines inhalativen Kortikoids (z.B. Fluticason, Beclometason oder Budesonid), alternativ: Leukotrien-Antagonist oder Theophyllin
3	 Niedrige Dosis eines inhalativen Kortikoids plus langwirksamer β₂-Agonist (LABA) Weitere Option: mittlere Dosis eines inhalativen Kortikoids Alternativ: niedrige Dosis eines inhalativen Kortikoids plus Leukotrien-Antagonist oder retardiertes Theophyllin
4	 Mittlere Dosis eines inhalativen Kortikoids plus langwirksamer β₂-Agonist Alternativ: mittlere Dosis eines inhalativen Kortikoids plus Leukotrien-Antagonist oder retardiertes Theophyllin
5	Hohe Dosis inhalatives Kortikoid plus langwirksamer β_2 -Agonist und Anti-IgE bei Patienten mit Allergien (Omalizumab, s.c.)
6	Hohe Dosis inhalatives Kortikoid plus lang- wirksamer β ₂ -Agonist plus orales Kortikoid und Anti-IgE bei Patienten mit Allergien (Omalizumab, s.c.)

Besonderheiten

Therapie der Infektexazerbation

- Therapieintensivierung nach Stufentherapie (GINA 2006)
- Systemische Kortikoidtherapie: vorübergehend (initiale Dosierung nach klinischer Beurteilung und bestehender Dauertherapie), beginnend mit 20–100 mg Decortin H, über mind. 7 Tage
- Antibiotische Therapie: sofort bei purulentem Sputum (z. B. Ampicillin 0,5 g/8 h p.o.), Umstellung auf gezielte Therapie nach Vorliegen eines Antibiogramms

■ Tab. 11.13. Dauertherapie richtet sich nach dem »Kontrollstatus« (GINA 2006)
--

Kontrollstatus	Klinische Zeichen	Therapiemaßnahme
Kontrolliert	 Keine bzw. ≤2 Asthmasymptome/Woche Keine nächtlichen Symptome Bedarf an Reliever: keine bis ≤2-mal/Woche Normale Lungenfunktion (Lufu) Keine Exazerbation Keine Einschränkung der körperlichen Aktivität 	Fortführung der bisherigen Therapie, niedrigste Dosis finden
Partiell kontrolliert	 >2 Asthmasymptome/Woche Irgendein nächtliches Symptom Bedarf an Reliever: >2-mal/Woche Lufu: PEF oder FEV₁ <80% des Sollwertes ≥1 Exazerbationen/Jahr 	Therapieintensivierung nach Stufentherapi
Unkontrolliert	 Drei oder mehr Kriterien plus Exazerbation (1-mal/Woche) 	Therapieintensivierung nach Stufentherapi und Behandlung der Exazerbation

Abkürzung: GINA = Global Initiative for Asthma (http://www.ginasthma.com).

Asthmatherapie in der Schwangerschaft

- Prinzipiell: Weiterführung der bisherigen Therapie
- Aufgrund der Datenlage: inhalatives Beclomethason und inhalative kurzwirksame β₂-Agonisten bevorzugt einsetzen

11.6 Akute Exazerbation der COPD (AE-COPD)

Definition

Unter AE-COPD versteht man eine **akute Verschlechterung** der COPD-Symptomatik mit Zunahme von Dyspnoe und Husten sowie vermehrter Sputummenge und/oder Sputumpurulenz.

Allgemeines

- Vorkommen akuter Exazerbationen: vorwiegend in Wintermonaten
- Akute Exazerbationen gehen mit einer erhöhten Morbiditäts- und Mortalitätsrate einher.
- Während der akuten Exazerbation kommt es im Vergleich zur stabilen COPD zu einer deutlich gesteigerten Inflammation und damit zu einer verstärkten lokalen sowie systemischen Immunantwort.
- Der klinische Schweregrad einer akuten Exazerbation wird durch die Anzahl vorausgegangener Exazerbationen, schlechten BODE-Index, die Komorbidität (z. B. Herzinsuffizienz, Niereninsuffizienz) und durch höheres Lebensalter negativ beeinflusst.

Ätiologie/Trigger bzw. Auslöser

- Infektiöse Ursachen (häufig):
 - Bakterielle Genese (50%): Haemophilus influenzae, Streptococcus pneumoniae, Moraxella catarrhalis, Enterobacteriaceae und Pseudomonas aeruginosa
 - Atypische Erreger (5–10%): Mykoplasmen und Chlamydien
 - Virale Genese (30–50%): Rhinovirus, RSV (»respiratory syncytial virus«), Adeno-, Influenza-, Coronaviren
- Nicht-infektiöse Ursachen (selten)
 - Verschlechterung der Herzinsuffizienz
 - Medikamente (β-Blocker-Neueinnahme oder Non-Compliance)
 - Temperaturveränderungen
 - Inhalation von Irritanzien
- Unklare Genese: in 20–30% d.F.

Risikofaktoren

- Schlechte Lungenfunktion mit Ausgangswert FEV₁ <1 l oder <30% des Sollwerts
- Hoher Verbrauch von β₂-Sympatikomimetika
- Hoher Steroidbedarf
- Hohe Exazerbationsfrequenz (>3/Jahr)
- Unzureichende O₂-Therapie
- Fortgesetzter Nikotinabusus
- Schwere chronische Begleiterkrankung
- Pneumonien, Sinusitiden
- Alter >70 Jahre

Klinik

Die Klinik einer AE-COPD entspricht in etwa derjenigen eines akuten Asthmaanfalls:
Dyspnoe, Orthopnoe (unter Einsatz der Atemhilfsmuskulatur) bis zentrale Zyanose (Tab. 11.14–11.16).

■ **Tab. 11.14.** Klinische Klassifikation der AE-COPD nach Anthonisen/Winnipeg

Hauptkriterien:

- Zunahme der Dyspnoe und Husten
- Zunahme der Sputummengen
- Zunahme der Sputumpurulenz

Nebenkriterien:

- Infektion der oberen Atemwege in den letzten 5 Tagen
- Fieber ohne erkennbare andere Ursache
- Kurzatmigkeit
- Vermehrter Husten
- Zunahme von Atem- oder Herzfrequenz

Typen der Exazerbation:

- Typ 1 (schwer): alle drei Hauptkriterien erfüllt
- Typ 2 (mäßig): bei Vorliegen von zwei der drei Symptome
- Typ 3 (mild): bei Vorliegen von einem Hauptund mindestens einem Nebenkriterium

Unspezifische Symptome: deutlich reduzierter Allgemeinzustand, Fieber, Engegefühl in der Brust, Tagesmüdigkeit, Depressionen, Bewusstseinseintrübung bis Koma.

