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Abstract: A potential natural melanogenesis inhibitor was discovered in the form of a sesquiterpene
isolated from the flowers of Inula britannica, specifically 6-O-isobutyrylbritannilactone (IBL).
We evaluated the antimelanogenesis effects of IBL on B16F10 melanocytes and zebrafish embryos.
As a result, we found that 3-isobutyl-1-methylxanthine (IBMX)-induced melanin production was
reduced in a dose-dependent manner in B16F10 cells by IBL. We also analyzed B16F10 cells that were
and were not treated with IBMX, investigating the melanin concentration, tyrosinase activity, mRNA
levels. We also studied the protein expressions of microphthalmia-associated transcription factor
(MITF), tyrosinase, and tyrosinase-related proteins (TRP1, and TRP2). Furthermore, we found that
melanin synthesis and tyrosinase expression were also inhibited by IBL through the modulation of the
following signaling pathways: ERK, phosphoinositide 3-kinase (PI3K)/AKT, and CREB. In addition,
we studied antimelanogenic activity using zebrafish embryos and found that the embryos had
significantly reduced pigmentation in the IBL-treated specimens compared to the untreated controls.

Keywords: Inula britannica; 6-O-isobutyrylbritannilactone (IBL); melanogenesis; B16F10 melanocytes;
zebrafish embryos

1. Introduction

Melanocyte is a neural crest-derived skin cell that produces the protective pigment melanin [1].
Melanin is generated by melanosomes in melanocytes, which are located in the epidermis, and is the
substance that affects hair, skin, and eye color in mammals [2]. In addition, melanin biosynthesis
is crucial in the body’s defense against the harmful effects to the skin caused by DNA damage and
ultraviolet (UV) radiation [3,4]. However, excessive production of melanin due to frequent or excessive
exposure to UV radiation can cause abnormal hyperpigmentation as a result of inflammation, age spots,
freckles, lentigo senilis, and melasma [5].
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Tyrosinase serves as a catalyst for the process in which l-tyrosine is hydroxylated to
3,4-dihydroxyphenylanaine (L-DOPA) in addition to the process in which this o-diphenol is oxidized to
the corresponding quinone. On the other hand, l-dopaquinone services as a rate-limiting enzyme in the
process of melanin synthesis [6]. Also present in melanosomes with tyrosinase are tyrosinase-related
protein 1 (TRP1) and tyrosinase-related protein 2 (TRP2), which are important catalysts for reactions that
produce eumelanin, a dark brown-black insoluble polymer [7,8]. α-melanocyte-stimulating hormone
(α-MSH) and IBMX are key physiologic inducers of melanogenesis [9,10]. α-MSH and IBMX are known
to stimulate tyrosinase activity through the cyclic adenosine monophosphate (cAMP) pathway [11].
Furthermore, α-MSH binds to melanocortin-1 receptors (MC1R) on cell surfaces to activate the protein
kinase A (PKA) pathway, phosphorylating the CREB transcription factor and inducing the expression
of microphthalmia-associated transcription factor (MITF) [12]. Several signaling pathways regulate the
activity of MITF: not only cAMP but also MAPK/ERK Kinase (MEK) [13]. By binding to the M-box
(AGTCATGTGCT) of tyrosinase distal elements (TDEs), MITF is able to regulate the expressions of
TRP1 and TRP2 [14,15].

Tyrosinase levels are an important part of the melanin synthesis process, as decreased tyrosinase
production correlates to reduced melanin pigmentation, which leads to skin whitening [16]. Popular
whitening agents, such as arbutin, kojic acid, and ascorbic acid, have been used to inhibit melanogenesis
by down-regulating tyrosinase activity [16]. However, various anti-melanogenic agents have serious
side-effects, such as vitiligo and albinism [17,18]. Therefore, natural melanogenesis inhibitors are in high
demand as researchers strive to prevent hyperpigmentary disorders, develop therapies, and contribute
to cosmetic industries [19].

Inula britannica Linnaeus of the Asteraceae family, also known as “Xuan-Fu-Hua” in China, is widely
used in traditional Chinese medicine for anticancer, antioxidant, antibacterial, anti-inflammation,
neuroprotective, and hepatoprotective purposes [20]. A previous study reported that a flower extract
of I. britannica markedly reduced melanin production in B16F10 melanoma cells [21]. Through
a further study, we discovered a new sesquiterpene called inularin structure and investigated its
antimelanogenic activity [22]. The aim of this study was to discover safe and effective natural
compounds for skin whitening and preventing abnormal hyperpigmentation. Here, we discovered
that 6-O-isobutyrylbritannilactone (IBL) exhibits antimelanogenic effects in B16F10 cells, and also that
it affects melanin production in embryonic zebrafish.

