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Abstract

Cellular function depends on heterogeneous dynamic intra-, inter-, and supramolecular

structure-function relationships. However, the specific mechanisms by which cellular func-

tion is transduced from molecular systems, and by which cellular dysfunction arises from

molecular dysfunction are poorly understood. We proposed previously that cellular function

manifests as a molecular form of analog computing, in which specific time-dependent state

transition fluxes within sets of molecular species (“molecular differential equations” (MDEs))

are sped and slowed in response to specific perturbations (inputs). In this work, we offer a

theoretical treatment of the molecular mechanisms underlying cellular analog computing

(which we refer to as “biodynamics”), focusing primarily on non-equilibrium (dynamic) inter-

molecular state transitions that serve as the principal means by which MDE systems are

solved (the molecular equivalent of mathematical “integration”). Under these conditions,

bound state occupancy is governed by kon and koff, together with the rates of binding partner

buildup and decay. Achieving constant fractional occupancy over time depends on: 1) equiv-

alence between kon and the rate of binding site buildup); 2) equivalence between koff and the

rate of binding site decay; and 3) free ligand concentration relative to koff/kon (n � Kd, where n

is the fold increase in binding partner concentration needed to achieve a given fractional

occupancy). Failure to satisfy these conditions results in fractional occupancy well below

that corresponding to n � Kd. The implications of biodynamics for cellular function/dysfunc-

tion and drug discovery are discussed.

Introduction

We proposed in our previous work [1] that time-dependent cellular function is derived from

a molecular form of analog computing [2,3], in which sets of coupled ordinary differential equa-

tions and their integral solutions are modeled physically by changes in the rates of buildup and

decay among the populations of biomolecular species to/from specific intra- and intermolecular
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states (the hardware and software are one and the same) (Fig 1). We referred to these constructs

as “molecular differential equations” (MDEs) [1], the major forms of which include:

Intramolecular:

dgiðtÞ
dt
¼ kin � species istate m½ � tð Þ � kout � species istate n½ � tð Þ ð1AÞ

Non-covalent intermolecular:

dgi� jðtÞ
dt

¼ kon � free species i½ Þ tð Þ � koff � free species j½ � tð Þ ð1BÞ

Fig 1. (A) Markovian state transition behavior exemplified for the human cardiac ether-a-go-go related gene (hERG)

potassium channel between closed (C1, C2, and C3), open (O) and inactivated states (I) underlying the state

probability curves in (B) [4]. The rate constants are labeled with Greek letters. (B) Molecular populations of hERG

“flow” from one specific state to another based on intrinsic voltage-dependent rates of entry and exit. Multiple fluxes

occur in parallel between specific states, speeding and slowing in response to dynamic perturbations. For example, the

open (orange) and inactive (blue) states are fed by the closed state (magenta); the open and closed states are fed by the

inactive state; and the inactive and closed states are fed by the open state. The time-dependent output of the overall

system (i.e. the membrane potential in this case) is solved in cardiomyocytes via integration of the full complement of

sodium, potassium, and calcium ion channel MDEs (which can be simulated using the O’Hara-Rudy model of the

human cardiac AP [5]).

https://doi.org/10.1371/journal.pone.0202376.g001

Binding under non-equilibrium conditions

PLOS ONE | https://doi.org/10.1371/journal.pone.0202376 November 1, 2018 2 / 31

https://doi.org/10.1371/journal.pone.0202376.g001
https://doi.org/10.1371/journal.pone.0202376


Enzyme-substrate:

dgi� jðtÞ
dt

¼ kon � free enzyme i½ � tð Þ � free substrate j½ � tð Þ � koff � enzyme i � substrate j½ � tð Þ � kcat

� enzyme i � substrate j½ � tð Þ ð1CÞ

where dγk(t)/dt represents the rates of non-equilibrium occupancy buildup and decay of state

k from one or more predecessor to one or more successor states. State transition rates are gov-

erned by adjustable barriers originating from intra- or intermolecular interactions (which we

referred to as “intrinsic rates”) and time-dependent changes in the concentrations or number

densities of the participating species (which we referred to as “extrinsic rates”) [1]. Molecular

populations “flow” over time in a transient (Markovian) fashion from one specific structural

state to another (Fig 1) in response to production/degradation or translocation-driven changes

in the levels of the participating species.

MDEs are “solved” by cells in aggregate for the corresponding time-dependent state occu-

pancies of the participating species {dγk(t)/dt, k = 1, n} (e.g. dynamic ion channel states and

currents, dynamic enzyme activation states, etc.), together with higher order (convergent)

properties that we refer to as Γa(t) (Fig 2). {γk(t),k = 1, n} and Γa(t) manifest as transient stimu-

lus-response-driven “action potential-like” waveforms, in which the intrinsic or extrinsic rates

of one or more MDEs are sped or slowed in response to Γa(t) [1].

Building on our previous work [1] and that of others [2,6–11], we have developed a com-

prehensive multi-scale (atomistic!molecular systems) first principles theory on the basic

mechanisms of cellular function that we refer to as “biodynamics” (Fig 3).

Our theory encompasses the major mechanisms by which:

1. MDEs are generated, powered, solved (integrated), and transduced into function at the

micro- and macro-cellular levels.

2. Cellular dysfunction results from molecular dysfunction and alterations in the correspond-

ing MDEs and Γa(t).

3. Cellular dysfunction can be mitigated by exogenously applied MDEs, consisting of drug-

target occupancy.

In our previous work, we described the putative mechanisms by which free energy is trans-

duced into non-equilibrium conditions and kinetic barriers (i.e. which we refer to here as

“energy dynamics”) [1,4,12–15], and exemplified cellular computing by way of the cardiac AP

[4] and a generic MAP kinase-phosphatase system [1]. In this work, we focus on binding as a

key “integrator” of MDE systems, and in particular, the specific implications of non-equilib-

rium conditions on occupancy of the bound states of both endogenous molecules and drugs

(i.e. the interplay between the “molecular dynamics” and “binding dynamics” branches of our

theory).

Non-equilibrium conditions are both promoted and exploited by cellular

systems

Rapid, transient perturbation-induced responses underlying cellular function depend on open

systems, in which mass (chemical precursors, degradation products, and other substances)

and energy are exchanged to/from the extracellular volume. Such responses are dampened by

reversibility in closed systems exhibiting mass and energy conservation, noting that some spe-

cies may undergo slow rates of buildup and decay when the overall response rate is slow. In

the classical equilibrium view, covalent or non-covalent states i and j are populated according
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to their free energy differences ({ΔGij}), such that the total free energy of the system is mini-

mized. Dynamic state transitions of the participating species necessarily depend on perturba-

tion-re-equilibration under this scenario, which is subject to the following limitations:

1. Perturbation-induced re-equilibration (i.e. equilibrium 1! equilibrium 2) is time-con-

suming, and therefore, poorly suited for rapid biological responses.

2. Optimization of complex equilibria is cumbersome and offers extremely limited evolution-

ary adaptability.

Molecular systems are displaced from equilibrium (analogous to strain) when the participating

species are continuously produced and degraded or translocated [16–21] (analogous to stress).

The resulting strain energy is proportional to the stress, analogous to that of a spring

stretched away from its equilibrium state. Reversibility (e.g. A + BÐ AB) is circumvented by

“tensioned” operation, in which ΔG is maintained permanently above zero via chemical or

physical entry and exit of the species to/from the system over time (sources and sinks) (Fig 4).

Fig 2. Cellular analog computing is based on the transduction of molecular state transitions into cellular function. MDEs {dγk(t)/dt, k = 1, n} are “solved” in

aggregate for the corresponding time-dependent state occupancies of the participating species {dγk(t)/dt, k = 1, n} (e.g. dynamic intra- and intermolecular states),

together with higher order properties that we refer to as Γa(t).The underlying MDEs accelerate or decelerate recursively in response to Γa(t) according to their specific

response mechanisms.

https://doi.org/10.1371/journal.pone.0202376.g002
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Fig 3. The six branches of biodynamics theory, which span the intra-/peri-cellular (micro-cellular) and macro-cellular levels (see text). Such processes can be

simulated using multi-scale modeling approaches, ranging from atomistic molecular dynamics-based [1] to “atom-less” time-dependent ODE-based simulations (“MDE

mimetics”) [1].

https://doi.org/10.1371/journal.pone.0202376.g003

Fig 4. Molecular species and states build and decay transiently (i.e. sources! sinks), thereby generating non-equilibrium conditions. Such conditions promote

unidirectional fluxes on which cellular analog computing is based.

https://doi.org/10.1371/journal.pone.0202376.g004
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The potential energy of a system under such conditions (ΔGnoneq) is given by:

DGnoneq ¼ Gstrain � Geq ð2Þ

where Gstrain is the strain energy, and Geq is the equilibrium free energy. Strained systems relax

via mass action upon release of the corresponding stress, wherein ΔGnoneq! 0, and the partici-

pating species transition toward their equilibrium state distributions (i.e. [species Astate i]/[spe-

cies Astate j] = Keq). Reversibility is conveyed indirectly through concurrent (but out-of-phase)

buildup and decay processes (e.g. A + B! AB; AB + C! A + B + C), which we refer to as

“dynamic counter-balancing” (“Ying-Yang”) (Figs 2 and 5). Examples include kinase- versus

phosphatase-mediated phospho-transfer and inward versus outward ion channel currents.

The Yin-Yang architecture serves to:

1. Prevent over- and undershooting desired γk(t) due to the exponential behavior of molecular

processes (noting that the integral solutions of MDEs are exponential functions). Yins and

Yangs are necessarily maintained in an out-of-phase relationship by way of “clocking” (e.g. a

phosphatase whose activation depends on a species whose buildup lags behind its target kinase).

2. Restore the initial conditions of the system.

The widespread practice of measuring biochemical (and even cellular and in vivo) effects as

a function of free ligand concentration, rather than occupancy per se, reflects the extent to

which the equilibrium assumption is relied upon throughout the biological sciences. However,

our results suggest that time-independent equilibrium metrics of state occupancy are poor

approximations to actual occupancy under cellular conditions in vivo when the rates of bind-

ing partner buildup and decay are fast.

Materials and methods

We derived two complementary analytical expressions capturing the simultaneous exponential

buildup and decay of the binding site (molecular dynamics) and bound state (binding dynam-

ics) based on a simplified second order non-competitive interaction scheme:

Bfree þ L
!
kon

 
koff

C ð3Þ

where kon is the association rate constant, koff is the dissociation rate constant, and Bfree, C, and

L are the free binding site, free ligand, and bound state concentrations, respectively. The rate

of change of C (the mathematical equivalent of a binding MDE) is given by:

dCðtÞ
dt
¼ kon � Bfree tð Þ � L � koff � C tð Þ ð4AÞ

Solution of this equation is facilitated by the following assumptions:

1. Molecular response is proportional solely to dynamic fractional occupancy, which in some

cases, may depend additionally on the binding mode (e.g. agonist, partial agonist, inverse

agonist, and antagonist in the case of receptors).

2. The total binding site level (Btotal(t)) is conserved instantaneously, wherein:

BfreeðtÞ¼ BtotalðtÞ � CðtÞ ð4BÞ

Binding under non-equilibrium conditions
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Fig 5. (A) Buildup and decay of a Yin (typically an enzyme), together with its substrate, product (and substrates thereof),

Yang across their accessible states, as depicted by a plumbing system consisting of pipes, vessels, and valves. A given

function-generating system is constituted from an interdependent collection of m such systems. Each system is

maintained at non-equilibrium (analogous to “pressurization”) via continuous inputs and outputs of molecular species

(“fluxes”). The dynamic fluid levels within the (n �m) member vessels of the overall system, which define its

instantaneous state, are solved by integration of the m MDE collections ({dγk(t)/dt = rate of entry to state k–rate of exit

from state k}i, where k = 1, 2, 3, . . ., n, and i = 1, 2, 3, . . ., m). The vessels may be connected in series or parallel. The flow

rates to/from each vessel depend on the input and output valve settings (representing both the intrinsic and extrinsic free

energy barriers in this simplified example), which are governed by the overall state of the system (constituting a feedback

loop). (B) Dynamic counter-balancing prevents runaway exponential growth and decay of molecular species and state

levels. The rates of buildup and decay consist of the net difference in Yin and Yang rates over time. The Yin-Yang balance

is tipped toward the Yin during the buildup phase (left side of the blue curve) and toward the Yang during the decay

phase (right side of the blue curve). The absolute rates of species or state level changes are irrelevant, except in cases

where runaway behavior is functionally desirable (e.g. caspase activation). The overall buildup-decay cycle length is

denoted as Λ, noting that long lived species or states likely result from slow decay rather than slow buildup (which would

otherwise dampen the maximum level). Fast buildup has important implications for bound state occupancy, which are

discussed later in the text.

https://doi.org/10.1371/journal.pone.0202376.g005
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Substituting Bfree(t) in Eq 4A with Eq 4B leads to:

dCðtÞ
dt
¼ kon � ðBtotal tð Þ � C tð ÞÞ � L � koff � C tð Þ ð5Þ

3. That cellular systems operate in the transient regime, in which state population levels build

and decay cyclically over time (although quasi-equilibrium operation is possible in some

cases).

4. Buildup of Btotal(t) consists of the separate synthesis of the biomolecule (typically a protein)

and generation of its binding-competent structural state. We further assume that state tran-

sitions occur on a timescale� the rate of synthesis of the binding site-containing species.

5. Both free and ligand-bound binding sites are lost during degradation, whereas, in practice,

different rates of degradation of the bound and unbound states are possible.

6. Btotal(t) builds and decays exponentially via two distinct processes:

a. Production and degradation of the binding site-containing species, or inter-compart-

mental transfer to/from the site of action, whichever is slower.

b. Formation and loss of the binding competent structural state.

7. That Btotal(t) builds to the equilibrium level (B1) at t =1.

8. That buildup and decay can be treated as separate sequential processes. Although Btotal(t)
builds and decays simultaneously, net buildup occurs prior to B1, followed by net decay.

Possible forms of the buildup term include exponential growth (Eq 6A), positive exponen-

tial decay (Eq 6B), or logistic growth (Eq 6C). Possible forms of the decay term include

exponential (Eq 6D) or logistic (Eq 6E) decay (multiphasic exponential growth and decay

behaviors are also conceivable):

Buildup

BtotalðtÞ ¼ B1 � ðe
ki �t � 1Þ; t < x ð6AÞ

BtotalðtÞ ¼ B1 � ð1 � e� ki�tÞ; t < x ð6BÞ

Btotal tð Þ ¼
B1

ð1þ e� ki �ðt� t01ÞÞ
; t < x ð6CÞ

Decay

BtotalðtÞ ¼ B1 � e
� k� i �ðt� xÞ; t � x ð6DÞ

Btotal tð Þ ¼ B1 � 1 �
1

ð1þ e� k� i �ðt� t02ÞÞ

� �

; t � x ð6EÞ

where B1 is Btotal at t =1, ki and k-i are the buildup and decay rate constants, respectively,

ξ is a characteristic time at which the function switches from net buildup to net decay, and

t01 and t02 are the times at which the logistic curves reach 50% of their dynamic range dur-

ing buildup and decay, respectively. We chose to approximate the buildup and decay phases

of the binding site-containing species using Eq 6B (based on [22]) and 6D, and the buildup

and decay phases of the binding site using Eqs 6C and 6E (Fig 6), which roughly approxi-

mates the state probability curves shown in Figs 1B and 2A.

Binding under non-equilibrium conditions
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9. k−i defines the lower limit of koff (i.e. koff is “hijacked” by the rate of binding site decay),

necessitating correction of koff and Kd in cases where koff< k−i:

k0off ¼ koff ðwhere koff > k� iÞjk� i ðwhere koff� k� iÞ

K 0d ¼ k0off=kon

10. L is fixed at a constant concentration (Lo). In practice, L is expected to build and decay

dynamically, which serves to further constrain the buildup of the bound state.

Scenario 1: Putative production and degradation of binding site-containing

species

Substituting Eqs 6B and 6D into Eq 5 leads to:

dCðtÞ
dt
¼ kon � B1 � L0 � 1 � e� ki �t

� �
� C tð Þ � kon � L0 þ k0off

� �
t < x

dCðtÞ
dt
¼ kon � B1 � L0 � e

� k� i �ðt� xÞ � C tð Þ � kon � L0 þ k0off
� �

t � x
ð7Þ

8
>><

>>:

where ξ is the time required to reach equilibrium binding (conventionally referred to as the

“settling time”). The net flux switches from buildup to decay at this time. ξ is defined conven-

tionally as the time to reach 0.95 � B1 (which we refer to as Bmax), given that B1 is only asymp-

totically reached over long time periods [22], whereas Bmax is reached over finite times.

Fig 6. The buildup and decay phases of Btotal(τ) simulated using Eqs 6B and 6D (scenario 1). The maximum Btotal(τ)

is normalized to 1.0, and always occurs at the normalized time τ = 3. The curve adopts a canonical “saw-tooth”

morphology.

https://doi.org/10.1371/journal.pone.0202376.g006
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Solving for tsettling leads to:

Bmax ¼ B0:95 ¼ B1 � ð1 � e� ki �tsettling Þ ð8AÞ

0:95 ¼ 1 � e� ki �tsettling ! x ¼ tsettling ¼ � ln
ð0:05Þ

ki
ffi

3

ki
ð8BÞ

Eq 7 can be recast in dimensionless form to facilitate parameter-independent occupancy

comparison, reduce the dimensionality of the system, and allow grouping of the rate terms:

dcðtÞ
dt
¼ a � 1 � e� tð Þ � c tð Þ � aþ bð Þ t < �x

dcðtÞ
dt
¼ a � e� g�ðt� �xÞ � c tð Þ � aþ bð Þ t � �x

ð9Þ

8
>><

>>:

where c ¼ C
Bmax

; t ¼ ðki � tÞ; a ¼
kon�L0

ki
; b ¼

k0off
k� i
; g ¼

k� i
ki

, and �x = 3. Solving Eq 9 for c(τ) leads to:

c tð Þ ¼
a � el1 �t

ðaþ bÞ � ðaþ b � 1Þ
�

a � el2 �t

aþ b � 1
þ
a � el3

aþ b
t < �x

c tð Þ ¼
0:95 � c1
aþ b � 1

� e� ðaþbÞ�ðt� �xÞ � a � eðaþb� gÞ�ðt� �xÞ þ b � g
� �

t � �x

ð10A � 10BÞ

8
>>><

>>>:

where λ1 = −(α + β), λ2 = −1, and λ3 = 0. The behavior of Eq 10A as a function of α and β can

be described as follows:

α + β> 0 (satisfied when α� β)! stable conditions.

α = β! kon � L0 = koff and cancellation of ki. Under these conditions, Eq 10A reduces to:

c tð Þ ¼
e� 2�a�t

2 � ð2 � a � 1Þ
�

a�e� t

2 � a � 1
þ

1

2
ð11AÞ

the first term of which undergoes rapid decay at α≳ 10 (translating to konSS
¼ kon≳10 � ki=Lo,

where L0 = n � Kd
0), resulting in:

c tð Þ ffi � 0:5 � e� t þ
1

2
ð11BÞ

Constant fractional occupancy exists at all time points of Eq 11B, which we define as the

steady-state occupancy (SSO) profile. Conversely, variable time-dependent fractional occu-

pancy occurs at α< 10, which we define as the non-steady-state occupancy (nSSO) profile.

Unlike the equilibrium case, an asymmetric relationship exists between kon and L0 in govern-

ing dynamic occupancy, which follows from the requirement that α = β≳ 10. The nSSO pro-

file prevails at all non-saturating L0 in the absence of α = β≳ 10. For example:

1. α = β = 1 at L0 = 1x10-9 M, kon = 1x105 M-1 s-1, koff = 1x10-4 s-1, and ki = 1x10-4 s-1 (noting

that only α = β is satisfied in this case).

2. α = 10 and β = 1 at L0 = 1x10-8 M, kon = 1x105 M-1 s-1, koff = 1x10-4 s-1, and ki = 1x10-4 s-1

(noting that only α≳ 10 is satisfied in this case).

Binding under non-equilibrium conditions
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α + β� 1! rapid decay of the first term in Eq 10A, which at infinite time, reduces to the

equilibrium case:

cðtÞ
t;�x!1

¼ c1 ¼
a

aþ b
¼

kon � L0

kon � L0 þ koff
¼

on� rate
on� rateþ off � rate

ð12Þ

We assume that species or state population levels� 50% of Bmax make significant contribu-

tions to cellular function, translating to a “functional” buildup + decay time window:

L ¼
3

ki
�

lnð2Þ
ki

� �� �

þ
lnð2Þ
k� i

ð13Þ

where ki and k−i likely range between ms-1 (e.g. voltage-gated ion channels) to hr-1.

Scenario 2: putative buildup and decay of the binding competent state

Substituting Eqs 6C and 6E into Eq 5 leads to:

c tð Þ ¼
a � e� t01

aþ bþ 1
�½et�2F1 1; aþ bþ 1; aþ bþ 2; � et� t01ð Þ � e� t�ðaþbÞ�2F1 1; aþ bþ 1; aþ bþ 2; � e� t01ð Þ t < �xð14AÞ

c tð Þ ¼
e� ðt� xÞ�ðaþbÞ

aþ b
�½c1 � aþ bð Þ þ a � eðt� xÞ�ðaþbÞ�2F1 1; aþ b; aþ bþ 1; � et� t02 � x

� �
� a�2F1 1; aþ b; aþ bþ 1; � e� t02ð Þ

�
t � �xð14BÞ

where 2F1(a,b;c;x) denotes the hypergeometric function (Fig 7). Unlike Eq 6B, Eq 6C contains

a lower asymptote, which approaches zero along the negative time axis. We set Btotal(τ = 0) to

5% of its full maximum value, and then calculated τ01, τ02, and �x (the normalized settling time

corresponding to Bmax = 95% of the final value), as follows:

Btotal tð Þ ¼
1

1þ e� ðt� t01Þ
! 0:05 ¼

1

1þ et01
! t01 ¼ lnð19Þ � 2:94 ð15Þ

�x ¼ 3þ t01 � 5:94 ð16Þ

t02 ¼ 3þ �x � 8:94 ð17Þ

We solved Eq 14 both analytically and numerically using Wolfram Alpha (Wolfram

Research, Champaign, IL, 2017) and MATLAB (Version 9.2a, The MathWorks, Inc., Natick,

MA 2017), respectively. As for scenario 1, we assume that species levels or state

populations� 50% of Bmax make significant contributions to cellular function, which leads to

the following expression for Λ:

L ¼ 2 � lnð2Þ=ki ð18Þ

Comparison of equilibrium versus non-equilibrium occupancy

Static non-competitive, non-cooperative occupancy (γ) under equilibrium conditions can be

described by the following form of the Hill equation [23]:

g ¼ Lo=ðLo þ KdÞ ð19Þ

where Lo = n � Kd. Fractional occupancy under the non-equilibrium SSO profile (c(τ)) is con-

stant over time, and is also described by Eq 19. However, Kd is non-equivalent under equilib-

rium versus non-equilibrium conditions:

Binding under non-equilibrium conditions

PLOS ONE | https://doi.org/10.1371/journal.pone.0202376 November 1, 2018 11 / 31

https://doi.org/10.1371/journal.pone.0202376


Equilibrium: Kd = koff/kon! absolute occupancy = γ � Bo, where Bo is the fixed binding site

concentration.

Non-equilibrium SSO: Kd0 ¼
k0off
konSS
¼

Lo�k0off
10�ki
! absolute occupancy = γ � Btotal(t). Achieving

the SSO profile depends on in-step buildup and decay with Btotal(t), which in turn, depends on

kon� konSS
.

Non-equilibrium nSSO:Kd
0 = the upper limit of fractional occupancy at Bmax. nSSO occurs

at all kon < konSS
, irrespective of k0off and Kd

0. The quasi-steady-state occupancy profile is

achieved at near saturating Lo levels (referred to hereinafter as qSSO).

We assume the most biologically and pharmacologically desirable profile consists of SSO

(i.e. where the intrinsic and extrinsic rates are tuned), which gives rise to constant fractional

occupancy (Bfree(t)/Btotal(T)) over time. However, the other profiles may suffice in cases where

cellular function or pharmacological/toxic effects are driven by peak, rather than sustained

occupancy (e.g. ion channel blockade vis-à-vis pro-arrhythmia [4]), which necessarily coin-

cides with Cmax.

Characterization of dynamic binding site occupancy under conditions of

time-dependent binding site availability

We used Eqs 10 and 14 to explore the effect of decreasing Λ (and, in particular, speeding ki) on

achieving the SSO versus nSSO profile as a function of:

Λ: 83,000 hr (equilibrium) to 300 ms (the approximate timescale of ion channel transi-

tions), sampled as noted.

Kd
0 (for reference): fixed at 1 nM, except where otherwise noted.

Fig 7. The buildup and decay phases of Btotal(τ) simulated using Eqs 6C and 6E (scenario 2). The maximum Btotal(τ)

is normalized to 1.0, and always occurs at τ = 6. The morphology approximately resembles that of the state transition

curves in Figs 1B and 2A, keeping in mind that the plot is normalized in all cases to a uniform width of τ = 12 at all Λ.

https://doi.org/10.1371/journal.pone.0202376.g007
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kon: 1x109 (diffusion limit) to 1x103 M-1 s-1, sampled as noted.

k0off : 1x100 to 1x10-6 s-1, sampled as noted.

L0: sampled at 1 nM (i.e. 50% occupancy at equilibrium, equating to 0.95 � 50% in our

model), 19 nM (95% occupancy at equilibrium, equating to 0.95 � 95% in our model), as well

as other concentrations (as noted).

Key limitations of our approach

Our generalized analytical occupancy relationships avoid assumptions about the specific

dynamic mechanisms driving binding site availability. However, such simplified relationships

are subject to certain limitations compared with Markov-based simulation models tailored to

specific cellular systems (e.g. as was used in our previous work [1,4]), including the potential

for underestimated sensitivity of dynamic occupancy to decreasing Λ resulting from: 1) the

use of fixed free ligand concentration (where ligand and binding site buildup may or may not

occur in phase); and 2) neglect of competition with endogenous molecules that may also build

and decay over time.

Results

Whereas static occupancy can be quantified using the Hill, Michaelis-Menten, and similar

algebraic expressions, quantification of dynamic occupancy necessitates more complex time-

dependent differential equation-based models. However, detailed knowledge of the participat-

ing species, parameters (e.g. rate constants), and initial conditions (e.g. states and species lev-

els) is needed to fully implement such models. We set about in this work to characterize the

relationships between intrinsic and extrinsic rates and SSO versus nSSO profiles using a set of

closed form dimensionless relationships that we derived for this purpose (described in Materi-

als and methods).

Scenario 1

In this scenario, binding site lifetimes are assumed to depend on the rates of production and

degradation of binding site-containing species versus formation and decay of the binding-

competent state (i.e. transition to the binding competent state fully mirrors the buildup and

decay of the species). k0off=kon ¼ L0 was maintained in all cases, except as otherwise noted. We

characterized the sensitivity of c(τ) to kon and koff as a function of decreasing Λ based on the

following criteria:

1. The non-equilibrium threshold of Λ at which occupancy becomes kinetically- versus Kd-

driven (i.e. the equilibrium regime).

2. The approximate kon and k0off required to achieve 50% and 95% occupancy under SSO con-

ditions (L0 = Kd
0 and 19 � Kd

0, respectively).

3. The fold-increase in L0 required to approach the qSSO profile.

The results are summarized below and in Table 1.

The equilibrium regime. The equilibrium regime extends from Λ> 83,333 hr (ki = k−i =

1x10-8 s-1), at which c(τ) is fully independent of absolute koff and kon (constrained in our study

to koff/kon = Kd), converging in all cases to the SSO profile (Fig 8). Under these conditions, the

bound fraction is 50% or 95% (L0 = 1 nM or 19 nM, respectively) at all instants of time, and c
(τ) exhibits the signature “saw-tooth” morphology of Btotal(τ). The quasi-equilibrium regime

resides between 833 < Λ< 83,333 hr (Fig 9A).
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The non-equilibrium regime. c(τ) enters the non-equilibrium regime in our model at

Λffi 833 hr (ki = k−i = 1x10-6 s-1), where the SSO profile is achieved at kon� konSS
= 1x104 M-1 s-1

(Fig 9). Suboptimal kon results in the nSSO profile and loss of the signature saw-tooth morphol-

ogy. c(τ) lags behind, and decays ahead of Btotal(τ), and c50 and c95 are no longer achieved.

Higher steady-state occupancies are achieved with decreasing Λ and kon in the range of

1x105 to 1x107 M-1 s-1 (Fig 10).

Additional simulation results as a function of Λ, kon, and koff are provided in the Supple-

mentary Information (S1 and S4 Figs).

Achieving the SSO profile depends on fast kon, even for long-lived binding sites. We

assume that long lifetimes of cognate partners are achieved via fast buildup and slow decay of

the binding-competent structural state or species levels, the latter of which may consist of syn-

thesis and degradation or inter-compartmental shuttling (noting that species dilution caused

by cell growth is not necessarily well described by our exponential functions). As is apparent

from Fig 11, achieving steady-state occupancy remains dependent on kon� konSS
, even at very

slow binding site decay rates. At kon< konSS
, c(τ) may converge to Btotal(τ) far beyond the Bmax

time point.

Scenario 2

Binding site buildup and decay in this scenario are assumed to depend on fast conformational

dynamics relative to the lifetime of the binding site-containing species, which may range case-

by-case from ms (e.g. voltage-gated ion channels) to hr. We assume that scenarios 1 and 2 play

different roles in biodynamics (i.e. the generation of non-equilibrium conditions and MDEs,

respectively). However, our overall conclusions do not depend on this assumption. As for sce-

nario 1, we set about to characterize the effect of decreasing time-dependent binding site avail-

ability on c(τ).

The hypothetical equilibrium regime. As for scenario 1, the SSO profile is achieved in

the equilibrium case in a kinetics-agnostic manner (Λ = 3,851 hr and ki = k−i = 1x10-7 s-1) (S5

Fig). Under these conditions, the bound fraction is 50% or 95% (L0 = 1 nM or 19 nM,

Table 1. Approximate konSS values needed to achieve the SSO profile as a function of ki, calculated from 10 � ki/L0, where L0 = Kd and koff� k−i (noting that koff is not

hijacked under these conditions).

Λ ki
(s-1)

Buildup t1/2 k−i
(s-1)

Kd = koff/kon
(nM)

koff = Kd � kon
(s-1)

~ konSS
(M-1 s-1)

83,333 hr 1x10-8 19,254 hr 1x10-8 1 - -

833 hr 1x10-6 192.5 hr 1x10-6 1 1x10-5 1x104

83 1x10-5 19.25 hr 1x10-5 1 1x10-4 1x105

8.33 hr 1x10-4 1.9 hr 1x10-4 1 1x10-3 1x106

50 min 1x10-3 11.6 min 1x10-3 1 1x10-2 1x107

5 min 1x10-2 1.16 min 1x10-2 1 1x10-1 1x108

30 s 1x10-1 6.9 s 1x10-1 1 1x100 1x109§

3 s 1x100 0.69 s 1x100 1 1x101 1x1010§

300 ms 1x101 69 ms 1x101 1 1x102 1x1011§

199 hr 1x10-4 1.9 hr 1x10-6 1 1x10-3 1x106

20 hr 8x10-4 14.4 min 1x10-5 1 1x10-2 1x107

2.1 hr 3x10-3 3.9 min 1x10-4 1 1x10-1 1x108

§Exceeds the diffusion limit (further gains in c(τ) are necessarily driven by L0).

https://doi.org/10.1371/journal.pone.0202376.t001
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respectively) at all instants of time, and c(τ) exhibits the same signature bi-sigmoidal morphol-

ogy as that of Btotal(τ) (S5 Fig).

The non-equilibrium regime. As for scenario 1, faster kon is needed to achieve the SSO

profile as ki becomes progressively faster. The nSSO profile, and loss of the signature bi-sig-

moidal c(τ) morphology, result from suboptimal kon. In such cases, cmax may no longer reach

Fig 8. (A) Plot of Btotal(τ) (gray), c(τ) (red), and Bfree(τ) (obscured by c(τ)). ki = k−i = 1x10-8 s-1, Λ = 83,333 hr, and L0 = Kd = 1

nM, which yields 50% SSO at all times (denoted by equal lengths of the vertical arrows above and below their respective

centroids), irrespective of kon and koff (holding Kd constant at 1 nM). (B) Same as A, except with L0 = 19 � Kd, which yields the

expected SSO = 95%.

https://doi.org/10.1371/journal.pone.0202376.g008
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c50 or c95, and c(τ) lags behind, and decays ahead of Btotal(τ). c(τ) enters the non-equilibrium

regime at Λffi 833 hr (ki = k−i = 1x10-6 s-1), where a minimum kon of ~1x105 M-1 s-1 is required

to fully achieve the SSO profile (Fig 12).

Additional simulation results as a function of Λ, L0, kon, and koff are provided in S6 and S7

Figs.

The implications of binding dynamics for known short-lived binding sites

We next assessed the implications of binding dynamics for hERG channel blockade and LDL

receptor (LDL-R) binding to wild type (wt) versus the disease-causing gain-of-function D374Y

mutant form of PCSK9.

PCSK9-LDL receptor. We characterized PCSK9-LDL-R dynamic occupancy based on

our scenario 1 model and the pH-dependent binding kinetics data reported in [12] (summa-

rized in Table 2). Rapid buildup of PCSK9 can be inferred from its observed ~5 min half-life

[24], which is driven by zymogen activation [25] rather than de novo expression (as may be the

case for many short Λ species). Negligible PCSK9-LDL-R occupancy at neutral pH follows

from the exceptionally high Kd relative to circulating plasma PCSK9 (which ranges between

30–3,000 ng/ml in humans (~405 pM to 40.5 nM) [26]), suggesting that extracellular binding

depends on other factors. Binding and LDL-R degradation have indeed been shown to depend

on heparin sulfate proteoglycans present on the extracellular surface of hepatocytes [27]. On

the other hand, significant nSSO is achieved at the upper end of the concentration range for

both wt and mutant forms of PCSK9 at lysosomal pH (Fig 13), suggesting that gain-of-func-

tion mutations act either through relatively small increases in dynamic occupancy relative to

wt, or through some other means (e.g. by slowing PCSK9 degradation).

hERG channel blockade by non-trappable compounds. Certain hERG blockers are

trapped within closed channels (which we refer to as “trappable”), whereas others are expelled

during channel closing (which we refer to as “non-trappable”) [4,28]. Trappable blocker occu-

pancy builds to Kd
0 (the specific time-dependence of which depends on kon), whereas that by

Fig 9. (A) Plot of Btotal(τ) (gray), c(τ) at a fixed L0 = Kd = 1 nM and Λ = 8,333 hr (ki = k−i = 1x10-7 s-1), in which kon was sampled between 1x103 M-1 s-1 to 1x105 M-1 s-1

(solid lines color-coded from blue to red as a function of increasing kon), and Bfree(τ) (dotted lines color coded the same as c(τ)). c(τ) diverges slightly from SSO at kon =

1x103 M-1 s-1. (B) Same as A, except Λ = 1,667 hr (ki = k−i = 5x10-7 s-1, konSS
= 1x103 M-1 s-1). (C) Same as A, except Λ = 833 hr (ki = k−i = 1x10-6 s-1, konSS

= 1x104 M-1 s-1).

(D) Same as A, except Λ = 167 hr (ki = k−i = 5x10-6 s-1, konSS
= 5x104 M-1 s-1). (E) Same as A, except Λ = 3 hr (ki = k−i = 1x10-5 s-1, konSS

= 1x105 M-1 s-1). (F) Same as A,

except Λ = 8.3 hr (ki = k−i = 1x10-4 s-1, konSS
= 1x106 M-1 s-1). (G) Same as A, except Λ = 50 min (ki = k−i = 1x10-3 s-1, konSS

= 1x107 M-1 s-1). (H) Same as A, except Λ = 5

min (ki = k−i = 1x10-2 s-1, konSS
= 1x108 M-1 s-1). kon = 1x105 M-1 s-1, the fastest kon sampled at this ki (1,000-fold< konSS

), results in nearly zero occupancy.

https://doi.org/10.1371/journal.pone.0202376.g009
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non-trappable blockers builds and decays during each gating cycle. The ultrashort ~350 ms

lifetime of the open and inactivated channel states results in koff hijacking, in which k0off ¼

koff≳
k� i
3
� 0:693 s� 1ð Þ and koff� k−i (~2 s−1) for the trappable and non-trappable cases, respec-

tively [4]. In our previous work, we characterized the dynamic occupancy of a set of hypotheti-

cal non-trappable blockers using an alternate model, consisting of the O’Hara-Rudy action

potential (AP) simulator, in which we replaced the Hodgkin-Huxley hERG model with a

Fig 10. (A) Plot of Btotal(τ) (gray), c(τ) at a fixed L0 = Kd = 1 nM and Λ = 8.3 hr (ki = k−i = 1x10-4 s-1, konSS
= 1x106 M-1 s-1), in which kon was

sampled between 1x105 M-1 s-1 to 1x107 M-1 s-1 (solid lines color-coded from blue to red according to increasing kon), and Bfree(τ) (dotted lines

color coded the same as c(τ)). (B) Same as A, except Λ = 50 min (ki = k−i = 1x10-3 s-1). (C) Same as A, except Λ = 5 min (ki = k−i = 1x10-2 s-1 konSS
=

1x108 M-1 s-1). (D) Same as A, except Λ = 30 s (ki = k−i = 1x10-1 s-1, konSS
= 1x109 M-1 s-1). (E) Same as A, except Λ = 3 s (ki = k−i = 1x100 s-1, konSS

=

1x1010 M-1 s-1). kon = 1x107 M-1 s-1, the fastest kon sampled at this ki (1,000-fold< konSS
), results in nearly zero occupancy.

https://doi.org/10.1371/journal.pone.0202376.g010
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Markov state model incorporating blocker binding [4]. Here, we used the predicted pro-

arrhythmic n � Kd
0 versus n � Kd as a function of kon, koff, and k0off as a metric of dynamic occu-

pancy, and qualitatively compared the results with our binding dynamics models (Fig 14 ver-

sus S6 Fig and Table 3 versus Table 1).

Implications of binding dynamics for drug discovery

Both drug-target and endogenous time-dependent binding partner occupancy are described

by similar biodynamics principles. Namely:

1. Extrinsic rates: the rates of buildup and decay of the binding site and ligand, which may

vary with conditions.

2. Intrinsic rates: kon and koff, which may also vary with conditions.

3. Fractional occupancy at each instant of time (c(τ)). It is reasonable to assume that molecular

response (both efficacious and toxic) depends on c(τ)� a fractional occupancy threshold

during each binding site buildup/decay cycle (in general, ranging from a small fraction to

nearly 100%, case-by-case).

Fig 11. (A) Plot of Btotal(τ) (black), Bfree(τ) (blue), and c(τ) (gold) for Λ = 199 hr (ki = k−i = 1x10-4 s-1 1x10-6 s-1, konSS
= 1x106 M-1 s-1), L0 = Kd = 1 nM, koff = 1x10-5 s-1,

and kon = 1x104 M-1 s-1. (B) Same as A, except Λ = 199 hr (ki = 1x10-4 s-1, k−i = 1x10-6 s-1, konSS
= 1x106 M-1 s-1), koff = 1x10-3 s-1, and kon = 1x106 M-1 s-1. In this example,

approximate SSO is achieved at this kon. (C) In this example, kon is too slow to keep up with Btotal(τ), but c(τ) converges to steady-state during the decay phase. Same as

A, except Λ = 20 hr (ki = 8x10-4 s-1, k−i = 1x10-5 s-1, konSS
= 1x106 M-1 s-1), koff = 1x10-3 s-1, and kon = 1x106 M-1 s-1. (D) Same as A, except Λ = 2.1 hr (ki = 3x10-3 s-1, k−i =

1x10-4 s-1, konSS
= 1x107 M-1 s-1), koff = 1x10-3 s-1, and kon = 1x106 M-1 s-1. Approximate SSO is achieved at this kon.

https://doi.org/10.1371/journal.pone.0202376.g011
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Our results suggest the paramount importance of tuning kon and koff to the rates of binding

site buildup and decay, respectively, for achieving the Goldilocks zone of efficacious target

occupancy and target/off-target selectivity (Fig 15). Constant maximal fractional occupancy is

maintained under the SSO profile at the lowest possible L (where c(τ) depends solely on L = n �
Kd). On the other hand, fractional occupancy in the qSSO regime approaches a constant level

only under saturating conditions (i.e. at n >> 1) (S3 Fig). Target/off-target selectivity may be

compromised with the nSSO profile, depending on the ratio of Kd(target)/Kd(off−target), keeping

in mind that nSSO may exist for the target, and SSO for one or more off-targets and/or com-

peting endogenous substrates.

Tuning kinetics to the qSSO profile. Optimization of drug koff or “residence time” (i.e.

t1/2 = ln(2)/koff) does not translate to increased occupancy when koff< ki (unless k−i is slowed

in the bound state). We used Eq 10 to test the effect of slowing koff under qSSO versus SSO

conditions (i.e. kon< kon_ss versus kon� kon_ss) at constant Kd (Fig 16).

Lastly, we used Eq 10 to test the effect of increasing L0 toward the qSSO profile at kon<
kon_ss (Fig 17 and S2 Fig).

Fig 12. (A) Plot of Btotal(τ) (gray), c(τ) at a fixed L0 = 1 nM and Λ = 3,851 hr (ki = k−i = 1x10-7 s-1), in which kon was sampled between 1x103 M-1 s-1 to 1x105 M-1 s-1

(solid lines color-coded from blue to red according to increasing kon), and Bfree(τ) (dotted lines color coded the same as c(τ)). The c(τ) are beginning to diverge from the

steady-state at this Λ. (B) Same as A, except Λ = 385 hr (ki = k−i = 1x10-6 s-1). (C) Same as A, except Λ = 3.85 hr (ki = k−i = 1x10-4 s-1). (D) Same as A, except Λ = 23.1 min

(ki = k−i = 1x10-3 s-1). kon = 1x105 M-1 s-1, the fastest kon sampled at ki = k−i = 1x10-2 s-1, results in nearly zero occupancy (not shown).

https://doi.org/10.1371/journal.pone.0202376.g012
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The putative effects of competition and drug pharmacokinetics (PK) on drug-target

occupancy. Although we have not considered the effects of endogenous ligand competition

and time-dependent drug concentration (L(t)) on dynamic drug-target occupancy, these fac-

tors can only serve to further increase kon_ss. The rates of binding site and drug buildup within

the target-containing compartment (which may or may not be slower than the rate of drug

buildup within the central compartment) should ideally be synchronized to ensure that L is

always� Kd. Fractional drug-target occupancy is decreased by Le � Ki/Ke in the presence of

endogenous ligand competition, as is apparent from the following equation [23]:

g ¼ L= Lþ Ki þ
Ki � Le

Ke

� �� �

ð20Þ

where Le, Ke, and Ki are the free endogenous ligand concentration and Kd, and inhibitory drug

Kd, respectively. For example, drug SSO = 50% is achieved at L50 = Ki + Le when Ki = Ke, and

L50 further increases with increasing Le (or synchronization with binding site buildup) and/or

Table 2. Measured binding kinetics data for wt and D374Y mutant PCSK9- LDL-R [12]. Fold differences between kon and koff for D374Y versus wt are shown in paren-

thesis, noting that the t1/2 of the bound complex is similar to that of wt PCSK9, but considerably longer than that of the D374Y mutant (which is likely subject to koff hijack-

ing). The ratio of konSS
=kon was calculated based on konSS

= 1x108 M-1 s-1, corresponding to ki = 1x10-2 s-1 (predicted from Eq 13 under the assumption that ki = k−i).

wt D374Y

pH 7.4 pH5.3 pH 7.4 pH5.3

kon
(M-1 s-1)

1.86x103 4.73x105 4.57x103

(+2.5-fold)

6.74x105

(+1.4-fold)

konSS
=kon 53,763 211 21,881 148

koff
(s-1)

1.17x10-3 1.97x10-3 4.64x10-4

(-2.5-fold)

3.64x10-4

(-5.4-fold)

k0off
(s-1)

1.17x10-3 1.97x10-3 2.3x10-3§ 2.3x10-3§

Kd
(M)

628x10-9 4.19x10-9 101x10-9 0.54x10-9

Kd
0

(M)

628x10-9 4.19x10-9 503x10-9 3.4x10-9

§Similar clearance rates are assumed for both mutant and wt PCSK9.

https://doi.org/10.1371/journal.pone.0202376.t002

Fig 13. (A) Plot of the hypothetical Btotal(τ) (gray) and c(τ) for PCSK9 and PCSK9-LDL-R binding at a fixed PCSK9 L0 = 1 nM, Λ = 5 min (ki = k−i = 1x10-2 s-1), and the

kon and koff values given in Table 2 (solid lines color-coded as follows: wt/pH 7.4 dark blue (not visible); wt/pH 5.3 purple; D374Y/pH 7.4 cyan; D374Y/pH5.3 green),

and Bfree(τ) (dotted lines color coded the same as c(τ)). Simulated occupancy is essentially zero for both wt and mutant PCSK9 at neutral pH, whereas negligible nSSO is

achieved at low pH. (B) Same as A, except L0 = 0 nM. Moderate nSSO is achieved at low pH (maximum occupancy = 68% versus 75% for the wt and mutant forms,

respectively). (C) Same as A, except L0 = 40.5 nM. High nSSO is achieved at low pH, where the gap between wt and mutant forms narrows to only a few percent at all

time points (maximum occupancy = 82% versus 85% for the wt and mutant forms, respectively).

https://doi.org/10.1371/journal.pone.0202376.g013
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decreasing Ke. It is further apparent that qSSO is achieved at higher L than in the non-competi-

tive case, and that competition between endogenous ligand binding via the SSO profile would

be greatly favored over inhibitory drug binding via the nSSO profile (more the reason for opti-

mizing to kon� kon_ss).

The binding kinetics profiles of marketed drugs are consistent with non-equilibrium

drug-target binding. We set about to test the relative importance of kon_ss versus koff in the

human setting using measured kon and Kd data curated by Dahl and Akrud for 32 marketed

drugs [29] (reproduced in Table 4). We assume that marketed drugs observe steady-state or

Fig 14. (A) Plot of dynamic fractional hERG occupancy in mid-myocardial (M) cells by a hypothetical non-trappable

blocker exhibiting kon = 1x105 M-1 s-1 and koff = 5x10-1 s-1 (Kd = 5 μM and K 0d = 20 μM) sampled at 10 and 25 μM

(green solid and dashed curves, respectively). The total dynamic binding site level consists of the sum of the open/

conducting and inactivated channel populations (gray dotted, solid, and dashed curves corresponding to 0, 10, and

25 μM blocker concentrations, respectively). The overall shape of the channel state population curves qualitatively

resembles our logistic model (in which ki is very fast), noting that recovery from inactivation (the decay region of the

curves) is slowed by blockade due to the smaller contribution of the hERG current to the membrane potential, which

in turn, alters the response of the channel population (consistent with the recursive effect depicted in Fig 2). The

blocker occupancy curves reflect nSSO occupancy at kon = 1x105 M-1 s-1 (where kon << konSS
, as suggested from

Table 1), and the peak occupancy is far below 50% at 5 μM. Nevertheless, even transient fractional occupancy

approaching the ~45% level can be highly pro-arrhythmic [4]. (B) Plot of Btotal(τ) (gray), Bfree(τ) (blue) and c(τ) (gold)

simulated using our logistic model (scenario 2) for a hERG blocker exhibiting Kd = 5 μM (kon = 1x105 M-1 s-1 and koff =

0.5 s-1) and [free blocker] = 10 μM. ki and k−i were set to 13 s-1 and 2.1 s-1, respectively, so as to reproduce Bmax at τ�
50 ms and Λ� 350 ms. Btotal(τ) and c(τ) are qualitatively similar to the curves in A.

https://doi.org/10.1371/journal.pone.0202376.g014

Binding under non-equilibrium conditions

PLOS ONE | https://doi.org/10.1371/journal.pone.0202376 November 1, 2018 21 / 31

https://doi.org/10.1371/journal.pone.0202376.g014
https://doi.org/10.1371/journal.pone.0202376


quasi-steady-state occupancy for targets with fast ki and k−i, or bind to targets that build and

decay slowly (i.e. kinetics-agnostic occupancy). The data can be summarized as follows:

1. kon ranges between 1.4x101 and 9.2x107 M-1 s-1, with kon� 1x105 M-1 s-1 occurring in ~72%

of the cases, sufficient for achieving the SSO profile for binding site buildup times between

1 m ≲ t1/2 ≲ 19 h (blue text in Table 4).

2. koff ranges between 4.8x10-6 and 2.8 s-1, with koff< 3.9x10-4 s-1 (t1/2 ≳ 30 min) occurring in

~47% of the cases (green text in Table 4).

3. Kd< 1 nM was achieved in ~44% of the cases (red text in Table 4), which is due to koff<
3.9x10-4 s-1 in 57% of those cases (i.e. extreme potency is not driven by slow koff).

4. koff> 3.9x10-4 s-1 and kon> 1x105 M-1 s-1 (i.e. kon-driven occupancy) occurs in ~44% of the

cases.

5. koff< 3.9x10-4 s-1 and kon< 1x105 M-1 s-1 (i.e. koff-driven occupancy) occurs in only ~19%

of the cases, of which 4 are receptors, 2 are NS3 protease, and 1 is HIV-1 RT (noting that

Table 3. L0 (expressed as n � Kd and n � Kd
0) for a set of hypothetical hERG blockers resulting in the pro-arrhythmic fractional channel occupancy levels predicted

from our AP simulations. Blocker Kd = 5 μM in all cases, where kon ranges between 1x104 and 1x109 M-1 s-1 and koff between 0.005 and 5,000 (noting that the pro-arrhyth-

mic occupancy level increases as koff speeds). n � Kd was back-calculated from the predicted pro-arrhythmic occupancy using Eq 19.

kon (M-1 s-1) 1x104 1x105 1x106 1x107 1x108 1x109

koff (s-1) 5x10-2 5x10-1 5x100 5x101 5x102 5x103

k0off (s-1) 2 2 2 2 2 2

Fractional pro-arrhythmic hERG occupancy (%) 42 45 53 54 55 55

n � K 0d! pro-arrhythmic occupancy (M) 2.6x10-4 2.9x10-5 7.8x10-6 6.2x10-6 6.0x10-6 6.0x10-6

n � Kd! pro-arrhythmic occupancy (M) 3.6x10-6 4.1x10-6 5.7x10-6 5.9x10-6 6.1x10-6 6.1x10-6

https://doi.org/10.1371/journal.pone.0202376.t003

Fig 15. Hypothetical plot of drug L versus time (red), showing a series of buildup-decay cycles (one per dose)

culminating in a steady-state condition, together with the efficacious threshold of L (green), the safe upper limit

of L (orange), and the toxic level of L (red). L is maintained in the efficacious/sub-toxic “green zone” by overshooting

and decaying back to the efficacious level. Optimizing to the SSO regime affords the greatest chance of achieving a

therapeutic index in humans.

https://doi.org/10.1371/journal.pone.0202376.g015
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kon is near our cutoff in the receptor ligand telmisartan, and the NS3 inhibitor ciluprevir

exhibits fast kon).

These observations (and numbers 4 and 5 in particular) are consistent with our claim that

high dynamic occupancy under non-equilibrium conditions found in vivo depends first and

foremost on fast kon, and further suggest that the rates of buildup of many of the targeted bind-

ing sites are� 1x10-5 s-1 (based on Table 1), assuming that kon was, in fact, wittingly or unwit-

tingly optimized to kon_ss. This contrasts with the claim of Dahl and Akrud [29] and Folmer

Fig 16. Plot of Btotal(τ) (gray), c(τ) at L0 = koff/kon =1 nM and Λ = min (ki = k−i = 1x10-2 s-1), in which koff and kon were

sampled at 5x10-1 s-1/5x108 M-1 s-1 (blue), 5x10-7 s-1/5x105 M-1 s-1 (magenta), 5x10-2 s-1/5x108 M-1 s-1 (cyan), and 5x10-5

s-1/5x108 M-1 s-1 (olive) (solid lines), and Bfree(τ) (dotted lines correspond to the c(τ) color scheme). c(τ) is unaffected by

slowing koff (magenta curve) when kon< konSS
. However, when kon� konSS

, c(τ) increases when koff is further slowed (e.g.

5x10-1 s-1! 5x10-2 s-1 (cyan curve) and 5x10-1 s-1! 5x10-5 s-1 (olive curve)).

https://doi.org/10.1371/journal.pone.0202376.g016

Fig 17. (A) Plot of Btotal(τ) (black), Bfree(τ) (blue), and c(τ) at L0 = 0.5 � Kd = 0.5 nM and Λ = 5 min (ki = k−i = 1x10-3 s-1, konSS
= 1x108 M-1 s-1), where koff = 1x10-1 s-1/kon

= 1x108 M-1 s-1 (gold). (B) Same as A, except at L0 = Kd =1 nM, and koff = 3x10-4 s-1/kon = 3x105 M-1 s-1. Although c(τ) reaches ~c31 in both cases, the steady-state

scenario in A reaches ~c31 at all instants of time (an example of kinetically tuned binding), whereas the nSSO scenario results in considerably greater Bfree(τ) prior to

cmax (an example of non-kinetically tuned binding). (C) Plot of Btotal(τ) (gray), c(τ) at Kd = 1 nM, Λ = 5 min (ki = k−i = 1x10-3 s-1, konSS
= 1x108 M-1 s-1), koff = 1x10-5 s-1,

and kon = 1x104 M-1 s-1, in which L0 was sampled between 1 nM and 2 μM (solid lines), and Bfree(τ) (dotted lines correspond to the c(τ) color scheme). Slow kon is only

compensated at sufficiently high L0, which in this case, approaches SSO conditions at L0 = 1 μM.

https://doi.org/10.1371/journal.pone.0202376.g017
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[30] that the drugs were optimized on the basis of Kd (noting that Folmer acknowledges the

greater contribution of fast kon over slow koff to drug success [30]).

Discussion

The fundamental mechanisms by which molecular properties are transduced into cellular

structure-function are poorly understood. Molecules are an unruly lot, whose states are dis-

tributed randomly in the absence of transducible energy inputs to achieve maximal configu-

rational entropy. The relevant energy inputs consist largely of: 1) H-bond losses and gains

among solvating water molecules (versus other liquid solvents) underlying intra- and intermo-

lecular free energy barriers; and 2) continual/continuous production and decay of the partici-

pating species needed to maintain non-equilibrium conditions. Furthermore, out of phase

Table 4. Published kon, koff, and Kd values for a set of marketed drugs [29]. The drugs are grouped by target. Cases of Kd< 1 nM are underlined, kon> 1x105 M-1 s-1 are

shown in bold, and t1/2 > 30 min are italicized.

Drug Target kon
(M-1 s-1)

koff
(s-1)

t1/2

(min)

Kd
(M)

Aliskiren Renin 4.00E+05 1.1E-04 105 3.00E-10

Aclidinium Muscarinic M3 receptor 1.10E+06 2.0E-05 578 1.80E-11

Ipratropium Muscarinic M3 receptor 4.10E+06 1.1E-03 11 2.60E-10

Tiotropium Muscarinic M3 receptor 7.60E+05 7.2E-06 1604 9.50E-12

Candesartan Human angiotensin II type 1 receptor 2.60E+04 1.9E-04 61 7.40E-09

Telmisartan Human angiotensin II type 1 receptor 9.10E+04 1.5E-04 77 1.70E-09

Granisetron 5-HT3 7.50E+05 7.5e-04 15 1.00E-09

Lapatinib ERBB2/EGFR 1.30E+04 3.9e-05 296 3.00E-09

Desloratadine Histamine H1 receptor 3.20E+04 3.2e-05 361 1.00E-09

Amlodipine L-type calcium channel 1.50E+05 3.0E-04 39 2.00E-09

Verapamil L-type calcium channel 9.20E+07 2.8E0 0.004 3.00E-08

Phenytoin Na+ channel 2.50E+04 5.0E-01 0.02 2.00E-05

Amprenavir HIV-1 protease 4.40E+06 4.9E-03 2 1.10E-09

Atazanavir HIV-1 protease 1.70E+06 6.9E-04 17 4.00E-10

Indinavir HIV-1 protease 1.50E+06 1.6e-03 7 1.10E-09

Lopinavir HIV-1 protease 6.60E+06 6.5E-04 18 1.00E-10

Ritonavir HIV-1 protease 3.90E+06 2.2E-03 5 6.10E-10

Saqunavir HIV-1 protease 8.20E+05 2.3E-04 50 3.20E-10

Nelfinavir HIV-1 protease 6.60E+05 6.7E-04 17 1.60E-09

Boceprevir Hepatitis C virus nonstructural protease (NS3) 2.40E+03 4.9E-05 236 2.00E-08

Ciluprevir Hepatitis C virus nonstructural protease (NS3) 9.10E+05 7.3E-04 16 6.20E-09

Telaprevir Hepatitis C virus nonstructural protease (NS3) 2.20E+03 9.6E-05 120 4.30E-08

Deoxy-conformycin Adenosine deaminase 2.40E+06 4.8E-06 2,406 2.00E-12

Efavirenz HIV-1 reverse transcriptase 1.40E+01 6.8E-05 170 5.00E-06

Elvitegravir HIV integrase 2.10E+06 8.3e-03 1 4.00E-09

Raltegravir HIV integrase 2.50E+05 2.5e-03 5 1.00E-08

Methotrexate Chicken dihydrofolate reductase 3.70E+07 3.3e-04 35 9.00E-12

Trimethoprim Escherichia coli dihydrofolate reductase 7.20E+07 1.4e-03 8 2.00E-11

Oseltamivir Viral neuraminidase 7.90E+05 2.5e-04 46 3.10E-10

Saxagliptin Human dipeptidyl- peptidase IV 1.60E+05 5.4e-05 214 3.50E-10

Vildagliptin Human dipeptidyl- peptidase IV 8.70E+04 9.8e-04 12 1.10E-08

Triclosan Enoyl-ACP reductase and Francisella tularensis 8.20E+06 4.2e-04 28 5.10E-11

https://doi.org/10.1371/journal.pone.0202376.t004

Binding under non-equilibrium conditions

PLOS ONE | https://doi.org/10.1371/journal.pone.0202376 November 1, 2018 24 / 31

https://doi.org/10.1371/journal.pone.0202376.t004
https://doi.org/10.1371/journal.pone.0202376


dynamic counter-balancing is essential for overcoming the inherent susceptibility of exponen-

tial molecular state transitions to under- and overshooting (suggesting a putative architecture

of cellular function-generating systems, consisting of Yins, Yangs, and clocks). Our biodynam-

ics theory is aimed at capturing such principles at both the atomistic molecular and non-atom-

istic multi-molecular systems levels (beyond conventional mass action kinetics). Multiple

levels of integrated dynamic contributions underlying cellular function, dysfunction, pharma-

codynamics, and drug PK are addressed by our theory, the implications of which are summa-

rized in the following sections.

The rates of change in binding partner levels/states are sensed via binding

dynamics

The bound fraction of binding or catalytic sites can be calculated under strictly equilibrium

conditions using the Hill and Michaelis-Menten equations, respectively. However, binding

sites undergo transient buildup and decay driven by synthesis/degradation, translocation, or

conformational state transitions to/from their binding-competent states. The lifetimes of

many proteins range from single-digit minutes to hours [21] (e.g. PCSK9 is on the order of 5

min [24], and tumor cell line-derived NIK ranges from ~5–30 min [31]). The lifetimes of bind-

ing competent states can range from μs (e.g. mRNA) or ms (e.g. voltage-gated ion channels) to

the lifetime of the molecule itself. Here, we have shown that dynamic occupancy is greatly

influenced by the time window of binding site availability, where the SSO profile is only

achieved when kon is on the order of ki. We assume that the association and dissociation rate

constants for endogenous partners are kinetically tuned to the dynamic ranges of Btotal(t) and

L(t). Perturbations to partner states/levels can be sensed through binding dynamics, and spe-

cifically, kinetic tuning/de-tuning of C(t) via:

1. Modulation of the maximum time-dependent binding partner levels (Btotal(t)) (the “extrin-

sic” rates [1]).

2. Slowing/speeding of ki and k−i thereby shifting the kon threshold for achieving the SSO pro-

file (i.e. konSS
) or the qSSO profile.

3. Modulation of partner-specific association and dissociation rate constants (kon and koff)
(the “intrinsic” rates [1]).

Sensitivity of cellular function to the bound state depends on:

1. The dynamic range in Btotal(t):

a. Constitutively low Btotal(t) levels may result in undetectable levels of the bound state.

b. Constitutively high Btotal(t) levels may result in reduced sensitivity of the bound state to

changes in concentration of the other partner(s).

2. kon (subject to allosteric modulation, case-by-case).

a. Very fast kon (>> kon_ss) diminishes the sensitivity of the bound state to changes in part-

ner concentration.

b. Very slow kon (<< kon_ss) may result in undetectable levels of the bound state at lower

partner concentrations.

We assume that cellular systems operate within the binding sensitive regime, such that the

buildup and decay of binding partners and the bound states thereof remain in phase over time.

Although we have assumed a constant free ligand concentration in constructing our analytical
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dynamic occupancy expressions, it is apparent that this condition rarely occurs in vivo (noting

that buildup and decay of the binding partners may proceed at different rates, and in an in- or

out-of-phase relationship). As such, variable ligand concentration introduces potentially far

greater kinetic demands on dynamic occupancy, which is likely underestimated in our approach.

The implications of biodynamics for pharmacodynamics and drug

discovery

Efficacious and toxic drug levels are conventionally defined in terms of the equilibrium sce-

nario (Eq 20), which rests on the assumptions that drug-target occupancy, drug exposure

within the target compartment (typically intra- or extracellular), and target level are quasi-

time-independent quantities, when in fact, they are not:

1. Biomolecular species underlying cellular function undergo continuous production/degra-

dation and state transitions (including drug targets).

2. Drug levels build and decay based on PK principles (S7 Fig).

3. Drug-target binding builds and decays based on binding dynamics principles.

4. Drug-target binding alters the rates of dysfunction promoting processes (i.e.

pharmacodynamics).

Pharmacodynamics may be taken as the mitigation of Yin-Yang imbalances [1] via the

insertion of one or more exogenous MDEs into afflicted system(s) (where inhibition and stim-

ulation effectively slow and speed target buildup, respectively). As for endogenous complexes:

1. Buildup of drug-target occupancy is on-rate driven, and the bound state must rebuild with

each target buildup/decay cycle due to loss of the bound drug-target population.