Diagnostik

 Anamnese/bekannte COPD: Häufigkeit und Schwere der Exazerbationen, Rauchgewohnheiten (auch Passivrauchen), Berufsanamnese, Infektanfälligkeit, progrediente Atemnot mit Zunahme von Husten und/oder Auswurf

Körperliche Untersuchung:

- Inspektion: veraltet Blue Bloater (pyknischer und zyanotischer Typus), Pink Puffer (asthenischer und nicht-zyanotischer Typus) ohne prognostischen Stellenwert, ggf. periphere Ödeme (bedingt durch Rechtsherzinsuffizienz bzw. Cor pulmonale)
- Palpation: Tachykardie, Pulsus paradoxus (Abfall des systolischen Blutdrucks
 >10 mmHg während der Inspiration; hämodynamische Instabilität)
- Perkussion: hypersonorer Klopfschall bei Lungenüberblähung mit tief stehenden und wenig verschieblichen Zwerchfellgrenzen
- Auskultation: abgeschwächtes vesikuläres Atemgeräusch, verlängertes Exspirium, trockene/feuchte Rasselgeräusche, Giemen, Brummen oder Pfeifen
- Monitoring: EKG (Tachykardien, Arrhythmien),
 Blutdruck, S_aO₂ (respiratorische Insuffizienz:
 S_aO₂ <90% bzw. p_aO₂ <60 mmHg bei Raumluft)
- Labordiagnostik: komplettes Notfalllabor einschließlich Differenzialblutbild, D-Dimere (Lungenembolie?), Herzenzyme und Troponin

	1	II	III	
Anamnese				
Exazerbationshäufigkeit Schweregrad der COPD Komorbidität	+ Mild/moderat +	++ Moderat/schwer +++	+++ Schwer +++	
Klinischer Aspekt				
Blutdruck/Puls Einsatz der Atemhilfsmuskulatur	Stabil Nein	Stabil ++	Stabil bis instabil	
Persistenz der Symptome nach initialer Therapie	Nein	++	+++	
Diagnostik				
O ₂ -Sättigung BGA/Lungenfunktion Röntgen-Thorax/EKG Labordiagnostik Sputumuntersuchung	Ja Nein Nein Nein Nein	Ja Ja Ja Ja Evtl.	Ja Ja Ja Ja Ja	

■ Tab. 11.16. Kriterien zur stationären und intensivmedizinischen Aufnahme einer AE-COPD

Stationäre Behandlung

- Schwere Atemnot
- Schlechter Allgemeinzustand
- Rasche Progredienz der Symptomatik
- Bewusstseinstrübung
- Zunahme von Ödemen und Zyanose
- Kein Ansprechen auf die Therapie
- Diagnostische Unklarheiten
- Neu aufgetretene Arrhythmien
- Bedeutsame Komorbidität
- Höheres Lebensalter (>60-65 Jahre)
- Unzureichende häusliche Betreuung

Intensivmedizinische Behandlung

- Schwere Atemnot mit fehlendem Ansprechen auf die Notfalltherapie
- Komatöser Zustand
- Persistierende Hypoxämie (p_aO₂ <50–60 mmHg) trotz O₂-Gabe
- Schwere oder progrediente Hyperkapnie (p_aCO₂>60-70 mmHg) trotz
 O₃-Gabe
- Respiratorische Azidose (pH <7,35) trotz O₂-Gabe

(Myokardinfarkt?), BNP (dekompensierte Herzinsuffizienz, Asthma cardiale?)

- 12-Kanal-EKG: Zeichen der Rechtsherzbelastung (Lungenembolie?), Myokardinfarkt mit akuter Linksherzinsuffizienz (Asthma cardiale)
- Röntgen-Thorax und ggf. Echokardiographie: Ausschluss/Nachweis anderer Differenzialdiagnosen
- **Mikrobiologie**: ggf. Sputumdiagnostik oder BAL

Differenzial diagnostik

- Akutes Asthma bronchiale
- Ca. 10% der Patienten leiden unter einer Erkrankung, die sowohl die Aspekte von Asthma bronchiale als auch die einer COPD aufweisen (■ Tab. 11.17).
- Kardiovaskulär: Asthma cardiale bei Linksherzinsuffizienz, hypertensive Krise/Cor hypertensivum
- Pulmonal-vaskulär: Lungenembolie, Pneumothorax, Pneumonie, postinfektiöse bronchiale Hyperreaktivität (mit Husten), pulmonale Hypertonie, Pleuraergüsse, Thoraxtrauma
- Des Weiteren: Hyperthyreose, metabolische Azidose, Adipositas

Therapie

Allgemeine Maßnahmen

- Aufrechterhaltung und Stabilisierung der Vitalfunktionen
- Lagerung: Oberkörperhochlagerung, beengende Kleidung öffnen
- Adäquate Oxygenierung:
 - 2-61 O₂/min über Nasensonde oder Brille, Ziel: S_aO₂ >90%, p_aO₂ >60 mmHg

- Sonst: nicht-invasive Beatmung (NIV)
- Nur als ultima ratio: Intubation und Beatmung (Komplikationen: ventilatorassoziierte Pneumonie, Barotrauma, weaning problems)

Medikamentöse Therapie

(■ Tab. 11.18; ■ Abb. 11.1)

Antibiotikatherapie bei mäßiger bis schwerer Exazerbation (Typ 1 bis 2 nach Anthonisen)

- Indikationen:
 - Typ-1-Exazerbation nach Anthonisen bei COPD-Stadium II-IV (GOLD)
 - Exazerbation mit Indikation zur Intensivund/oder Beatmungstherapie
 - Exazerbationen mit Rezidivneigung
 (≥3 Episoden/Jahr)
 - Exazerbationen mit relevanter kardialer Komorbidität
- Therapiedauer (bei Ansprechen): 7–10 Tage
- Inadäquates Ansprechen nach 48–72 h: Antibiotika absetzen → Erregerdiagnostik forcieren (□ Tab. 11.19)

Beatmungstherapie der COPD-Exazerbation

▶ Eine invasive Beatmung bei COPD-Patienten ist mit einer hohen Krankenhausletalität (15–30%) assoziiert, weil sich zum einen das Weaning schwierig gestaltet und zum anderen Ventilator-assoziierte Infekte häufig auftreten. Der frühzeitige Einsatz von NIV-Beatmung in dieser Patientengruppe reduziert die Intubationsrate, Krankenhausletalität, Beatmungsdauer und Dauer des Krankenhausaufenthalts deutlich.

■ Tab. 11.17. Gegenüberstellung akutes Asthma bronchiale und AE-COPD

	Asthma bronchiale	Akute Exazerbation der COPD
Ursachen	Allergisch, nicht-allergisch	Langjähriger Nikotinabusus oder Inhalation von Umweltnoxen
Auslöser	Allergene, Kaltluft, Emotionen, Viren, atypische Erreger (Chlamydia/Mycoplasma pneumoniae)	Infektexazerbation: in 50% d.F. nicht durch Bakterien, sondern viral bedingt (Picorna, Influenza A, RSV)
Entzündungszellen	Eosinophilie, CD4+-(Helfer)-T-Lymphozyten	Neutrophilie, CD8+-(zytotoxische)- T- Lymphozyten, Makrophagen, zusätzlich Eosinophilie während Exazerbation
Anamnese	Allergien, Atopie (Asthma bronchiale, Neurodermitis, allergische Rhinitis)	Chronische Bronchitis, Emphysematiker, Raucher (90% d.F.)
Patientenkollektiv	Meist < 40. Lebensjahr	Meist >40. Lebensjahr
Allergie	Häufig	Selten
Bronchiale Hyper- reagibilität	Vorhanden	Gelegentlich
Atemnot	Bereits in Ruhe	Unter Belastung
Husten	Trocken, oft nachts	Produktiv, morgens
Lungenfunktion	Obstruktion: variabel und reversibel Überblähung: variabel und reversibel	Obstruktion: fixiert bzw. persistierend Überblähung: fixiert
Lokalisation der Obstruktion	Große und kleine Atemwege	Kleine Atemwege
Verlauf	Variabel, episodisch	Progredient
Therapie	O ₂ , Bronchodilatoren, Glukokortikoide	Inhalative Bronchodilatoren, systemische Glukokortikoide, ggf. Theophyllinversuch
Beatmung	Invasiv, druckkontrolliert	Non-invasiv, Masken-CPAP

■ Tab. 11.18. Medikamente zur Behandlung der AE-COPD

Substanzgruppe	Medikament	Dosierung
β_2 -Sympathomimetika	Fenoterol (Berotec)	Inhalativ: 2 Hübe (1 Hub = 100 μ g), ggf. Repetition alle 10–15 min
	Salbutamol (Broncho-Spray novo)	Inhalativ: 2 Hübe (1 Hub = 100 μ g), ggf. Repetition alle 10–15 min
	Reproterol (Bronchospasmin)	0,09 mg langsam i.v.
Parasympatholytika	Ipratropiumbromid (Atrovent)	Inhalativ: 2 Hübe (1 Hub = 20 μ g), ggf. Repetition alle 10–15 min
Kortikosteroide	Prednisolon (Solu-Decortin)	Systemische Gabe von Prednisolon (Solu-Decortin) oral oder intravenös, anschließend 20–40 mg Prednisolon-Äquivalent p.o. über 14 Tage (danach abrupt absetzen)
Methylxanthine	Theophyllin (Euphyllin)	Initial 200 mg »langsam« i.v. oder 0,5 mg/kg/h als kontinuierliche Infusion bzw. i.vPerfusor, ggf. Fortführung als orale Medikation nach Spiegel und Herzfrequenz

■ Tab. 11.19. Antibiotikatherapie bei AE-COPD

AE-COPD mit leicht-/mittelgradiger Einschränkung der Lungenfunktion (FEV₁ 50–80% des Solls) ohne Risikofaktoren:

- Aminopenicillin ± β-Laktamaseinhibitor (z. B. Amoxicillin ± Clavulansäure)
- Makrolid (bei Penicillinallergie): z. B. Azi-/Roxi-/Clarithromycin

AE-COPD mit hochgradiger Einschränkung der Lungenfunktion (FEV₁ < 50% des Solls) mit Risikofaktoren:

- Aminopenicllin + β-Laktamaseinhibitor (z. B. Amoxicillin + Clavulansäure oder Ampicillin + Sulbactam)
- Levo-/Moxifloxacin

AE-COPD mit Pseudomonasrisiko:

- Cipro-/Levofloxacin
- Piperacillin/Tazobactam
- Carbapeneme (Imipenem/Cilastatin, Meropenem)
- Cephalosporine (Cefepim)

Risikofaktoren: kardiale Komorbidität, häufige Exazerbationen (≥3/Jahr), schwere AE-COPD.

Verdacht auf AE-COPD

- Bekannte COPD
- · Hinweise auf eine Exazerbation
- Dyspnoe, Husten und Auswurf

Klinische Untersuchung und Diagnostik

- Monitoring: S_aO₂, Blutdruck, Puls
- Notfalllabor, inklusive D-Dimere, Blutbild, Herzenzyme, Troponin, BNP, CRP, TSH
- EKG
- Blutgasanalyse (obligat)
- Röntgen-Thorax und ggf. Echokardiographie

Aufnahme auf Intensivstation

- Komatöser Zustand
- · Persistierende Hypoxämie
- · Progrediente Hyperkapnie
- Respiratorische Azidose
- Dyspnoe/Orthopnoe trotz O₂

Sauerstoffgabe

- Atemmaske oder Nasensonde, wenn p_aO₂ < 50–60 mmHg, pH-Wert >7,35
- Zielparameter: $p_aO_2>60 \text{ mmHg}$, $S_aO_2>90\%$

Bronchodilatatoren

- Kurzwirksame β_2 -Sympathomimetika bei unzureichender Inhalationstiefe sind Vernebler indiziert, ggf. Reproterol-Perfusor (9 $\mu g/ml)$
- · Additiv: Anticholinergika, z. B. Ipratropiumbromid
- Additiv: Theophyllin (in Abhängigkeit von Vortherapie). Der Benefit einer additiven Theophyllin ist fraglich; ggf. Theophyllin-Perfusor (8 mg/ml)

Glukokortikoide

- Glukokortikoide per os oder intravenös (nicht länger als 14 Tage)
- Z. B. Prednisolon 30–40 mg/Tag per os

Beatmungspflichtigkeit -> NIV

- BGA-Verschlechterung trotz O_2 -Gabe: $p_aO_2 < 50-60$ mmHg, $p_aCO_2 > 60-70$ mmHg und pH-Wert < 7.35
- Falls nach 2–4 h unter NIV keine Besserung ightarrow dann invasive Beatmung

