
The role of hydrogen sulphide signalling in macrophage activation
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Summary

Hydrogen sulphide (H2S) is the latest identified small gaseous mediator

enabled by its lipophilic nature to freely permeate the biological mem-

branes. Initially, H2S was recognized by its roles in neuronal activity and

vascular relaxation, which makes it an important molecule involved in

paracrine signalling pathways. Recently, the immune regulatory function

of gasotransmitters, H2S in particular, is increasingly being appreciated.

Endogenous H2S level has been linked to macrophage activation, polariza-

tion and inflammasome formation. Mechanistically, H2S-induced protein

S-sulphydration suppresses several inflammatory pathways including NF-

jB and JNK signalling. Moreover, H2S serves as a potent cellular redox

regulator to modulate epigenetic alterations and to promote mitochon-

drial biogenesis in macrophages. Here in this review, we intend to sum-

marize the recent advancements of H2S studies in macrophages, and to

discuss with focus on the therapeutic potential of H2S donors by targeting

macrophages. The feasibility of H2S signalling component as a macro-

phage biomarker under disease conditions would be also discussed.

Keywords: epigenetics; H2S; macrophage function; redox regulation; S-sul-

phydration.

Introduction

Gasotransmitters are a group of ubiquitous small gas-

eous signalling molecules, which mainly consist of nitric

oxide (NO), carbon monoxide (CO) and hydrogen sul-

phide (H2S).
1 Their lipophilic nature allows them to

freely permeate through the biological membranes and

to play an essential role in the regulation of cellular

processes.1,2 Indeed, dysregulation of gasotransmitter sys-

tem is associated with numerous diseases ranging from

neurological disorders to musculoskeletal abnormalities.3–

5 Recently, encouraging results have further indicated a

regulatory role for gasotransmitters in immune cells.2 In

particular, macrophage, as the patrolling sentinel in the

immune system, is extensively regulated by these gaseous

mediators.6

Abbreviations: 3-MST, 3-mercaptopyruvate sulphur transferase; ATM, adipose tissue macrophage; CBS, cystathionine b-synthase;
CSE, cystathionine c-lyase; H2S, hydrogen sulphide; Hcy, homocysteine; oxLDL, oxidized low-density lipoprotein

ª 2020 The Authors. Immunology published by John Wiley & Sons Ltd, Immunology, 162, 3–10 3
This is an open access article under the terms of the Creative Commons Attribution License,
which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

IMMUNOLOGY REV I EW ART ICLE

https://orcid.org/0000-0002-8896-1521
https://orcid.org/0000-0002-8896-1521
https://orcid.org/0000-0002-8896-1521
https://orcid.org/0000-0001-7914-168X
https://orcid.org/0000-0001-7914-168X
https://orcid.org/0000-0001-7914-168X
mailto:
mailto:
mailto:
http://creativecommons.org/licenses/by/4.0/


Upon activation, the classically activated (M1) macro-

phages upregulate the expression of inducible nitric oxide

synthase (iNOS), and catalyse the transformation of L-

arginine to NO. