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Abstract. 	Genetically	modified	animals,	especially	rodents,	are	widely	used	in	biomedical	research.	However,	non-rodent	
models	are	required	for	efficient	translational	medicine	and	preclinical	studies.	Owing	to	the	similarity	in	the	physiological	
traits	of	pigs	and	humans,	genetically	modified	pigs	may	be	a	valuable	resource	for	biomedical	research.	Somatic	cell	nuclear	
transfer	 (SCNT)	 using	 genetically	modified	 somatic	 cells	 has	 been	 the	 primary	method	 for	 the	 generation	 of	 genetically	
modified	 pigs.	 However,	 site-specific	 gene	 modification	 in	 porcine	 cells	 is	 inefficient	 and	 requires	 laborious	 and	 time-
consuming	processes.	Recent	improvements	in	gene-editing	systems,	such	as	zinc	finger	nucleases,	transcription	activator-like	
effector	nucleases,	and	the	clustered	regularly	interspaced	short	palindromic	repeats	(CRISPR)/CRISPR-associated	protein	
(CRISPR/Cas)	system,	represent	major	advances.	The	efficient	introduction	of	site-specific	modifications	into	cells	via	gene	
editors	dramatically	 reduces	 the	effort	and	 time	required	 to	generate	genetically	modified	pigs.	Furthermore,	gene	editors	
enable	direct	gene	modification	during	embryogenesis,	bypassing	the	SCNT	procedure.	The	application	of	gene	editors	has	
progressively	expanded,	and	a	range	of	strategies	 is	now	available	for	porcine	gene	engineering.	This	review	provides	an	
overview	of	approaches	for	the	generation	of	genetically	modified	pigs	using	gene	editors,	and	highlights	the	current	trends,	
as	well	as	the	limitations,	of	gene	editing	in	pigs.
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Introduction

Genetically	modified	animals,	especially	rodents,	are	widely	
used	as	biomodels	to	elucidate	animal	physiology	and	disease	
mechanisms,	including	human	traits	and	diseases.	However,	for	
efficient	translational	and	preclinical	studies,	additional	insights	
from	non-rodent	animal	models	are	important	[1].	Pigs	are	similar	to	
humans	in	several	respects,	particularly	in	anatomy	and	physiology.	
Additionally,	they	breed	year-round	with	large	litter	sizes.	As	pigs	are	
considered	an	excellent	animal	model,	gene	modification	is	expected	
to	improve	the	value	of	pig	resources	for	biomedical	research.	The	first	
transgenic	pig,	reported	in	1985	[2],	was	produced	by	microinjection	
of	exogenous	DNA	into	the	pronuclei	of	porcine	zygotes	through	a	
fine	glass	needle.	Subsequently,	pronuclear	injection	has	been	used	
to	establish	genetically	modified	pig	lines	[3,	4].	This	technique	
is	simple	but	requires	technical	proficiency.	Furthermore,	the	low	
efficiency	of	generating	founder	pigs	carrying	mutations	and	the	
random	integration	of	injected	DNA	into	the	genome	without	control	
of	the	copy	number	result	in	unstable	phenotypes,	gene	silencing,	
and	unpredictable	gene	expression,	thereby	limiting	the	application	

of	such	mutant	pigs.
In	mice,	the	establishment	of	embryonic	stem	cells	(ESCs)	

promoted	the	development	of	genetically	modified	animals	owing	
to	the	production	of	chimeras	with	germline	transmission,	which	
represents	a	significant	advance	in	biomedical	research.	However,	
for	pigs,	stem	cell	lines,	including	ESCs,	which	contribute	to	the	
germline,	are	not	available	[5].	Since	somatic	cell	nuclear	transfer	
(SCNT)	has	been	established	in	pigs	[6–8],	SCNT	using	genetically	
modified	somatic	cells	as	nuclear	donors	has	been	widely	chosen	
as	a	method	for	the	generation	of	genetically	modified	pigs.	The	
correct	use	of	somatic	cells	carrying	the	desired	mutation,	including	
multiple	gene	modifications,	as	nuclear	donors	virtually	ensures	that	
pigs	will	carry	the	desired	mutations	and	the	appropriate	number	
of	copies	of	the	transgene.	Furthermore,	direct	gene	editing	during	
embryogenesis	often	induces	genetic	mosaicism,	which	complicates	
the	phenotypic	analysis	of	founders,	whereas	SCNT	can	ensure	
non-mosaic	genotypes	in	the	resulting	pigs.	These	characteristics,	
which	have	significant	advantages,	show	that	SCNT	can	be	used	as	
a	primary	method	for	the	generation	of	genetically	modified	pigs.
SCNT	overcomes	the	low	efficiency	and	random	transmission	of	

gene	modifications	in	delivered	piglets	that	characterize	pronuclear	
microinjection.	However,	site-specific	gene	insertion	in	porcine	cells	
is	limited	by	the	low	efficiency	of	homologous	recombination	(HR)	
and	the	sophisticated	selection	processes	within	cells	following	gene	
modification	procedures,	necessitating	laborious	and	time-consuming	
processes	[9].	Recently	developed	precise	nuclease-mediated	gene	
editing	systems	have	dramatically	improved	gene	modification	in	
pigs.	This	review	describes	the	production	of	genetically	modified	
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pigs	using	gene	editors,	provides	an	overview	of	approaches	for	the	
generation	of	genetically	modified	pigs	using	various	types	of	gene	
editors,	and	highlights	current	trends,	including	the	establishment	
of	disease	models	and	research	on	pig-to-human	transplantation,	as	
well	as	the	limitations	of	gene	editing	in	pigs.