Additive Maßnahmen

- Antibiotika bei Hinweisen auf bakterielle Infektion (Sputumfarbe, Procalcitonin etc.) und bei schwerer Exazerbation mit Beatmungspflichtigkeit
- · Diuretika bei peripheren Ödemen: Furosemid i.v.
- · Adäquate Flüssigkeitszufuhr bei dehydrierten Patienten
- Thromboseprophylaxe
- Physio-/Atemtherapie
- Flexible Bronchoskopie bei Sekretverhalt (Bronchialtoilette, BAL)

■ Tab. 11.20. Vorschlag zur Einstellung der Beatmungsparameter unter NIV-Beatmung

Parameter	Empfehlung
Maximale Atemfrequenz	≥40/min
Atemzugvolumen (V _T , tidal volume, niedrig)	5–7 ml/kg (Sollgewicht)
Druckanstiegsge- schwindigkeit	<0,15 s (schnelle Rampe)
Inspiratorischer Fluss (flow)	≥60 l/min
(Externer) PEEP	5–8 mbar (PEEP _{extrinsic} <peep<sub>intrinsic)</peep<sub>
F_iO_2	Initial: 1, danach Redukti- on nach p _a O ₂

Anmerkung: ggf. NIV-Beatmung unter begleitender leichter Analgosedierung.

- Indikation zur Beatmung bei AE-COPD:
 - Respiratorische Insuffizienz mit respiratorischer Azidose mit Zeichen der Erschöpfung
 - »60er-Regel« (p_aO₂ <60 mmHg, p_aCO₂
 >60 mmHg) im Rahmen hyperkapnischer oder hypoxämischer respiratorischer Insuffizienz
- Beatmungstyp: nicht-invasive Beatmung
 (■ Tab. 11.20), d. h. ohne Endotrachealtubus
 (NIV: »non-invasive ventilation«); ► Kap. 3
 - Maskenbeatmung: Nase- oder Mund-Nase-Masken-CPAP
 - Beatmungshelm/-haube (Vorteil: wird von Patienten deutlich besser toleriert, Nachteil: hoher Preis)

11.7 ARDS (»Acute respiratory distress syndrome«) und ALI (»acute lung injury«)

Definitionen (■ Tab. 11.21)

Ätiologie (□ Tab. 11.22)

Klinische Folgen

- Veränderung der Atemmechanik: Schrumpfung und Versteifung der Lunge → Abnahme der Lungencompliance
- Störung des Gasaustausches: Atelektasen (dorsobasal), entzündliche Infiltrate → intrapulmonaler

■ Tab. 11.21. Schweregrade des Lungenparenchymversagens

»Acute respiratory distress syndrome«, ARDS

- Akutes Auftreten bzw. akute Hypoxämie, die sich innerhalb von 6–48 h entwickelt
- Horovitz-Quotient (p_aO_2/F_iO_2) ≤200 mmHg (p_aO_2) in mmHg; F_iO_2 : 0,21–1,0)
- Bilaterale Lungeninfiltrate
- Fehlende Zeichen der Linksherzinsuffizienz bzw. pulmonalkapillärer Verschlussdruck (Wedge-Druck)
 <18 mmHg

»Acute lung injury«, ALI

- Kriterien entsprechend dem ARDS, jedoch » $p_aO_2/$ F_1O_2 200–300 mmHg« (p_aO_2 in mmHg; F_1O_2 : 0,21–1,0)

Rechts-Links-Shunt, vermindertes Herzzeitvolumen → Vergrößerung des funktionellen Totraumes

 Hämodynamik: präkapilläre pulmonale Hypertonie, Abnahme des Herzzeitvolumens

Pathomorphologische Stadien des ARDS

- Akute-exsudative Phase (1. Woche)
- Subakute-proliferative Phase (2. Woche)
- Chronisch-fibrosierende Phase (Wochen bis Monate)
- Rückbildungsphase (Monate)

Klinik

- Progrediente Dyspnoe und Tachypnoe, Zyanose, Unruhe/Verwirrtheit (Erschöpfung)
- Kein ausgeprägter pathologischer Auskultationsbefund trotz ausgeprägter Veränderungen im Röntgenbild
- Fehlender adäquater Anstieg der S_aO₂ auch unter hoher O₂-Zufuhr (Rechts-Links-Shunt) → respiratorisches Versagen

Diagnostik

- Beurteilung des Schweregrades eines ARDS nach dem Lung Injury Score nach Murray (Tab. 11.23)
- BGA: Hypoxämie; kalkulierter Rechts-Links-Shunt 20–50%
- Bildgebung
 - Röntgen-Thorax: bilaterale Infiltrate (Verschattungen) → Latenz bis zu 24 h
 - CT-Thorax: typischerweise Lungenvolumenverkleinerung, bilaterales Lungenödem (sym-

■ Tab. 11.22. Ursachen des akuten Lungenversagens			
$\label{eq:Direction} \mbox{Directe Lungenschädigungen} \rightarrow \mbox{pulmonales} \\ \mbox{ARDS}$	$\textbf{Indirekte Lungensch\"{a}digung} \rightarrow \textbf{extrapulmonales ARDS}$		
 Pneumonie Aspiration von z. B. Mageninhalt Inhalationstrauma Beinahe-Ertrinken Höhenlungenödem Mechanisches Thoraxtrauma (Kontusion) Beatmung mit inadäquat hohem Tidalvolumen (ventilatorassoziierte Lungenschädigung, VALI) Re-Expansions-Trauma Strahlenschäden Lungenembolie 	 Sepsis (Multiorganversagen) Extrathorakales Trauma (Polytrauma) Disseminierte intravasale Gerinnung (DIC) Massentransfusion (TRALI, »transfusion related acute lung injury«) Schock Großflächige Verbrennungen Pankreatitis Peritonitis Urämie Diabetische Ketoazidose Schädel-Hirn-Trauma Subarachnoidalblutung Embolie (Luft, Fett) Gestosen/HELLP-Syndrom Malaria Leber-/Nierenversagen Intoxikation 		

Risikofaktoren des Lungenversagens: Alkoholismus, Alter und Komorbidität.