2. Results and Discussion

2.1. Extraction and Isolation of IBL

In our previous study, silica gel chromatography was performed on an ethanol extract of I.
britannica flowers, which resulted in four fractions (A–D) based on thin-layer chromatography (TLC)
data. Fraction D, which markedly reduced melanin production in B16F10 cells, was subjected to
further chromatography guided by its antimelanogenic effects, leading to the isolation of an active
compound [22]. This compound was an amorphous white powder with a molecular ion peak at m/z
337 [M + H]+ on electron ionization mass spectrometry (ESIMS), corresponding to a molecular formula
of C19H28O5. By comparing its physicochemical and spectral data with those in the literature [23,24],
this compound was identified as 6-O-isobutyrylbritannilactone (IBL, Figure 1).
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2.2. Cytotoxicity of IBL in B16F10 Cells

To assess cell viability, we used the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetra-zolium bromide
(MTT) assay. B16F10 cells were treated with various concentrations of IBL (5–100 µM) to investigate
whether IBL exhibited cytotoxic effects on melanocytes. According to the results, IBL did not
significantly affect cell viability (Figure 2). Thus, we decided to investigate the melanogenesis
inhibitory effect of IBL, since this IBL was found to exhibit less cytotoxicity at high concentrations,
which is a beneficial property for candidate whitening agents.
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Figure 2. Effect of IBL on cell viability in B16F10 cells. After incubation of B16F10 melanoma cells with 
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Figure 3. Effect of IBL on melanin content in B16F10 cells. B16F10 cells were stimulated with 100 µM IBMX 
for 24 h after pretreatment with the indicated concentrations of IBL (5–100 µM) or kojic acid (5–100 µM) 
for 48 h. The melanin content was measured at 405 nm using a microplate reader. Values are represented 
as means ± SEM. (n = 3, *** p ≤ 0.001). 
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Tyrosinase is an enzyme that serves a key role in melanin pigment production [25]. When melanin 
is synthesized, it not only promotes aging of the skin, but also causes skin hyperpigmentation and dark 
spots. In particular, with tyrosinase being involved in the early stages of the melanin biosynthetic 
pathway, many whitening agents involve mechanisms of action to inhibit this enzyme [26]. Therefore, 

Figure 2. Effect of IBL on cell viability in B16F10 cells. After incubation of B16F10 melanoma cells
with various concentrations of IBL (5–100 µM) in a 96-well plate for 24 h, cell viability was determined
through the MTS assay. Values are represented as means ± SEM (n = 3).

2.3. Effects of IBL on Melanin Synthesis

The melanogenesis activity of IBL on melanin synthesis was assessed by treating B16F10 cells
with IBL for 72 h, then treating with IBMX before measuring the melanin content. As a result of
the IBL treatment, the melanin content in the IBMX-treated cells were significantly decreased in a
dose-dependent manner, whereas kojic acid exhibited slightly less inhibition compared to IBL at
lower concentrations below 20 µM (Figure 3). Based on the cytotoxicity data, we concluded that the
nonspecific cell toxicity of IBL was not the basis for its capacity to inhibit melanogenesis.
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Figure 3. Effect of IBL on melanin content in B16F10 cells. B16F10 cells were stimulated with 100 µM
IBMX for 24 h after pretreatment with the indicated concentrations of IBL (5–100 µM) or kojic acid
(5–100 µM) for 48 h. The melanin content was measured at 405 nm using a microplate reader. Values
are represented as means ± SEM. (n = 3, *** p ≤ 0.001).