Gene Editors:  
Improvements in Engineered Endonucleases

Engineered	endonucleases,	including	artificial	nucleases,	such	as	
zinc	finger	nucleases	(ZFNs)	[10,	11]	and	transcription	activator-
like	effector	nucleases	(TALENs)	[12],	as	well	as	RNA-guided	
endonucleases,	such	as	the	clustered	regularly	interspaced	short	
palindromic	repeats	(CRISPR)/CRISPR-associated	protein	(CRISPR/
Cas)	system	[13,	14],	are	major	innovations	for	gene	modifica-
tion	in	somatic	cells,	stem	cells,	and	zygotes/embryos	of	various	
animal	species.	These	nucleases	have	precise	DNA-binding	ability	
and	generate	double-strand	breaks	(DSBs)	at	the	desired	genomic	
locus.	DSBs	trigger	endogenous	DNA	repair	via	non-homologous	
end-joining	(NHEJ)	or	homology-directed	repair	(HDR)	pathways	
[15].	NHEJ	occurs	when	the	ends	of	a	DSB	are	rejoined	without	any	
DNA	template	to	guide	this	repair.	Successfully	repaired	targeted	
sequences	are	repeatedly	cut	by	gene	editors,	resulting	in	the	frequent	
introduction	of	short	DNA	insertions/deletions	(indels).	These	indels	
create	targeted	gene	knockouts	by	inducing	a	frameshift	in	the	codons,	
which	is	followed	by	the	formation	of	a	premature	termination	codon	
[12].	HDR	relies	on	donor	DNA	with	homologous	arms	from	sister	
chromatids,	homologous	chromosomes,	exogenous	DNA	templates,	
or	single-strand	donor	oligonucleotides	(ssODNs),	and	enables	
gene	knock-in	and	the	introduction	of	the	desired	point	mutation.	
In	general,	the	frequency	of	HDR	is	lower	than	that	of	NHEJ	in	
most	cell	types	[16].
ZFNs	are	gene	editors	composed	of	DNA-binding	domains	(zinc	

finger	proteins)	and	a	DNA-cutting	domain	(the	chimeric	restriction	
nuclease	FokI)	acting	as	a	heterodimer.	Zinc	finger	domains	recognize	
specific	sequences	in	genomic	DNA,	after	which	FokI	nuclease	and	
the	zinc	finger	protein	induce	DSBs	at	the	targeted	position.	However,	
the	practical	use	of	ZFNs	in	laboratories	is	hindered	by	high	costs	
and	technical	difficulties	[17].	TALENs	are	conceptually	similar	to	
ZFNs.	Transcription	activator-like	effectors	(TALEs)	are	naturally	
occurring	proteins	found	in	the	plant	pathogenic	bacterial	genus	
Xanthomonas.	TALENs	have	a	TALE	as	the	DNA-binding	domain	
and FokI	as	the	cleavage	domain.	The	preparation	of	TALENs	is	
simpler	than	that	of	ZFNs;	therefore,	they	are	preferred	in	laboratory	
settings	for	gene	editing.
ZFNs	and	TALENs	are	artificial	nucleases.	In	contrast,	CRISPR/

Cas9	is	an	RNA-guided	endonuclease	that	is	derived	from	an	adaptive	
bacterial	immune	system	component	[13,	14,	18].	The	CRISPR/Cas9	
system	comprises	a	guide	RNA	(gRNA)	and	Cas9	nuclease.	Since	the	
first	practical	demonstration	of	gene	editing	using	the	CRISPR/Cas9	
system	in	2013,	the	system	has	been	dramatically	improved.	Various	
gRNA/Cas9-related	expression	plasmids,	Cas9	proteins,	tools	for	
gRNA	design,	and	subsequent	gRNA	order/purchase	systems	are	now	
available	[19].	The	system	does	not	require	specialized	methodology	
or	equipment;	this	has	contributed	to	its	recent	widespread	use.
Off-target	effects,	which	are	unexpected	DNA	cleavages	caused	by	

the	binding	of	gene	editors	to	unintended	genomic	sites,	are	of	major	
concern	in	gene	editing,	especially	using	the	CRISPR/Cas9	system;	
these	have	limited	the	research	and	clinical	applications	of	gene	
editors	[20,	21].	Carey	et al.	highlighted	the	frequency	of	off-target	
events	induced	by	cytoplasmic	microinjection	of	CRISPR/Cas9	during	
embryogenesis	[22];	they	detected	off-target	cleavage,	but	concluded	
that	the	frequency	was	low.	Zhou	et al.	also	detected	off-target	events	
induced	by	cytoplasmic	microinjection	of	CRISPR/Cas9	[23].	Other	
off-target	events	were	observed	during	SCNT-mediated	production	
of	gene-edited	pigs	using	a	ZFN	[24]	and	CRISPR/Cas9	[25,	26],	
but	mutations	were	only	observed	in	non-coding	regions	in	two	out	
of	the	three	studies	[24,	26].	To	the	best	of	our	knowledge,	off-target	
events	in	gene-edited	offspring	have	not	been	detected	in	any	other	
study.	Choi	et al.	showed	that	there	was	no	off-target	cleavage	in	
offspring	when	using	whole-genome	sequencing	[27].	To	date,	
off-target	events	have	not	produced	any	critical	problems	in	gene-
edited	porcine	offspring.	Various	approaches	have	been	developed	
to	minimize	these	off-target	effects,	such	as	off-target	detection	by	
algorithmically	designed	software	and	genome-wide	assays,	the	use	
of	cytosine	or	adenine	base	editors,	prime	editing,	and	the	chemical	
modification	of	gRNA	[19,	28].	Furthermore,	Cas9	variants	such	as	
Cas9	nickase	[29],	which	cleaves	only	the	target	strand	(by	double	
nicking),	and	catalytically	dead	Cas9	combined	with	FokI	nuclease	
(FokI-dCas9)	[30,	31],	reduce	off-target	events.	Variants	suggested	
by	structural	studies	of	Cas9,	such	as	Cas9-HF1	[32],	evo-Cas9	
[33],	eSpCas9	[34],	and	Hypa-Cas9	[35],	also	improve	gene	editing	
efficiency	and	discrimination	against	off-target	events.	The	careful	
design	of	binding	modules	or	gRNAs	and	improved	application	
methods	will	minimize	off-target	effects	in	founder	generations	and	
reduce	the	labor	required	to	analyze	off-target	candidates.