■ Tab. 11.23. Lung Injury Score nach Murray					
Punkte	0	1	2	3	4
Röntgen-Thorax	0 Infiltrate	1 Quadrant	2 Quadrante	3 Quadrante	4 Quadrante
p_aO_2/F_iO_2	≥300	225–299	175–224	100-174	<100
PEEP [mmHg]	≤5	6–8	9–11	12–14	≥15
Compliance [ml/mbar]	>80	60-79	40-59	20-39	≤19

Beurteilung: Σ Gesamtsumme dividiert 4 \rightarrow Murray-Score: Leichtes ARDS: Murray-Score <2,5; Schweres ARDS: Murray-Score >2,5.

metrisch/asymmetrisch, ggf. mit positivem Bronchopneumogramm, »weiße Lunge«), Konsolidierungen in den abhängigen Lungenabschnitten (dorso-basale Lungenkompartimente). Pleuraergüsse. Unterscheidung zwischen Lobär-Typ (Zweikompartment-Lunge) und Diffuser-Typ (Monokompartment-Lunge)

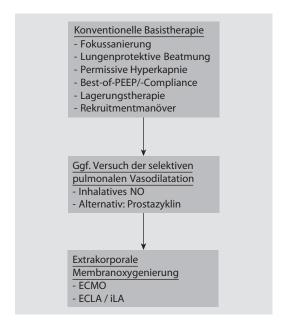
 PiCCO: insbesondere zur Bestimmung des extravaskulären Lungenwassers

Differenzialdiagnose

- Kardiales Lungenödem (Linksherzversagen, hochgradiges Mitralvitium)
- Diffuse alveoläre Hämorrhagie
- Akute interstitielle Pneumonie (Hamman-Rich)
- Idiopathische akute eosinophile Pneumonie

- Ventilatorische Insuffizienz
- Status asthmaticus
- Lungenembolie
- Fulminanter Verlauf von Malignomen (Leukämie, Lymphom, solide Tumoren)

Gefahren der Beatmungstherapie bei ARDS (VILI, »ventilator induced lung injury«)


- Biotrauma (inflammatorisches Scherkräftetrauma)
- Barotauma (Pneumothoraxgefahr bedingt durch zu hohe transpulmonale Drücke)
- Volutrauma (zu hohe endexspiratorische Lungendehnung mit Gefahr des Lungenödems)
- Atelektasentrauma (zu rasche Re-/Derekruitmentmanöver mit Surfactantschädigung)

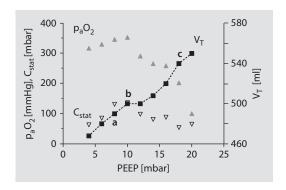
Therapie (□ Abb. 11.2)

Lungenprotektive, druckkontrollierte Beatmung (»baby lung concept«: low volume and high PEEP ventilation)

Säulen der lungenprotektiven Beatmung

- Druckkontrollierte Beatmung (z. B. BIPAP)
- Niedrige Tidalvolumina (»low tidal volume concept«)
- Permissive Hyperkapnie
- Begrenzte inspiratorische Drücke
- Erhöhte Beatmungsfrequenzen
- Umgekehrtes Atemzeitverhältnis (»inversedration ventilation«)
- Idealer hoher PEEP
- Kleines Tidalvolumen (V_T, »low tidal volume concept«)
 - Zielwert: V_T ≤6 ml/kgKG (Idealgewicht)
- Permissive Hyperkapnie:
 - Zielwerte: p_aCO₂ >45 mmHg, pH 7,25-7,40
 - Pufferung mit Tris ab einem pH <7,25
- Plateaudruck:
 - Zielwert: ≤30 mbar
 - Niedriger Inspirationsdruck (unterhalb des oberen Inflektionspunktes)
- Atemfrequenz:
 - Ausreichend hoch (bis zu 30/min)
 - Ziel: ausreichend hohes AMV (da V_T klein, muss infolgedessen die AF [20–35/min] höher gewählt werden: AMV = $V_T \times$ AF)
- Aufrechterhaltung/Optimierung der Oxygenierung:
 - F_iO₂: initial 100%, später Reduktion (sonst Ausbildung von Resorptionsatelektasen)
 - = Zielwerte der Oxygenierung: S_aO_2 88–95%, p_aO_2 55–80 mmHg, p_aO_2/F_iO_2 ≥450 mmHg
- Inversed-ratio ventilation:
 - Inspiration zu Exspiration 2:1 bis 3:1 (bessere Belüftung und Aufbau eines regional unterschiedlichen hohen Intrinsiv (Auto)-PEEP in den langsamem Lungenkompartimenten mit Alveolar-Rekruitment
 - Zunahme der FRC und Shunt-Abnahme
- Idealer PEEP:
 - Anhaltswerte: 10–20 mbar, max. 25 mbar, d. h. oberhalb des unteren Inflektionspunkts (LIP, »lower inflection point«) und unterhalb des oberen Umschlagspunkts (UIP, »upper inflection point«)

■ Abb. 11.2. Stufentherapie bei ARDS (»acute respiratory distress syndrome«)


- Ermittlung mittels Best-of-PEEP/Compliance-Verfahren → Verbesserung des repetitive alveolar collaps und Verhinderung von Derekruitment (alveoläres Rekruitment: open up the lung and keep the lung open)
- Rekruitmentmanöver:
 - Ziel: rasche Öffnung atelektatischer Lungenareale durch temporäre Erhöhung des Beatmungsdrucks (bis 60 mbar) und Offenhalten durch einen adäquaten PEEP
 - Durchführung: Rekruitmentmanöver nach Lachmann (schrittweise Erhöhung von P_{insp} auf 50–60 mbar für etwa 5–10 Atemhübe bei paralleler Erhöhung des Gesamt-PEEP), Blähmanöver (CPAP-Rekruitmentmanöver) oder intermittierende Seufzer
- Ggf. Hochfrequenzventilation (»high-frequency ventilation«, »jet ventilation«):
 - Bzgl. des Gasaustausches gute Ergebnisse
 - Jedoch keine Daten bezogen auf die Mortalität
- Frühzeitige Spontanatmung durch augmentierte Beatmungsformen (BiPAP/ASB):
 - Spontanatmung → Alveolarrekruitment dorso-basaler Lungenkompartimente
 - Maschinelle Beatmung → Alveolarrekruitment anteriorer Lungenkompartimente

Best-PEEP-Verfahren

- Best-PEEP: Bezeichnet jenen PEEP-Wert,
 bei welchem die O₂-Transportkapazität
 (DO₂= HZV × C_aO₂) und die statische Compliance am höchsten sind.
- Voraussetzung:
 - Hämodynamische Stabilität
 - Adäquate Analgosedierung, ggf. Relaxation
- Klinisch praktische Methode:
 - Aufsteigende PEEP-Reihe, sog. incremental PEEP-trial (■ Abb. 11.3)
 - Absteigende PEEP-Reihe, sog. decremental PEEP-trial
- Durchführung:
 - Patienten absaugen und Durchführung eines inspiratorischen Blähmanövers
 - Bestimmung des individuellen Intrinsic-PEEP
 - Ausgangs-(Start)-PEEP-Wert entspricht dem Intrinsic-PEEP
 - Alle 10(-15) min: Erhöhung des PEEP um 2 mbar und BGA-Bestimmung
 - Dokumentation (Protokoll): Blutgase, Atemmechanik (Compliance) und Hämodynamik (MAP, Herzfrequenz)
 - Abbruch: Zeichen des hämodynamischen Einbruchs
 - Beginn der absteigenden PEEP-Reihe
- Nachsorge: Röntgen-Thoraxkontrolle (Pneumothorax?)
- Alternative Methoden:
 - Bestimmung der individuellen statischen Druck-Volumen-Beziehung
 - Verwendung des NIH-Protokolls
 - LPP (»lung protective package«, Evita XL von Draeger)

Supportive Maßnahmen

- Fokussanierung/Antibiotikatherapie
- Verhinderung von Beinvenenthrombosen, gastrointestinaler Blutung und Dekubitus
- Enterale Ernährung zur Immunostimulation
- 30°-Oberkörperhochlagerung
- Optimales Sedierungsschema
- Blutglukosekontrolle
- Kinetische Therapie/Lagerungstherapie
 - Prinzip: alveoläres Rekruitment von Gasaustauschfläche durch Eröffnung dorso-basaler
 Atelektasen (besonders in der Frühphase und bei extrapulmonal bedingtem ARDS)
 - Möglichkeiten: Wechsellagerung Bauch-/
 Rückenlage (Dauer: alle 6–12 h), Schwenkbett (RotoRest-Bett, 60°/60°)

■ Abb. 11.3. Best-PEEP-Prinzip (a. LIP, »lower inflection point«; b. best-PEEP; c. UIP, »upper inflection point«) am Beispiel eines Patienten mit pulmonalem ARDS

- Responder: Anstieg des Horowitz-Oxygenierungsindex (p_aO₂/F_iO₂) ≥ 20%
- Kortikosteroide
 - Allgemein ist die additive Gabe von Kortikosteroiden beim ARDS umstritten
 - Niedrigdosierte Steroide in der Spätphase des ARDS zeigen sich vorteilhaft (low dose methylprednisolon in early ARDS)
 - Methyprednisolon: 1–2 mg/kgKG/Tag für 14 Tage, danach stufenweise Reduktion 0,5 mg/kgKG/Tag
- Flüssigkeitsmanagement (keep the lung dry, but avoid hypovolemia)
 - Bei Sepsis: eher positive Bilanz anstreben
 - Bei anderen ARDS-Ursachen Versuch der negativen Bilanzierung →
 Flüssigkeitsrestriktion, Dehydratation
 (hämodynamisches Monitoring, ZVD
 <4 mmHg, PiCCO mit Bestimmung des
 extravaskulären Lungenwasserindex,
 ELWI <10 ml/kgKG)
- Weitere Maßnahmen (keine Empfehlung):
 - NO-Inhalation (60% Responder und 40% Non-Responder): Verbesserung der Oxygenierung und damit des Ventilations-Perfusions-Verhältnisses, jedoch keine Letalitätssenkung → daher aktuell keine Empfehlung
 - Prostazyklin (5–15 ng/kgKG/min über Vernebler)
 - Surfactantfactor (eher bei Kindern wirksam)

Extrakorporale Lungenersatztherapie (Tab. 11.24)

■ Tab. 11.24. Extrakorporale Lungenersatztherapie

Klassische ECMO (»extracorporal membrane oxygen«):

- Ziel: Verbesserung der Oxygenierung bei therapierefraktärer Hypoxämie
- Einbau: durch Kardiochirurgie (meist im OP)
- Prinzip:
 - Pumpengestützte, venovenöse (mäßige Oxygenierung aber sehr effizienter CO₂-Austausch), venoarterielle (effizienteste Oxygenierung und CO₂-Elimination) oder arteriovenöse Membranoxygenierung (CO₂-Austausch)
 - ECMO als modifizierte Herz-Lungen-Maschine zur temporären Herz-Kreislauf-Unterstützung, extrakorporalen Oxygenierung und CO₂-Elimination
 - Komponenten der ECMO: Oxygenator (1,8 m² Gasaustauschfläche), Zentrifugalpumpe/Rotaflow-Konsole (laminärer Blutfluss, 0,5–7 l/min), Normothermieeinheit
- Indikationen:
 - ARDS/ALI
 - Akute Lungenembolie
 - Hämorrhagischer Lungeninfarkt
 - Fast-entry-Kriterien: p_aO₂<50 mmHg bei F_iO₂ von 1 für mehr als 2 h und PEEP ≥5 cmH₂O
 - Slow-entry-Kriterien: p_aO₂<50 mmHg bei F_iO₂ von 0,6 für mehr als 12 h und PEEP ≥5 cmH₂O; intrapulmonaler Rechts-Links-Shunt Q₄/Q₇ >30% für mehr als 12 h trotz maximaler Therapie über 48 h
- Absolute Kontraindikationen:
 - Fortgeschrittenes Multiorganversagen
 - Irreversible zerebrale Schädigung
 - Terminalstadium von Malignomen und konsumierenden Erkrankungen
 - Terminale chronische Lungenerkrankung
 - Verbrauchskoagulopathie
 - Schweres Schädel-Hirn-Trauma (<72 h)
 - Schwere aktive Blutung
- Relative Kontraindikationen:
- Alter >60-65 Jahre
- Aktive Blutung
- Schädel-Hirn-Trauma (<72 h)
- Linksherzversagen
- Manifeste Immunsuppression
- Heparininduzierte Thrombozytopenie
- Ggf. zusätzlich IABP-Unterstützung
 - Herstellung eines pulsatilen Flusses → Optimierung der Koronarperfusion
 - Verbesserung des Weanings

Pumpenlose ECLA (»pumpless extracorporal lung assist«) oder iLA (»interventional lung assist«, Novalung)

- Ziel: CO₂-Elimination bei isolierter, therapierefraktärer Hyperkapnie, d. h. bei Versagen der alveolären Ventilation (nicht als Rescue-Maßnahme, sondern bereits früh nach Intubation)
- Einbau: durch Intensivmediziner (auf Station)
- Prinzip:
 - Artifizieller arteriovenöser Shunt mit zwischengeschaltetem Membranoxygenator
 - Reduktion des Tidalvolumens (konsekutiver Anstieg des PEEP) und der Atemfrequenz unter iLA
 - Abfall von p_aCO_2 und Anstieg des p_aO_2 und des pH-Wertes bereits 2–4 h nach iLA
- Indikationen:
 - ARDS/ALI
 - AE-COPD
 - Unterstützung bei Weaning
- Bridge to lung transplantation
- Kontraindikationen:
 - Eingeschränkte Pumpfunktion (obligate Voraussetzung ist eine normale Pumpfunktionsstörung und MAP >60 mmHg)
 - $\ The rapiere fraktäre \ Hypoxämie, \ d. \ h. \ ein \ primäres \ Oxygenierungsversagen \ muss \ ausgeschlossen \ sein \ (F_iO_2/p_aO_2>70)$
 - Schwerer septischer und kardiogener Schock
 - pAVK (relativ)
 - Femoraler, arterieller Gefäßdurchmesser ≤5,1 mm
 - Körpergewicht < 20 kg
 - Schwere disseminierte intravasale Gerinnungsstörung
 - Heparininduzierte Thrombozytopenie

Prognose

- ARDS-Letalität: 30–50%
- Überlebende können Gasaustauschstörungen und generalisierte Beschwerden (»wasting«) behalten.

11.8 Pneumothorax

Definition

Bei einem Pneumothorax kommt es zu einer Luftansammlung im Pleuraraum, d. h. zwischen Pleura visceralis und parietalis.

Epidemiologie, Ätiologie und Pathogenese (Tab. 11.25)

■ Tab. 11.25. Pneumothorax – Einteilung

Idiopathischer oder primärer Spontanpneumo-

- Pneumothorax ohne äußere Ursache
- Bei Patienten ohne bronchopulmonale Erkrankung
- Inzidenz ca. 5-10/100.000
- Entstehung durch Ruptur subpleuraler Blasen (Blebs [ohne Mesothelüberzug] oder Bullae [mit Mesothelüberzug])
- Z.T. familiäre Häufung, meist große asthenische Männer (<35 Jahre), Raucher

Sekundärer Spontanpneumothorax (auch »symptomatischer Spontanpneumothorax« genannt):

- Pneumothorax ohne äußere Ursache
- Bei Patienten mit bronchopulmonaler Erkrankung
- Inzidenz ca. 5-10/100.000
- Letztlich fast alle Lungenerkrankungen (z. B. Lungenfibrose, Pneumonie) erhöhen die Wahrscheinlichkeit, insbesondere COPD mit Ruptur von Emphysemblasen

Traumatischer Pneumothorax:

- Pneumothorax durch äußere oder innere Verletzung
- latrogen: z. B. nach ZVK-Anlage/V. subclavia oder nach Pleurapunktion, transbronchiale Biopsie, Atemwegsüberdruck, Akupunktur
- Thoraxtrauma: z. B. Unfall oder im Rahmen thoraxchirurgischer Eingriffe, meist in Kombination mit Hämatothorax, sog. Hämopneumothorax

Klinik

- Thoraxschmerz auf der betroffenen Seite → DD: akutes Koronarsyndrom
- **Dyspnoe, Tachypnoe** \rightarrow ggf. auch asymptomatisch

- Hals-(Jugular)-Venenstau (ZVD-Anstieg) bzw. obere Einflussstauung
- Zyanose
- Subkutanes Hautemphysem
- Spannungspneumothorax: zusätzlich Tachykardie, Schock, Zyanose

Diagnostik

Notfalldiagnostik

Die Diagnose eines Pneumothorax ist primär klinisch zu stellen.

Anamnese und k\u00f6rperliche Untersuchung

- Inspektion: ggf. Fehlen von Atemexkursionen auf der betroffenen Seite
- Perkussion: tympaner, hypersonorer Klopfschall auf der betroffenen Seite
- Auskultation: abgeschwächtes/fehlendes Atemgeräusch auf der betroffenen Seite

Beatmeter Patient

- Volumenkontrollierte Beatmung: Anstieg des Beatmungsdrucks bei korrekter Tubuslage
- Druckkontrollierte Beatmung: Abnahme des Tidalvolumens und damit des Atemminutenvolumens bei korrekter Tubuslage
- Monitoring (EKG, Puls, Blutdruck, S_aO₂)
 - Pulsoxymetrie: plötzlicher O₂-Sättigungsabfall
 - Abfall des Herzminutenvolumens: Hypotonie und Tachykardie
- **Röntgen-Thorax** (wenn möglich in Exspiration)
 - Darstellung der (konvexen) abgehobenen Pleura visceralis
 - Fehlende Lungenstruktur außerhalb der Pleura-visceralis-Projektion

Ausschussdiagnostik

- Labordiagnostik: Notfalllabor inklusive BGA, Herzenzyme und D-Dimere
- 12-Kanal-EKG: Ausschluss/Nachweis eines akuten Koronarsyndroms
- Sonographie: Ausschluss/Nachweis eines Pleuraergusses
- Echokardiographie: Ausschluss/Nachweis eines Perikardergusses
- Ggf. (Low-dose-)CT-Thorax: wesentlich h\u00f6here Trefferquote kleinerer lokalisierter Pneumothoraces
- Ein Pneumothorax kann sich erst Stunden bzw. Tage nach einer Punktion (z. B. Pleurapunktion) entwickeln.

Differenzialdiagnose

- Emphysem
- Atelektasen (normale Beatmungsdrücke → jedoch schlechte Oxygenierung)
- Perikarderguss (stets Echokardiographie durchführen)
- Pleuritis
- Pleuraerguss (groß, auslaufend)
- Lungenembolie
- Akutes Koronarsyndrom (insbesondere bei linksseitigem Pneumothorax)
- Infusionsthorax (z. B. nach ZVK-Anlage über V. subclavia und Befahren des ZVK ohne vorherige radiologische Überprüfung der korrekten ZVK-Lage)
- Groß-zystische Prozesse oder extreme Rarefizierung des Lungengerüsts bei Emphysem können in der Röntgen-Thorax-Bildgebung einen Pneumothorax vortäuschen (ggf. (Low-dose-) CT-Thorax)

Therapie (nach klinischem Schweregrad)