2.4. Effects of IBL on Tyrosinase Activity

Tyrosinase is an enzyme that serves a key role in melanin pigment production [25]. When melanin
is synthesized, it not only promotes aging of the skin, but also causes skin hyperpigmentation and
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dark spots. In particular, with tyrosinase being involved in the early stages of the melanin biosynthetic
pathway, many whitening agents involve mechanisms of action to inhibit this enzyme [26]. Therefore,
the development of whitening cosmetic materials is often focused on the development of tyrosinase
inhibitors that are safe for the human body with no side effects [27]. Due to tyrosinase affecting melanin
synthesis as a rate-limiting enzyme, we aimed to determine the degree to which IBL inhibits cellular
tyrosinase activity in B16F10 cells. As shown in Figure 4, enzyme activity was measured through
treatment with the tyrosinase enzyme inducers IBMX and IBL with concentrations of 5, 10, 20, 50,
and 100 µM to investigate the inhibitory activity of IBL in cells. As a result, it was confirmed that IBL
significantly decreased cellular tyrosinase activity in a dose-dependent manner in IBMX-stimulated
B16F10 cells. From the above results, it can be seen that the IBL compound is a useful tyrosinase
inhibitor that effectively inhibits melanin induced by IBMX. On the other hand, kojic acid was used as
a control and exhibited highly similar tyrosinase inhibitory activity patterns.
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2.5. Effects of IBL on Melanogenesis-Related Gene Expression

It is important to understand whether if there is a relation between melanin synthesis inhibition
by IBL and melanogenesis-related gene expression. Thus, we examined the mRNA levels of tyrosinase,
TRP1, TRP2, and MITF via real time-quantitative PCR. As a result, we found that IBL treatment
resulted in decreased mRNA levels of all of the aforementioned genes in a dose-dependent manner in
IBMX-treated groups (Figure 5).

2.6. Effects of IBL on the Protein Expression of Tyrosinase, Trp1, Trp2, and MITF

To investigate whether IBL could affect melanogenic protein expression of tyrosinase, TRP1, TRP2,
and MITF, we performed western blotting analysis with IBL-treated B16F10 cell lysates. In the case of
TRP1 and TRP2, several studies have reported these two proteins are crucial in the melanin synthesis
pathway for the following: catalyzing the process in which 5,6-dihydroxyindole-2-carboxylic acid
(DHICA), which can be converted into indole-5,6-quinone carboxylic acid, is oxidized, as well as
the process in which dopachrome undergoes tautomerization to form DHICA [28–30]. As shown in
Figure 6A,B, the protein expression of tyrosinase decreased in a dose-dependent manner due to IBL
treatment. Furthermore, we determined that IBL treatment resulted in the time-dependent reduction
of TRP1 and TRP2 protein levels in tandem with tyrosinase and MITF.

Interestingly, it is known that MITF at the serine 73 residue is phosphorylated upon the activation
of ERK signaling, which results in MITF being ubiquitinated and degraded. This is the ERK pathway’s
feedback mechanism involved in the regulation of melanin production [31,32]. Based on our results,
IBL treatment resulted in dose-dependent reductions in the mRNA levels of all melanogenesis-related
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mRNA levels. In addition, 20 µM IBL treatment resulted in completely inhibited expressions of
melanogenesis-related protein levels (Figure 6). This suggests that IBL may affect melanogenic protein
expression not only through transcription levels but also the post-translational modification (PTM) of
melanogenesis-related proteins such as MITF and TYR [33–35].
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of IBL (5, 10, 20, 30 µM) for 12 h. Western blotting was performed with specific antibodies for tyrosinase, 
TRP1, TRP2, and MITF. (B) Bar graphs of the relative expressions of tyrosinase, TRP1, TRP2, and 
MITF. The expression levels were normalized to that of actin. Values are represented as means ± SEM. 
(n = 3, *** p ≤ 0.001). 
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of IBL (5, 10, 20, 30 µM) for 12 h. Western blotting was performed with specific antibodies for tyrosinase, 
TRP1, TRP2, and MITF. (B) Bar graphs of the relative expressions of tyrosinase, TRP1, TRP2, and 
MITF. The expression levels were normalized to that of actin. Values are represented as means ± SEM. 
(n = 3, *** p ≤ 0.001). 
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Figure 6. Inhibitory effects of IBL on whitening-related protein expressions in B16F10 cells. (A) B16F10
cells were stimulated with 100 µM IBMX for 48 h after pre-treatment with the indicated concentrations
of IBL (5, 10, 20, 30 µM) for 12 h. Western blotting was performed with specific antibodies for tyrosinase,
TRP1, TRP2, and MITF. (B) Bar graphs of the relative expressions of tyrosinase, TRP1, TRP2, and MITF.
The expression levels were normalized to that of actin. Values are represented as means ± SEM. (n = 3,
*** p ≤ 0.001).
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2.7. Effects of IBL on the Expression of Melanogenesis-Related Proteins