Methods for Generation of Genetically Modified Pigs 
Using Gene Editors

The	ZFN,	TALEN,	and	CRISPR/Cas9	systems	enable	efficient	
gene	targeting	and	the	introduction	of	multiallelic	modifications	
into	somatic	cells,	simplifying	the	preparation	of	donor	cells	for	
SCNT	in	pigs.	Furthermore,	gene	editors	have	enabled	the	direct	
modification	of	genomic	DNA	in	zygotes/embryos	using	cytoplasmic	
microinjection	and	electroporation	(Fig.	1).

SCNT using gene-edited somatic cells
Gene	editors	enable	the	one-step	knockout	of	genes	in	somatic	cells	

without	any	marker	or	exogenous	DNA	fragments.	Such	gene-edited	
cells	have	accelerated	SCNT-mediated	production	of	genetically	
modified	pigs.	Gene	editors	also	facilitate	multiple	gene	editing	and	
knock-in	of	exogenous	genes;	hence,	double-	[36–38],	triple-	[39–41],	
and	quadruple-gene-edited	pigs	[42]	and	knock-in	pigs	[43,	44]	have	
been	generated	using	the	SCNT	technique.	Following	appropriate	
selection	of	donor	cells	after	gene	editing,	the	delivered	piglets	
carry	the	desired	genotypes.	Furthermore,	SCNT	does	not	result	in	
mosaicism,	which	is	observed	in	gene-editor-mediated	direct	gene	
modification	during	embryogenesis,	and	thus	aids	in	the	phenotypic	
analysis	of	founder	pigs.	SCNT	is	the	primary	method	for	generating	
gene-edited	pigs.	However,	offspring	derived	from	reconstructed	
embryos	often	show	abnormalities,	such	as	birth	defects,	abortions,	
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and	early	postnatal	death;	this	is	a	limitation	of	SCNT	[45].

Direct introduction of gene editors during embryogenesis
Microinjection	of	gene	editors	into	zygotes/embryos:	The	direct	

introduction	of	gene	editors	into	the	cytoplasm,	an	alternative	to	SCNT,	
simplifies	the	genetic	modification	of	fertilized	zygotes/embryos.	
Porcine	oocytes	have	high	lipid	contents;	therefore,	centrifugation	
is	required	to	visualize	the	pronuclei	for	successful	pronuclear	
injection	at	the	zygote	stage.	However,	gene	editors	are	generally	
supplied	with	nuclear	localization	signals,	making	the	centrifugation	
procedure	and	maneuvering	of	the	glass	needle	toward	the	pronuclei	
unnecessary.	Cytoplasmic	microinjection-mediated	gene-edited	pigs	
have	been	produced	using	gene	editors	in	the	early	stages	of	their	
development	[46–48].	Microinjection	also	enables	the	introduction	
of	large	molecules;	therefore,	microinjection-mediated	knock-in	pigs	
can	be	established	[49].	An	advantage	of	microinjection-mediated	
gene	editing	is	the	high	viability	of	the	manipulated	zygotes/embryos.	
After	the	transfer	of	microinjected	zygotes/embryos,	the	litters	
obtained	from	manipulated	embryos	tend	to	be	larger	than	those	
from	embryos	generated	by	SCNT	[50].	Although	the	results	of	
embryo	transfer	depend	on	the	condition	of	the	recipient	surrogates	
and	operator	skill	in	embryonic	manipulation,	the	high	viability	of	
the	zygotes/embryos	and	resulting	piglets	reduces	labor.
Delivery	of	CRISPR/Cas9	system	via	electroporation	dur-

ing	embryogenesis:	Electroporation-mediated	gene	editing	is	a	
micromanipulation-free	method	in	which	large	numbers	of	gene-edited	
zygotes/embryos	can	be	prepared	by	introducing	gene	editors	into	
zygotes.	In	mice,	electroporation	is	widely	used	to	introduce	gene	

editors	[51].	Gene	editing	via	electroporation	has	also	been	applied	to	
porcine	zygotes	[52],	with	successful	gene	modification	(knockout)	
[52–55].	Electroporation-mediated	gene	editing	requires	no	special-
ized	equipment	and	benefits	from	a	simple	process	and	high	zygote	
viability.	However,	the	introduction	of	large	molecules,	including	
transgenes	for	knock-in,	by	electroporation	alone	is	difficult	in	pigs.	
Generally,	the	molecular	uptake	into	cells	via	electroporation	is	
proportional	to	the	field	strength,	pulse	length,	and	number	of	pulses	
used.	Porcine	in vitro-fertilized	zygotes/embryos	are	sensitive	to	
electricity,	and	high	voltages	are	harmful,	unlike	in	mice	[52,	56].	
Hence,	a	knock-in	system	for	large	transgenes	via	electroporation	has	
not	been	established.	Further	research	focusing	on	electroporation-
mediated	gene	editing	and	the	proper	choice	of	electroporation	and	
cytoplasmic	microinjection	techniques	(depending	on	the	study	
purpose	and	type	of	mutation)	is	needed.