- Abhebung der Pleura <3 cm und wenig/keine Beschwerden:
 - Abwartend, stationäre Beobachtung
 - Radiologische Kontrolluntersuchungen bei klinischer Verschlechterung, spätestens nach 12 h
 - Spontanresorption der Luft im Pleuraspalt geschieht mit einer Rate von etwa 50 ml/Tag; eine O₂-Gabe steigert die Resorptionsrate auf das 3- bis 4fache.
- Abhebung der Pleura >3 cm und wenig/keine Beschwerden, Abhebung der Pleura <3 cm und Beschwerden:
 - Luftaspiration durch Einmalpunktion mit Kunststoffverweilkanüle
- Bei großem Pneumothorax, stärkeren Beschwerden, Versagen der konservativen Pheumothorax-therapie, Versagen der Aspirationsbehandlung, größerer traumatischer Pneumothorax, beatmeter Patient:
 - Immer Anlage einer Pleuradrainage (2.–3. ICR, Medioklavikularlinie) mit Wasserschloss
 - Belassen der Drainage bis zur Reexpansion der Lunge unter Sog (Sog für 3–5 Tage)
- Notfalltherapie des Spannungspneumothorax:
 Kunststoffverweilkanüle mit Heimlich-Ventil
- Bei rezidivierendem Spontanpneumothorax, insbesondere bei schweren pulmonalen Grunderkrankungen:

- Pleurodese (alternativ: video-assistierte Thorakoskopie, VAT): Talkum-Poudrage
- Alternative: thoraxchirurgische Verfahren (z. B. partielle Pleurektomie, Dekortikation, Zystenligatur)

Legen der Thoraxdrainage

Anteriorer Zugangsweg (Monaldi)

- Zugang der Wahl bei Pneumothorax
- Lokalisation der Punktion im Notfall →
 2.–3. ICR medioklavikulär
- Niemals unterhalb der Mammilarlinie (5. ICR)
 → Gefahr der abdominellen Fehllage

Minithorakotomie oder Trokar-Technik (Bülau)

- Zugang der Wahl bei Hämatothorax oder Pleuraerguss
- Lokalisation: 4.–6. ICR mittlere bis hintere Axillarlinie
- Durchführung: Hautschnitt ca. 4 cm am Rippenoberrand (bei Frauen auf Höhe der Submammärfalte) → stumpfes Durchtrennen der Interkostalmuskulatur und der Pleura parietalis oder direkt mittels Trokar → Zeige-/Mittelfinger schließt das Loch → Einlage der Thoraxdrainage (Ch. 20–32) durch den präparierten Kanal → Tabaksbeutelnaht der Muskulatur/Haut
- Anschluss an ein meist »Drei-Flaschen-Sogsystem« mit Flasche zur Sogregulierung, Wasserschloss und Sekretauffangflasche → Sog: ca.
 -15 bis -20 cm H₂O → Röntgenkontrolle
- Nadeldekompression: lange Kanüle mit aufgesetzter Spritze unter Aspiration, Stahl- oder Kunststoffkanüle wegen Abknickgefahr in situ belassen

Entfernen der Thoraxdrainage

- Zuvor ca. 12 h abklemmen und Röntgen-Thorax
 → Frage der Progression eines Pneumothorax
 oder Pleuraergusses (Sekretmengen ≤150–
 200 ml sind bedingt durch Pleurairritationen)
- Wenn keine Progression: dann Ziehen der Drainage, zuvor Anlage einer Tabaksbeutelnaht → sicherer chirurgischer Verschluss

Cave

Bei beatmeten Patienten – auch während eines Transportes – darf wegen Gefahr des Spannungspneumothorax die Thoraxdrainage niemals abgeklemmt werden. Des Weite-

ren muss das Thoraxdrainagesystem immer unterhalb des Patiententhoraxniveaus platziert sein, da ansonsten Drainageflüssigkeit in den Thorax zurückfließen kann.

Therapiekomplikationen

- Reexpansionsödem: Ausbildung eines Lungenödems nach Pneumothoraxentlastung
- Organverletzung: Leber, Milz, Lunge
- Pleuraempyem: insbesondere bei l\u00e4ngerer Drainagenverweildauer >7 Tage
- Weichteilemphysem: bei nicht korrekt platzierter Thoraxdrainage

Literatur

- Anthonisen NR, Manfreda J, Warren CP et al. (1987) Antibiotic therapy in exacerbation of chronic obstructive pulmonary disease. Ann Intern Med 106: 196–204
- Asthma bronchiale Diagnostik und Therapie im Erwachsenenalter (2008) Deutsches Ärzteblatt 105 (21): 385–393
- Baharloo F, Veyckemans F, Francis C et al. (1999) Tracheobronchial foreign bodies: presentation and management in children and adults. Chest 115:1357–1362
- Barnes PJ (2000) Chronic obstructive pulmonary disease. N Engl J Med 343:269–280
- Barnes PJ, Stockley RA (2005) COPD: current therapies interventions and future approaches. Eur Respir J 25:1084–1106
- Brunton S, Carmichael BP, Colgan R et al. (2004) Acute exacerbation of chronic bronchitis: A primary care consensus guideline. Am J Manag Care 10:689–696
- Celli BR, MacNee W; ATS/ERS Task Force (2004) Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper. Eur Respir J. 2004 Jun;23(6):932–946
- Diffuse parenchymal lung disease. Progress in respiratory research, Vol. 36, 2007
- Edmonds ML, Camargo CA, Jr., Pollack CV, Jr. et al. (2002) The effectiveness of inhaled corticosteroids in the emergency department treatment of acute asthma: a meta-analysis. Ann Emerg Med 40:145–154
- ENFUMOSA study group (2003) The ENFUMOSA cross-sectional European multicentre study of the clinical phenotype of chronic severe asthma. European Network for Understanding Mechanisms of Severe Asthma. Eur Respir J 22:470–477
- Harrison TR (2004) Harrison's Principles of Internal Medicine. 16th ed.
- Heimbach DM, Waeckerle JF (1988) Inhalation injuries. Ann Emerg Med 17:1316–1320
- Levy BD, Kitch B, Fanta CH (1998) Medical and ventilatory management of status asthmaticus. Intensive Care Med 24:105–117

- McFadden ER, Jr (2003) Acute severe asthma. Am J Respir Crit Care Med 168:740–759
- Michels G, Hoppe UC (2007). Respiratorische Notfälle. In: Brokmann J, Rossaint R (Hrsg) Repetitorium Notfallmedizin. Springer, Berlin Heidelberg New York
- Rodrigo GJ, Rodrigo C, Hall JB (2004) Acute asthma in adults: a review. Chest 2004: 125: 1081–1102
- Vogelmeier C, Buhl R, Criée CP, Gillissen A et al. (2007) Guidelines for the diagnosis and therapy of COPD issued by Deutsche Atemwegsliga and Deutsche Gesellschaft für Pneumologie und Beatmungsmedizin Pneumologie 61(5):e1–40
- Zoorob RJ, Campbell JS (2003) Acute dyspnea in the office. Am Fam Physician 1;68(9):1803–1810