Another key element in melanogenesis is the activation of Akt signaling [36,37]. In addition,
microphthalmia-associated transcription factor (MITF) also serves to control proteins involved in
melanogenesis. This transition factor is regulated by mitogen-activated protein kinase (MAPK)
signaling pathways, such as the ERK pathway, which also subsequently results in increased tyrosinase
expression [38,39]. ERK activation signals increase phosphorylated CREB and consequent MITF
expression [40–42]. Thus, we investigated the ways in which IBL affected the phosphorylation of
Akt and ERK. As shown in Figure 7A,B, IBMX activated Akt and ERK, and both signaling pathways
exhibited time-dependent inhibition due to IBL treatment, the effect of which was sustained for at
least nine hours. Moreover, the phosphorylation of CREB was also inhibited by IBL. The results
demonstrate that IBL suppresses IBMX-induced melanogenesis through the inactivation of multiple
signaling pathways.
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Figure 7. (A) Effects of IBL on the protein expressions of p-AKT, p-ERK, and p-CREB in B16F10 cells.
B16F10 cells were pre-treated with 100 µM IBMX for 48 h and then exposed to IBL for the indicated
time periods. Whole cell lysates were subjected to Western blot analysis using specific antibodies
against phospho-AKT, AKT, phospho-ERK, ERK, phospho-CREB, and CREB. Equal protein loading
was confirmed by actin. (B) Bar graphs of the relative expressions of phospho-AKT, phospho-ERK,
and phospho-CREB. The expression levels were normalized to that of actin. Values are represented as
means ± SEM. (n = 3, *** p ≤ 0.001).

The IBL compound acts as a tyrosinase inhibitor that effectively inhibits melanin induced by IBMX
(Figure 4). Moreover, IBL treatment resulted in both decreased mRNA and protein levels of tyrosinase
and related molecules in IBMX-treated groups (Figures 5 and 6). One of the possible reasons behind the
inhibition of tyrosinase activity is the decreased expression of tyrosinase. Previous studies showed that
1-O-acetylbritannilactone from Inula Britannica inhibits tyrosinase activity by suppressing tyrosinase
expression via ERK and Akt signaling rather than by directly inhibiting catalytic activity [21]. Likewise,
there are several studies that report melanogenesis is suppressed as tyrosinase activity is inhibited by
accelerating the proteasomal degradation of tyrosinase [33,43]. On the other hand, previous studies
have shown that natural product (NP) compounds are capable of interacting with multiple cellular
targets and targeting multiple signaling pathways, thus highlighting the potential of NP compounds
as multi-target agents [27,44–46]. The ERK signaling pathway phosphorylates CREB and subsequently
activates MITF to promote TYR, TRP1, and TRP2 transcription. Moreover, the activation of the AKT
signaling pathway leads to increased MITF activity [27]. IBL inhibits melanogenesis by regulating
AKT-, ERK-, and CREB-mediated pathways and also inhibits not only tyrosinase but also MITF,
TRP1, and TRP2 (Figures 5–7). Therefore, our results could suggest that IBL, which is a natural
product compound, could be a potential multi-target therapeutic agent for whitening and preventing
abnormal hyperpigmentation.
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2.8. Effects of IBL on Melanin Pigmentation in Zebrafish Embryos