2. On-rate may be driven by kon and/or free drug concentration.

3. The SSO profile is achievable, in practice, for kinetically tuned binding, in which kon is opti-

mized to� konSS
, as dictated by the lifetime of the target or binding site (Fig 18). Under

Fig 18. Optimization of dynamic occupancy is achieved by first speeding kon to� konSS
(based on the binding site

lifetime), followed by slowing koff to k−i, a process we refer to as “kinetic tuning.” The ultimate objective is to achieve

the highest occupancy at the lowest free drug concentration (i.e. the SSO profile), affording the greatest chance for

achieving a therapeutic index in humans.

https://doi.org/10.1371/journal.pone.0202376.g018
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these conditions, efficacious or toxic occupancy, which can conceivably vary from << 50%

to 95+% is expected at a free drug concentration = n � Kd (e.g. n = 19 yields 95% occupancy),

noting that the putative safe range of trappable hERG blocker occupancy ranges between

0–3% [4]. Conversely, achieving the qSSO profile (converging to ~95% occupancy) may

require considerably larger n than the SSO profile.

4. In the absence of kinetic tuning, the SSO profile is unachievable via escalation of drug con-

centration, although the qSSO profile is conceivable at sub-toxic exposures. This constitutes

a potential source of in vitro-in vivo disconnects and clinical failures due to loss of the thera-

peutic index. The worst-case scenario consists of a drug that is kinetically mistuned to its

target, while being kinetically tuned to one or more off-targets, and that competes for the

target with an endogenous kinetically tuned partner.

5. Residence time (i.e. ln(2)/koff below the rate of binding site decay adds no benefit to occu-

pancy (target dynamics are not considered by other workers advocating koff optimization

[32,33]).

Conclusion

In our previous work [1], we outlined a first principles theoretical framework (referred to

herein as biodynamics) that explains the general mechanisms of cellular analog computing on

the basis of non-equilibrium biomolecular state transitions, as well as the key implications of

our theory for:

1. The transformation of chemical systems into living cells capable of maintaining non-equi-

librium conditions, harnessing exponential behavior, and exploiting water H-bond energy

to generate state transition barriers.

2. The origin of disease-causing cellular dysfunction (Yin-Yang imbalances), and the pharma-

cological mitigation thereof (insertion of exogenous MDEs capable of fully or partially

restoring the normal Yin-Yang balance).

The current work is focused on the interplay between two key biodynamics contributions

consisting of molecular dynamics and binding dynamics. We used a simplified analytical

model that qualitatively captures these contributions to explore the possible effects of non-

equilibrium conditions (namely, binding site buildup and decay) on dynamic occupancy. Our

results suggest that:

1. Achieving the SSO profile as a function of diminishing binding site lifetime depends on

increasingly faster kon (noting that nSSO! the qSSO profile is achievable only at high L
compared with SSO).

2. Nature has likely tuned kon to achieve SSO or qSSO binding for endogenous partners (i.e.

maximal binding efficiency).

Our findings challenge the conventional equilibrium binding paradigm on which much of

modern drug discovery is based, as follows:

1. Knowledge of target and binding site buildup and decay rates is essential for achieving the

SSO profile on a non-trial-and-error basis.

2. Binding site lifetimes ranging from single-digit hours to milliseconds require increasingly

faster kon to achieve the SSO profile (i.e. kinetic tuning versus potency optimization).
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3. Increased drug exposure (i.e. PK) is a poor substitute for kinetically tuned binding, in

which the qSSO profile is only asymptotically approached. As such, dose escalation during

clinical trials is an extremely risky proposition from the safety standpoint.

Supporting information

S1 Fig. (a) Plot of Btotal(τ) (gray), c(τ) at a fixed L0 = Kd =1 nM and Λ =50 min (ki = k−-

i = 1x10-3 s-1, konSS
= 1x107 M-1 s-1), in which kon was sampled between 1x107 M-1 s-1 to

1x109 M-1 s-1 (solid lines color-coded from blue to red according to increasing kon), and

Bfree(τ) (dotted lines color coded the same as c(τ)). (b) Same as (a), except Λ = 5 min (ki = k−-

i = 1x10-2 s-1, konSS
= 1x108 M-1 s-1). (c) Same as (a), except Λ = 30 s (ki = k−i = 1x10-1 s-1,

konSS
= 1x109 M-1 s-1). (d) Same as (a), except Λ = 3 s (ki = k−i = 1x100 s-1, konSS

= 1x1010 M-1

s-1). (e) Same as (a), except Λ = 300 ms (ki = k−i = 1x101 s-1, konSS
= 1x1011 M-1 s-1).

kon = 1x109 M-1 s-1, the fastest kon sampled at this ki (which is 100-fold < konSS
), results in

nearly zero occupancy.

(TIF)

S2 Fig. (a) Plot of Btotal(τ) (gray), c(τ) at a fixed L0 = 19 � Kd = 19 nM and Λ = 50 min (ki = k

−i = 1x10-3 s-1), in which kon was sampled between 1x103 to 1x105 M-1 s-1 (solid lines color-

coded from blue to red according to increasing kon), and Bfree(τ) (dotted lines color coded

the same as c(τ)). (b) Same as (a), except Λ = 5 min (ki = k−i = 1x10-2 s-1, konSS
= 1x108 M-1 s-

1). (c) Same as (a), except Λ = 5 min (ki = k−i = 1x10-2 s-1) and L0 = 100 nM. kon = 1x105 M-

1 s-1, the fastest kon sampled at this ki (which is 1,000-fold< konSS
), fails to achieve the SSO

profile. (d) Same as (c), except L0 = 200 nM.

(TIF)

S3 Fig. (a) Plot of Btotal(τ) (gray), c(τ) at a fixed L0 = 19 � Kd = 19 nM and Λ =50 min (ki = k

−i = 10−3 s-1, konSS
= 1x107 M-1 s-1), in which kon was sampled between 1x105 to 1x107 M-1

s-1 (solid lines color-coded from blue to red according to increasing kon), and Bfree(τ) (dotted

lines correspond to the c(τ) color scheme). (b) Same as (a), except Λ = 5 min (ki = k−i = 1x10-

2 s-1, konSS
= 1x108 M-1 s-1). (c) Same as (a), except Λ = 300 ms (ki = k−i = 1x101 s-1, konSS

=

1x1011 M-1 s-1) and L0 = 2 μM. Equilibrium occupancy (c95) is achieved at the fastest kon

sampled (1x106 to 1x107 M-1 s-1), with the exception of Λ = 300 ms (ki = 1x101 s-1), which

only reaches qSSO (even at L0 > 25 μM).

(TIF)

S4 Fig. (a) Plot of Btotal(τ) (gray), c(τ) at a fixed L0 = 19 �Kd = 19 nM and Λ = 50 min (ki = k

−i = 1x10-3 s-1, konSS
= 1x107 M-1 s-1), in which kon was sampled between 1x107 to 1x109 M-

1 s-1 (solid lines color-coded from blue to red according to increasing kon), and Bfree(τ) (dot-

ted lines correspond to the c(τ) color scheme). b) Same as (a), except Λ = 5 min (ki = k−-

i = 1x10-2 s-1, konSS
= 1x108 M-1 s-1). (c) Same as (a), except Λ = 30 s (ki = k−i = 1x10-1 s-1,

konSS
= 1x109 M-1 s-1).

(TIF)

S5 Fig. Plot of Btotal(τ) (gray), c(τ) at a fixed L0 = 1 nM and Λ = 38,508 hr (ki = k−i = 1x10-8

s-1), in which kon was sampled between 1x103 M-1 s-1 to 1x105 M-1 s-1 (solid lines color-

coded from blue to red according to increasing kon), and Bfree(τ) (obscured by c(τ)).

(TIF)
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S6 Fig. (a) Plot of Btotal(τ) (gray), c(τ) at a fixed L0 = 1 nM and Λ = 3.85 hr (ki = k−i = 1x10-4

s-1), in which kon was sampled between 1x104 M-1 s-1 to 1x109 M-1 s-1 (solid lines color-

coded from blue to red according to increasing kon), and Bfree(τ) (dotted lines color coded

the same as c(τ)). (b) Same as (a), except Λ = 2.3 min (ki = k−i = 1x10-2 s-1). (c) Same as (a),

except Λ = 13.9 s (ki = k−i = 1x10-1 s-1). (d) Same as (a), except Λ = 1.39 s (ki = k−i = 1x100 s-

1). (e) Same as (a), except Λ = 139 ms (ki = k−i = 1x101 s-1).

(TIF)

S7 Fig. Plot of Btotal(τ) (gray), c(τ) at a fixed Kd = 1 nM, Λ = 2.3 min (ki = k−i = 1x10-2 s-1),

koff = 1x10-5 s-1, and kon = 1x104 M-1 s-1, in which L0 was sampled between 1 nM and 500

nM (solid lines), and Bfree(τ) (dotted lines color coded the same as c(τ)). kon < konSS
is only

compensated at sufficiently high L0, which in this case, qSSO at L0 = 500 nM.

(TIF)
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