Recent Trends in Gene Editing in Pigs

Gene	editors	have	been	used	to	generate	genetically	modified	
pigs.	In	2011,	fifteen	years	after	the	initial	report	of	the	concept	of	
ZFNs	[10],	genetically	edited	pigs	were	generated	using	them	[24,	
57,	58].	TALEN	and	the	CRISPR/Cas9	system	were	also	applied	to	
generate	genetically	modified	pigs	soon	after	practical	gene	editing	
in	mammalian	cells	was	demonstrated.	The	low-density	lipoprotein	
receptor	(LDLR)-knockout	pigs	reported	in	2012	were	the	first	to	be	
generated	using	a	TALEN	[59].	Using	the	CRISPR/Cas9	system,	
Whitworth	et al.	generated	CD163-	and	CD1D-modified	pigs	using	
SCNT	and	cytoplasmic	microinjection	to	confer	disease	resistance	
against	porcine	reproductive	and	respiratory	syndrome	[47].	Recently,	
gene	editors	have	been	utilized	extensively	for	the	rapid	establishment	
of	valuable	engineered	pig	lines	that	can	be	used	in	human	medicine,	
e.g.,	as	disease	models	and	organ	donors.

Disease models
Pigs	are	among	the	best	animals	for	disease	models	in	medical	

research,	which	has	implications	for	translational	and	preclinical	
research,	as	they	are	intermediate	between	mice	and	humans	in	
terms	of	their	physiological	and	anatomical	relationships.	Selection	
of	the	appropriate	pig	breed	or	strain,	and	age	is	important	for	the	
application	of	surgical	and	non-surgical	procedures	typically	used	in	
human	medicine	(e.g.,	catheterization,	heart	surgery,	and	endoscopy).	
These	clinical	procedures	are	particularly	difficult	or	impossible	to	
perform	in	many	other	animal	models,	including	rodents,	owing	to	
the	small	size	of	the	species.	Various	types	of	gene-edited	pigs	have	
been	generated	to	establish	models	for	intractable	diseases	(Table	1).	
Gene	editing	is	expected	to	accelerate	the	application	of	pig	lines	
as	disease	models.

Tissue/organ donors for pig-to-human transplantation
Pigs	are	ideal	tissue/organ	donors	for	humans	owing	to	the	high	

similarity	of	their	organs,	especially	in	terms	of	size	and	structure.	
Pig-to-human	xenotransplantation	is	a	solution	to	the	shortage	of	
organs	for	human	transplantation.	However,	xenoantigens	cause	
hyperacute	rejection	and	limit	the	success	of	interspecific	xenografts.	
Therefore,	genes	involved	in	xenoantigen	biosynthesis,	such	as	
GGTA1,	CMAH,	and	B4GALNT2,	are	key	targets	for	improving	the	

Fig. 1.	 Schematic	of	major	methods	for	generating	genetically	modified	
pigs	using	gene	editors.
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outcomes	of	xenotransplantation.	GGTA1	is	a	major	target	gene,	
and	its	inactivation	has	been	demonstrated	using	ZFNs	[57,	60,	61],	
TALENs	[62–64],	and	CRISPR/Cas9	[55,	65,	66].	However,	for	
successful	xenotransplantation,	all	major	xenoantigens	expressed	
in	porcine	tissues	should	be	removed.	To	this	end,	GGTA1/CMAH 
double-knockout	[37,	67–69]	and	GGTA1/CMAH/B4GALNT2	triple-
knockout	pigs	[39,	70,	71]	have	also	been	generated	using	SCNT	
and	gene	editing.	Paris	et al.	demonstrated	that	organs	derived	from	
ASGR1-deficient	pigs	exhibit	decreased	human	platelet	uptake,	
which	may	prevent	xenotransplantation-induced	thrombocytopenia	
[72].	Gene	editors	enable	various	approaches	to	regulating	immune	
rejection.
Additional	major	hurdles	for	successful	xenotransplantation	are	

organ	size	and	the	elimination	of	porcine	endogenous	retrovirus	
(PERV).	Xeno-organs	donated	by	genetically	modified	pigs	car-

rying	the	genetic	background	of	domestic	pigs	can	grow	rapidly;	
this	can	generate	incompatibility	with	recipients	and	impair	their	
long-term	function	after	transplantation.	Growth	hormone	receptor	
(GHR)-deficient	pigs	with	reduced	organ	size	[73,	74]	and	subsequent	
GHR/GGTA1	double-knockout	pigs	expressing	the	human	cluster	of	
differentiation	(hCD46)	and	human	thrombomodulin	(hTHBD)	[75]	
have	been	generated	by	gene	editing.	This	approach	will	improve	
the	implementation	of	xenotransplantation.	Furthermore,	the	risk	of	
PERV	transmission	to	humans	after	xenotransplantation	is	a	concern	
[76,	77].	PERVs	constitute	an	integral	part	of	the	porcine	genome	and	
can	be	expressed	as	infectious	virus	particles.	Infection	by	PERVs	
in	human	cells	has	been	observed	using	in vitro	co-culture	assays,	
which	demonstrated	the	possibility	of	a	new	epidemic	infectious	
disease	induced	by	xenotransplantation.	PERVs	are	present	in	various	
proportions	in	the	whole	porcine	genome,	depending	on	the	pig	breed	

Table 1.	 Gene-edited	pigs	to	establish	models	for	intractable	diseases

Disease Gene	targeted Method Editor Reference
Cancer DAZL,	APC CT TALEN,	CRISPR Tan	et al.	(2013) [125]

RUNX3 SCNT CRISPR Kang	et al.	(2016) [126]
TP53 SCNT TALEN Shen	et al.	(2017) [127]
TP53 EP CRISPR Tanihara	et al.	(2018) [53]

Cardiomyopathy MYH7 SCNT TALEN Montag	et al.	(2018) [114]
SGCD SCNT TALEN Matsunari	et al.	(2020) [128]

Cryopyrin-associated	periodic	syndrome NLRP3 SCNT CRISPR Li	et al.	(2020) [116]
Diabetes INS SCNT CRISPR Cho	et al.	(2018) [129]

IAPP SCNT CRISPR Zou	et al.	(2019) [107]
PDX1 EP CRISPR Tanihara	et al.	(2020) [54]

Duchenne	muscular	dystrophy DMD CMI CRISPR Yu	et al.	(2016) [130]
Familial	hypercholesterolemia LDLR SCNT TALEN Carlson	et al.	(2012) [59]

ApoE,	LDLR SCNT CRISPR Huang	et al.	(2017) [131]
Human	Waardenburg	syndrome MITF SCNT,	CMI CRISPR Wang	et al.	(2015) [132]

MITF CMI CRISPR Hai	et al.	(2017) [133]
Hemophilia	B F9 SCNT CRISPR Chen	et al.	(2020) [134]
Huntington’s	disease HTT SCNT CRISPR Yan	et al.	(2018) [109]
Hutchinson–Gilford	progeria	syndrome NLRP3 SCNT CRISPR Dorado	et al.	(2019) [108]
Leigh	syndrome SURF1 SCNT TALEN,	CRISPR Quadalti	et al.	(2018) [135]
Marfan	syndrome FBN1 SCNT ZFN Umeyama	et al.	(2016) [136]
Ornithine	transcarbamylase	deficiency OTC SCNT TALEN Matsunari	et al.	(2018) [137]
Parkinson’s	disease GGTA1,	Parkin,	DJ-1 SCNT TALEN Yao	et al.	(2014) [138]

TYR,	PINK1,	PARK2 SCNT CRISPR Zhou	et al.	(2015) [139]
Parkin,	DJ-1,	PINK1 CMI CRISPR Wang	et al.	(2016) [101]
SCNA SCNT CRISPR Zhu	et al.	(2018) [115]

Phenylketonuria PAH CMI CRISPR Koppes	et al.	(2020) [140]
Polycystic	kidney	disease PKD1 SCNT ZFN He	et al.	(2015) [141]
von	Willebrand	disease vWF CMI CRISPR Hai	et al.	(2014) [48]
X-linked	severe	combined	immunodeficiency IL2RG SCNT ZFN Watanabe	et al.	(2013) [142]

IL2RG SCNT,	CMI CRISPR Kang	et al.	(2016) [143]
IL2RG CMI CRISPR Chen	et al.	(2019) [144]
IL2RG SCNT CRISPR Ren	et al.	(2020) [145]

CT,	chromatin	transfer;	SCNT,	somatic	cell	nuclear	transfer;	CMI,	cytoplasmic	microinjection;	EP,	electroporation.
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and	tissue	type,	making	the	inactivation	of	PERVs	a	difficult	task;	
however,	genome-wide	gene	editing	has	the	potential	to	eliminate	
PERVs	from	porcine	tissues.	Gene	editing	targeting	PERVs	has	been	
demonstrated	using	CRISPR/Cas9	[78,	79],	and	PERV-inactivated	
pigs	have	also	been	generated	using	SCNT	[80].	These	hurdles	have	
thus	been	partially	overcome	using	various	gene	editing	techniques	in	
pigs,	improving	the	feasibility	of	pig-to-human	xenotransplantation.
An	alternative	strategy	for	producing	functional	and	transplantable	

tissues	or	organs	is	to	build	interspecies	chimeras	at	the	embryonic	
level	by	blastocyst	complementation,	which	involves	the	injection	of	
human	ESCs	or	human	induced	pluripotent	stem	cells	into	genetically	
modified	porcine	embryos	lacking	the	ability	to	generate	specific	
organs.	Missing	organs	(empty	niches)	are	expected	to	develop	
from	these	injected	stem	cells,	resulting	in	the	generation	of	organs	
derived	from	human	cells.	A	proof-of-concept	has	been	established	
via	the	generation	of	functional	pancreases	in	mouse-rat	interspecific	
chimeras	[81].	Matsunari	et al.	demonstrated	the	compensation	of	
disabled	organogenesis	by	allogenic	blastocyst	complementation	in	
pigs	by	injecting	donor	blastomeres	into	gene-edited	host	embryos	
[82].	However,	at	present,	the	utilization	of	stem	cells	for	interspecies	
chimerism	is	quite	limited	with	respect	to	pigs	[83,	84].	Therefore,	
further	investigations	are	required.

Current Status and Future Prospects of  
Gene-edited Pigs

Figure	2	summarizes	recent	trends	in	the	number	of	articles	report-
ing	the	generation	of	genetically	modified	pigs	using	gene	editors	

available	via	PubMed.	The	search	terms	used	were	“pig,”	“ZFN,”	
“TALEN,”	and	“CRISPR”;	these	picked	up	studies	demonstrating	
the	production	of	gene-edited	pigs/fetuses.	The	gene	editors	(ZFN,	
TALEN,	and/or	CRISPR-related	systems)	and	methods	for	generat-
ing	gene-edited	pigs	(SCNT,	cytoplasmic	microinjection,	and/or	
electroporation)	used	in	the	studies	were	investigated.	Although	the	
introduction	of	gene	editors	during	embryogenesis	using	microinjec-
tion	or	electroporation	has	an	advantage	over	SCNT	with	respect	to	
the	simplicity	of	the	procedure,	the	use	of	SCNT	is	more	common.	
In	this	section,	we	discuss	the	limitations	and	future	prospects	of	
direct	gene	editing	during	embryogenesis.

Mosaicism
Genetic	mosaicism,	in	which	a	single	individual	carries	multiple	

genotypes,	contributes	to	the	inability	to	generate	mutant	pigs	via	
direct	gene	editing	during	embryogenesis	[85].	In	founder	animals,	
both	the	direct	injection	and	electroporation-mediated	introduction	
of	gene	editors	into	the	cytoplasm	often	induce	mosaicism	due	to	
the	delayed	expression	of	mRNA-related	gene	editors	or	remnant	
activity	of	the	gene	editors	throughout	the	cell	division	process	
[85–89].	Mosaicism	complicates	the	phenotypic	analyses	of	founders,	
which	require	the	F1	generation.	Owing	to	the	long	gestation	period	
and	time	to	reach	sexual	maturity	in	pigs,	production	of	the	F1	
generation	involves	a	tremendous	amount	of	time	and	cost,	seriously	
limiting	research	progress.	Mosaicism	is	detected	by	genotyping	
(e.g.,	by	the	detection	of	multiple	alleles,	typically	three	alleles	or	
more,	or	extreme	deviations	in	allele	frequencies).	We	investigated	
previous	examples	of	gene	modification	during	embryogenesis	by	

Fig. 2.	 Trends	 in	 recent	 reports	 on	 generating	 genetically	modified	pigs	 using	gene	 editors.	Number	 of	PubMed	 articles	 reporting	 the	 generation	 of	
genetically	modified	pigs	using	gene	editors	over	the	last	10	years	(2011–2020;	search	terms:	“pig,”	“ZFN,”	“TALEN,”	and	“CRISPR”).	(A)	Total	
number	of	articles.	(B)	Changes	in	the	number	of	articles	per	year,	including	information	on	gene	editors	and	the	method	used	to	generate	mutant	
pigs.	SCNT,	 somatic	 cell	 nuclear	 transfer;	CMI,	 cytoplasmic	microinjection	 into	 zygotes/embryos;	EP,	 electroporation	 into	 zygotes/embryos;	
CRISPR,	clustered	regularly	interspaced	short	palindromic	repeats;	Cas,	CRISPR-associated	protein;	TALEN,	transcription	activator-like	effector	
nuclease;	ZFN,	zinc	finger	nuclease.	Studies	using	multiple	gene	editors	or	multiple	methods	used	to	generate	mutant	pigs	were	classified	into	
each	relevant	category	and	were	therefore	double-counted.	Studies	using	CRISPR/Cas-related	methods	(e.g.,	Cas9	nickase	and	FokI-dCas9)	were	
classified	under	“CRISPR.”
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cytoplasmic	microinjection	or	electroporation	using	gene	editors,	
including	TALENs	and	ZFNs,	and	found	that	mosaicism	in	gene-edited	
offspring	was	reported	in	18	out	of	23	studies	(Table	2).	Mosaicism	
occurs	at	various	frequencies	[85],	and	the	type	of	gene	editor	and	
modification	[90,	91],	introduction	method,	animal	species,	and	
introduced	component	of	gene	editors	(e.g.,	expression	plasmid,	
mRNA,	and	protein/nuclease)	seem	to	be	potential	factors.
Appropriate	timing	of	the	introduction	of	gene	editors	during	

embryogenesis	is	considered	a	key	factor	in	reducing	mosaicism	
[87].	Microinjection	of	the	CRISPR/Cas9	system	into	the	cytoplasm	
of	germinal	vesicle-stage	oocytes	successfully	generated	non-mosaic	
genome-edited	porcine	embryos	[92].	Onuma	et al.	demonstrated	
that	microinjection	of	the	CRISPR/Cas9	system	during	meiotic	
maturation	preferentially	induces	heterozygous	mutations	without	
mosaicism	after	germinal	vesicle	breakdown	and	chromosome	

condensation	[93].	Conversely,	electroporation-mediated	gene	editing	
in	mature	oocytes	has	demonstrated	that	the	type	of	egg	may	influence	
development	after	electroporation	treatment	and	the	mutation	rate	in	
the	resulting	blastocyst;	however,	mosaicism	is	not	controlled	[94].	
A	simple	approach,	the	optimization	of	CRISPR/Cas9	component	
concentrations,	is	effective	in	increasing	gene	editing	efficiency	
in	cytoplasmic	microinjection	[95]	and	electroporation	[96].	Such	
strategies	will	improve	gene	editing	efficiency	during	embryogenesis.	
Further	optimization	of	the	methods	for	the	application	of	gene	
editors	in	pigs	is	required.

Multiple gene editing
Currently,	the	generation	of	multiple-gene-edited	pigs	is	an	im-

portant	research	goal	aimed	at	a	better	understanding	of	complex	
biological	processes	and	the	management	of	redundancies	and	

Table 2.	 Gene	editing	efficiency	and	mosaicism	of	resulting	offspring/fetuses	in	studies	using	cytoplasmic	microinjection-	or	electroporation-
mediated	gene	editing

Reference Method Gene	targeted Introduced	components
Gene-edited/
total	offspring	
and	fetuses	(%)

Mosaic/gene-edited	
(%)

ZFN
Lillico	et al.	(2013) [46] CMI RELA mRNA 1/9 (11.1) 0/1 (0)

TALEN
Lillico	et al.	(2013) [46] CMI RELA mRNA 8/39 (20.5) 2/8 (25.0)
Wang	et al.	(2016) [146] CMI B2M mRNA 6/7 (85.7) 3/6 (50.0)

CRISPR
Hai	et al.	(2014) [48] CMI vWF Cas9	mRNA	and	gRNA 11/16 (68.8) 2	or	more/11 (	-	)
Whitworth	et al.	(2014) [47] CMI CD163 Cas9	mRNA	and	gRNA 4/4 (100) 0/4 (0)

CD1D Cas9	mRNA	and	gRNA 4/4 (100) 1/4 (25.0)
Wang	et al.	(2015) [132] CMI MITF Cas9	mRNA	and	gRNA 2/2 (100) 0/2 (0)
Zhou	et al.	(2016) [23] CMI Sox10	(point	mutation) Cas9	mRNA	and	gRNA 12/12 (100) 8/12 (66.7)
Peng	et al.	(2015) [49] CMI recombinant	human	serum	

albumin	(knock-in)
Cas9	mRNA	and	gRNA 16/16 (100) 1/16 (6.25)

Wang	et al.	(2016) [101] CMI Parkin,	DJ-1,	PINK1 Cas9	mRNA	and	gRNA 2/2 (100) 0/2 (0)
Petersen	et al.	(2016) [66] CMI GGTA1 Plasmid 11/12 (91.7) 4/11 (36.4)
Yu	et al.	(2016) [130] CMI DMD Cas9	mRNA	and	gRNA 1/2 (50.0) 1/1 (100)
Kang	et al.	(2016) [143] CMI IL2RG Cas9	mRNA	and	gRNA 4/6 (66.7) 0/4 (0)
Park	et al.	(2017) [147] CMI NANOS2 Cas9	mRNA	and	gRNA 18/18 (100) 5/18 (27.8)
Wu	et al.	(2017) [148] CMI PDX1 Cas9	mRNA	and	gRNA 3/9 (33.3) 2/3 (66.7)
Hai	et al.	(2017) [133] CMI MITF Cas9	mRNA	and	gRNA 2/2 (100) 0/2 (0)
Hinrichs	et al.	(2018) [73] CMI GHR Cas9	mRNA	and	gRNA 3/8 (37.5) 0/3 (0)
Xiang	et al.	(2018) [149] CMI IGF2 Nickase	mRNA	and	gRNA 6/6 (100) 3/6 (50.0)
Whitworth	et al.	(2019) [150] CMI ANPEP Cas9	mRNA	and	gRNA 13/18 (72.2) 3/13 (23.1)
Tu	et al.	(2019) [151] CMI CMP-N-glycolylneuraminic	

acid	hydroxylase
Cas9	mRNA	and	gRNA 5/6 (83.3) 3/5 (60.0)

Chen	et al.	(2019) [144] CMI TYR,	IL2RG,	RAG1 Cas9	mRNA	and	gRNA 15/16 (93.8) 5/15 (33.3)
Tanihara	et al.	(2016) [52] EP MSTN Cas9	protein	and	gRNA 9/10 (90.0) 4/9 (44.4)
Tanihara	et al.	(2018) [53] EP TP53 Cas9	protein	and	gRNA 6/9 (66.7) 4/6 (66.7)
Tanihara	et al.	(2020) [54] EP PDX Cas9	protein	and	gRNA 9/10 (90.0) 4/9 (44.4)
Tanihara	et al.	(2020) [55] EP GGTA1 Cas9	protein	and	gRNA 5/6 (83.3) 2/5 (40.0)

CMI,	cytoplasmic	microinjection;	EP,	electroporation.	In	this	 table,	offspring/fetuses	carrying	three	alleles	or	more,	or	extreme	deviations	in	
allele	frequencies	are	denoted	as	mosaic.
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compensatory	changes	in	signaling	pathways.	Gene	editors	can	
induce	mutations	in	multiple	targeting	sites,	enabling	the	one-step	
generation	of	double-	and	triple-knockout	pigs	via	direct	introduction	
into	zygotes/embryos.	Multiple-gene-edited	animals	have	been	
generated	by	cytoplasmic	microinjection	of	CRISPR/Cas9	in	mice	
[97,	98],	rats	[99],	and	monkeys	[100].	In	pigs,	the	SCNT	technique	
is	the	primary	method,	as	described	above,	and	there	are	few	reports	
of	one-step	generation	of	multiple-gene-edited	pigs	by	microinjec-
tion	or	electroporation	[101].	As	the	number	of	simultaneously	
targeted	genes	increases,	the	risk	of	insufficient	gene	knockout,	
including	mosaicism,	will	also	increase.	The	investigation	of	in 
vitro	electroporation-mediated	multiple-gene	editing	has	progressed	
[102,	103].	The	reductions	in	mosaicism	and	the	optimization	of	
multiple-gene	editing	efficiency	in	zygotes/embryos	achieved	to	date	
are	inadequate;	highly	efficient	direct	gene	modification	is	expected	
to	be	achieved	in	the	near	future.

Knock-in during embryogenesis
Knock-in	of	transgene(s)	is	a	crucial	approach	for	the	genera-

tion	of	valuable	pigs	for	experimental	research,	such	as	those	with	
knock-in	of	human	complement	regulatory	proteins	(CD46,	CD55,	
CD59,	etc.)	to	reduce	complement	activity	in	xenotransplantation	
[41].	Although	most	knock-in	pigs	have	been	generated	by	SCNT	
using	gene-edited	somatic	cells	carrying	transgenes	as	donor	cells	
[31,	43,	44,	104–109],	cytoplasmic	microinjection	of	gene	editors	
can	also	be	used	to	successfully	generate	knock-in	pigs	[49,	110].	
However,	knock-in	pigs	have	not	been	successfully	generated	by	
electroporation-mediated	methods,	because	the	introduction	of	large	
transgenes	for	knock-in	is	difficult	using	electroporation	alone	in	
pigs,	as	described	above.	Direct	knock-in	during	embryogenesis	
using	gene	editors	has	a	wide	range	of	applications.	Although	HDR	
followed	by	DSBs	induced	by	a	gene	editor	facilitates	the	generation	
of	knock-in	animals,	the	HDR	efficiency	and	the	resulting	rate	of	
knock-in	events	are	low	[16],	in	contrast	to	the	high	efficiency	of	
Cas9	cleavage.	Accordingly,	the	system	needs	to	be	optimized	for	
practical	use.
Various	issues	need	to	be	resolved	to	achieve	electroporation-

mediated	knock-in	of	transgenes	into	zygotes/embryos.	Owing	
to	the	greater	sensitivity	of	in vitro-fertilized	porcine	zygotes	to	
electricity	compared	with	that	of	in vivo-derived	mouse	embryos	
[52,	56],	the	size	of	molecules	that	can	be	introduced	into	zygotes/
embryos	is	limited.	To	efficiently	deliver	knock-in	donor	DNA	
into	zygotes	without	mechanical	injury,	an	adeno-associated	viral	
(AAV)	vector	has	been	applied	in	mice	[111]	and	rats	[112]	without	
removing	the	zona	pellucida.	Although	AAV	vector-mediated	gene	
modification	in	porcine	cells	has	been	adapted	to	generate	mutant	
pigs	by	combining	it	with	SCNT	techniques	[113],	the	investigation	
of	gene	modification	during	embryogenesis	via	an	AAV	vector	is	
insufficient.	The	development	of	new	and	efficient	techniques	for	
delivering	large	molecules	into	zygotes	and	embryos	is	crucial.

Introduction of point mutations during embryogenesis
A	large	number	of	disease-causing	single-nucleotide	polymorphisms	

have	been	identified	in	humans.	Although	post-DSB	gene	corrections	
by	gene	editors	often	induce	random	insertions	and	deletions	at	
the	target	locus,	the	co-introduction	of	an	ssODN	as	a	template	

enables	the	introduction	of	point	mutations	in	precise	positions	via	
the	HDR	pathway.	In	the	use	of	gene	editors,	challenges	related	to	
the	establishment	of	human	disease	models	originating	from	point	
mutations	[23,	114–116]	and	humanized	pigs	expressing	human	
insulin	[117]	have	been	reported.	However,	the	SCNT	technique	was	
used	in	almost	all	of	these	studies	[114–117].	Inhibition	of	NHEJ	or	
enhancement	of	HDR	is	crucial	for	achieving	targeted	gene	knock-ins	
or	point	mutations	at	precise	positions	during	embryogenesis	[118].	
At	present,	the	low	frequency	of	HDRs	in	porcine	zygotes/embryos	
limits	the	utilization	of	this	methodology.	Despite	progress	in	trials	
aimed	at	enhancing	HDR	using	an	NHEJ	inhibitor	or	HDR	enhancer	
in	cell	lines	and	mouse/rabbit	embryos	[119],	studies	using	porcine	
zygotes/embryos	are	required.
The	CRISPR/Cas-mediated	base	editor	system,	another	approach	

for	the	introduction	of	a	point	mutation	at	a	precise	position	without	
dependence	on	HDR,	generates	mutations	at	a	single-base	level	[120,	
121].	Cytosine	base	editors	convert	targeted	C–G	base	pairs	to	T–A	
pairs,	and	adenine	base	editors	convert	targeted	A–T	pairs	into	G–C	
pairs	without	causing	DSBs.	Wang	et al.	demonstrated	base	editing	
in	porcine	fetal	fibroblast	cells	using	a	modified	base	editor	system	
[122],	and	Xie	et al.	generated	base-edited	pigs	via	cytoplasmic	
microinjection	and	SCNT	[123].	These	studies	further	support	the	
feasibility	of	using	pigs	as	human	disease	models.	Although	there	are	
some	technical	limitations,	such	as	insufficient	specificity,	protospacer	
adjacent	motif	(PAM)	compatibility	concerns,	and	a	narrow	active	
window	[124],	this	technology	has	the	potential	to	revolutionize	
gene	therapy	for	genetic	diseases	and	enable	the	efficient	generation	
of	animal	models	of	diseases.

Conclusion

Owing	to	the	development	of	gene-editing	technologies,	the	
generation	of	genetically	modified	pigs	has	dramatically	expanded.	
However,	some	limitations	remain.	SCNT	using	gene-edited	somatic	
cells	ensures	the	generation	of	desired	mutations	in	the	resulting	
pigs,	but	requires	sophisticated	techniques.	Microinjection-	and	
electroporation-mediated	gene	editing	are	simple	but	limited	by	
insecure	knockout/knock-in	efficiencies	and	mosaicism.	However,	
various	types	of	gene	editors	and	their	related	technologies	can	be	
effectively	applied	to	pigs	using	optimized	and	appropriate	methods	
for	introduction.	In	the	future,	gene	editors	will	enable	the	on-demand	
preparation	of	pigs	carrying	desired	mutations,	including	precise	
knock-ins.
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