Based on a previous method [27], we conducted a zebrafish in vivo assay for anti-pigmentation.
This involved tests that were conducted on wild-type zebrafish embryos to demonstrate the ways in
which single IBL compounds affected melanogenesis in an animal model. Zebrafish embryos at 10 h
post-fertilization (hpf) were subjected to IBL treatment of various concentrations and were observed at
48 hpf (Figure 8A). The positive control involved the use of 1 mM kojic acid for anti-melanogenic effects
in addition to 200 µM of the well-known tyrosinase inhibitor Phenylthiourea (PTU). Compared to
DMSO treatment, PTU treatment resulted in clearer melanogenesis inhibition in developing zebrafish
embryos (Figure 8A,B). Compared to the untreated control group, IBL at 10, 50, and 100 µM reduced
pigmentation by approximately 8%, 13%, and 16%, respectively (Figure 8C). PTU reduced pigmentation
by 71% at 200 µM, whereas kojic acid did not produce any significant effects at 200 µM (data not
shown), although it did reduce pigmentation by 3% at 1 mM (Figure 8C).
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Figure 8. Effect of IBL on melanin production in developing zebrafish embryos. Zebrafish embryos 
were treated with IBL (10, 50, or 100 µM), kojic acid (KA, 1 mM), phenylthiourea (PTU, 200 µM), or 0.1% 
(v/v) DMSO (Normal). (A) Pigmentation in the embryos was observed under a stereomicroscope (lateral 
and dorsal views) at 48 hpf. Scale bar: 0.5 mm. (B,C) The pigmented area density and inhibition rate was 
normalized to that of the control embryos using the Image J software (n = 8). The values are represented 
as means ± SEM from three independent experiments. * p < 0.05 vs. Control, *** p < 0.001 vs. Control. 
0.1% A DMSO-treated embryo was set as the normal. 
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Figure 8. Effect of IBL on melanin production in developing zebrafish embryos. Zebrafish embryos
were treated with IBL (10, 50, or 100 µM), kojic acid (KA, 1 mM), phenylthiourea (PTU, 200 µM), or 0.1%
(v/v) DMSO (Normal). (A) Pigmentation in the embryos was observed under a stereomicroscope
(lateral and dorsal views) at 48 hpf. Scale bar: 0.5 mm. (B,C) The pigmented area density and inhibition
rate was normalized to that of the control embryos using the Image J software (n = 8). The values are
represented as means ± SEM from three independent experiments. * p < 0.05 vs. Control, *** p < 0.001
vs. Control. 0.1% A DMSO-treated embryo was set as the normal.

In the case of kojic acid that was used as a positive control, high activity was not observed in
previously reported papers either, and PTU acted as a strong pigmentation inhibitor in zebrafish
development [47,48]. This is because kojic acid is a topically applied depigmenting agent that exerts
its effect by acting as a slow-binding, competitive inhibitor of tyrosinase. As a result of the zebrafish
experiment, IBL was observed to exhibit higher melanogenesis inhibition activity compared to the
kojic acid positive control. Thus, IBL could be a potential natural agent for anti-melanogenesis.
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3. Materials and Methods

3.1. Plant Material

Flowers of I. britannica were purchased from a traditional herbal medicine store in Daejeon,
Republic of Korea, in April 2018 and identified by Prof. Ki Hwan Bae (College of Pharmacy, Chungnam
National University, Republic of Korea). A voucher specimen (IB2018-010) has been deposited in the
herbarium of the Korea Institute of Oriental Medicine, Republic of Korea.

3.2. Extraction and Isolation

Air-dried flowers of I. britannica (200 g) were extracted in ethanol (2 L) at 80 ◦C for 3 h, filtered,
and concentrated to yield an ethanol extract (12 g). The extract (10 g) was subjected to silica gel column
chromatography (50 × 10 cm) using a methylene chloride-methanol (1:0→0:1) gradient solvent system.
The column chromatographic fractions were combined to give three final fractions (A, 1.8 g; B, 3.2 g; C,
2.2 g) based on TLC data. Sesquiterpene-rich fraction B was subjected to RP-18 column chromatography
(50 × 4 cm) using a methanol-water (20:80→90:10) gradient solvent system; three subfractions (B1–B3)
were obtained. Fraction B2 (0.6 g) was further chromatographed on an RP-18 column (50 × 3 cm)
eluted with a methanol-water (40:60→80:20) gradient to obtain 6-O-isobutyrylbritannilactone (80 mg).

3.3. 6-O-Isobutyrylbritannilactone

White amorphous powder; [α]D
25 + 90◦ (c 0.1, MeOH); UV (MeOH) λmax 205 nm; IR (KBr) νmax

3495, 2926, 1728, 1722, 1640, 1412, 1352, 1260, 1029 cm−1; ESIMS m/z 337 [M + H]+; 1H NMR (400 MHz,
CD3OD) δ 6.30 (1H, d, J = 2.4 Hz, H-13a), 5.97 (1H, d, J = 2.4 Hz, H-13b), 5.22 (1H, d, J = 1.8 Hz,
H-6), 5.02 (1H, m, H-8), 3.52 (1H, m, H-1a), 3.36 (1H, m, H-1b), 1.81 (3H, s, CH3-14), 1.14 (3H, d, J =

6.8 Hz, CH3-4′), 1.12 (3H, d, J = 6.8 Hz, CH3-3′), 0.87 (3H, d, J = 6.8 Hz, CH3-15); 13C NMR (100 MHz,
CD3OD) δ 178.4 (C-1′), 172.1 (C-12), 138.5 (C-11), 135.0 (C-10), 133.8 (C-5), 125.7 (C-13), 77.4 (C-8),
70.6 (C-6), 63.0 (C-1), 44.4 (C-7), 35.7 (C-9), 35.5 (C-2′), 34.6 (C-4), 32.4 (C-2), 31.8 (C-3), 20.7 (CH3-14),
19.4 (CH3-3′), 19.4 (CH3-4′), 19.2 (CH3-15).

3.4. Cell Cultures

B16F10 melanoma cells were obtained from the Korea Cell Line Bank (KCLB). Cells were cultured at
37 ◦C in a humidified atmosphere with 5% CO2 in Dulbecco’s Modified Eagle Medium (DMEM, phenol
red-free) supplemented with 10% fetal bovine serum (FBS), 100 µg/mL streptomycin, and 100 U/mL
penicillin. DMEM, FBS, and Phosphate-buffered saline (PBS) were purchased from Thermo Fisher
Scientific (Waltham, MA, USA).

3.5. Cell Viability Assay

Cell viability was determined using the CellTiter 96 AQueous One Solution Cell Proliferation Assay
Kit containing the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-
tetrazolium (MTS) assay, as per the manufacturer’s protocol. B16F10 cells were seeded at a density of
2 × 105 cells/well in a 96-well plate and incubated at 37 ◦C for 24 h. The I. britannica compounds were
then added to individual wells at various concentrations. After incubation, 20 µL of MTS solution was
added to each well and the cells were incubated at 37 ◦C for 2 h. The supernatant was then removed,
and 0.1 mL of dimethylsulfoxide (DMSO) was added to dissolve the crystals in each well. The signals
were detected with absorbance readings at 570 nm using an EnSpire multimode plate reader (Perkin
Elmer, Waltham, MA, USA). Cell viability was calculated as the percentage of viable cells relative to
the control group.
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3.6. Measurement of Melanin Content

The extracellular melanin content was measured as described in a previous study with some
modifications [21]. B16F10 melanocytes were incubated at a density of 3 × 105 cells in a 96-well plate
for 24 h. 50 µM of 3-isobutyl-1-methylxanthin (IBMX) was then added and the cells were treated
with or without chemicals in phenol red-free DMEM for 72 h. Following the treatment, the cells were
detached and centrifuged at 5000× g for 5 min. The cell pellets were then solubilized in 1 N NaOH at
95 ◦C for 15 min. The optical densities were measured at 420 nm using an EnSpire multimode plate
reader. The melanin content values were expressed as percentages of the untreated control value.

3.7. Tyrosinase Activity

Intracellular tyrosinase activity was measured as described in a previous study [21], with some
modifications. Once the cells were incubated with I. britannica compounds at various concentrations
(1–30 µM) for 72 h, the cells were washed with PBS then lysed with PBS (pH 6.8) containing 1% Triton
X-100. The cells were then disrupted via vortexing, and the lysates were clarified via centrifugation
at 10,000× g for 5 min. After protein quantification and the adjustment of the protein concentrations,
90 µL of each lysate was placed in each well of a 96-well plate, and 10 µL of 10 mM L-DOPA was
added to each well. During incubation at 37 ◦C, the absorbance was measured every 10 min at 475 nm
using an EnSpire multimode plate reader.

3.8. Western Blot Analysis

Once the cells were harvested, the cell pellets were lysed in radioimmunoprecipitation (RIPA) buffer
containing 1% NP-40, 1% sodium deoxycholate, and protease inhibitor (PI) cocktail on ice for 30 min.
This was followed by centrifugation at 13,000 rpm for 30 min at 4 ◦C. The resulting supernatants
were subsequently collected. Proteins were separated using 8% to 15% SDS polyacrylamide gel
electrophoresis (SDS-PAGE) gels and transferred onto a polyvinylidene difluoride (PVDF) membrane.
The membranes were blocked with 5% skim milk for 1 h at room temperature, followed by incubation
with a primary antibody. Anti-Tyrosinase, anti-TRP1, anti-TRP2, anti-MITF, anti-phospho AKT,
anti-AKT, anti-phospho ERK, anti-ERK, anti-phospho CREB, anti-CREB, and anti-actin antibodies
were purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA). Membranes were washed
with Tris-buffered saline containing 0.1% Tween-20 (TBST) and incubated with donkey anti-rabbit or
anti-mouse horseradish peroxidase (HRP)-conjugated IgG secondary antibody for 2 h. Protein bands
were detected by an ImageQuant LAS 4000 mini (Fujifilm, Tokyo, Japan) and visualized using an image
analysis program (Multi Gauge Ver. 3.0, Fujifilm, Tokyo, Japan).

3.9. Reverse Transcription-Polymerase Chain Reaction

Total RNA was isolated from 48-h IBL-treated cells using the RNeasy Mini Kit (Qiagen, Hilden,
Germany). Each PCR reaction was performed using the Maxima SYBR Green/ROX qPCR master mix
(Thermo Fisher Scientific, Waltham, MA, USA). Quantitative RT-PCR analysis was also performed on a
StepOnePlus Real-Time PCR system (Thermo Fisher Scientific, Waltham, MA, USA).

3.10. Maintenance of Zebrafish

Adult zebrafish were purchased from a commercial aquarium store and 15~20 fish were reared in
a water circulation tank. Fish were maintained at 28.5 ◦C temperature and in a 14/10 h light/dark cycle.
Zebrafish embryos were obtained via natural mating and developed in egg water, which consisted of
60 µg/mL Sea Salt (Sigma-Aldrich, St. Louis, MO, USA) in distilled water.

3.11. Chemical Treatment of Zebrafish Embryos and Imaging

Phenylthiourea (PTU, Sigma-Aldrich, St. Louis, MO, USA) was dissolved in the egg water. 1 mM
Kojic acid and 200 µM PTU were used for the positive control in all experiments. IBL was dissolved
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in DMSO (5,5-dimethyl-1-pyroline-N-oxide). For the anti-pigmentation effect test, 10 hpf (hour post
fertilization) zebrafish embryos were arrayed in a 24-well plate (eight individuals per well) containing
2 mL egg water. Normal (DMSO), PTU, kojic acid, and IBL were added to wells containing the
zebrafish embryos in a 28.5 ◦C incubator. For imaging, the embryos were anesthetized with tricaine
(MS-220, Sigma-Aldrich, St. Louis, MO, USA) and mounted on 3% methyl cellulose (Kanto Chemical
Co., Tokyo, Japan). The mounted embryos were imaged with a SMZ25 stereomicroscope and a digital
camera system (Nikon Instruments, Tokyo, Japan).

3.12. Quantitative Measurement of Melanocytes and Statistical Analysis

The proportion of melanocytes was determined using the Image J software (NIH), using equal-sized
boxes of grayscale images for the dorsal view of the anterior part. The quantitative value was calculated
as the percentage of black proportions per box image. To assess the significance of the differences
between the normal and experimental groups, all statistical data was obtained through one-way
ANOVA with Dunnett’s Multiple Comparison Test using Graphpad Prism. The significance level was
set as * p < 0.05 versus the normal (DMSO) group and the data were represented as means ± SEM
(standard error of mean).

3.13. Statistical Analysis

Statistical analysis was performed using GraphPad Prism 5 (GraphPad Software Inc., La Jolla,
CA, USA), and the data are presented as means ± SEM. The results were further analyzed through the
student’s t-test, and p values less than 0.05 were considered statistically significant.

4. Conclusions

In this study, a sesquiterpene, specifically 6-O-isobutyrylbritannilactone (IBL), was isolated from the
flowers of Inula britannica. According to the investigation results regarding the whitening activity of IBL,
it was confirmed to be a highly safe compound as no cytotoxicity was observed at high concentrations.
Concentration-dependent intracellular tyrosinase inhibitory activity was observed, and the results indicated
high inhibitory activity and melanin synthesis inhibition when treated with IBL. The mRNA expression
levels and proteins related to melanin synthesis were analyzed by RT-PCR and western blotting to determine
the whitening mechanism of IBL. According to the results, the expressions of tyrosinase, tyrosinase-related
protein 1 (TRP1), and tyrosinase-related protein 2 (TRP2), which are the key rate-limiting enzymes of the
melanogenesis process, and the expression of the transcription factor MITF were inhibited both mRNA and
proteins, which results in whitening activity. IBL inhibits melanogenesis by regulating AKT-, ERK- (MAPK),
and CREB-mediated pathways. This whitening effect was also observed through an in vivo zebrafish
model, with a significant reduction in melanin pigments resulting from IBL treatment. Thus, IBL could be
an effective antimelanogenic agent for skin whitening.
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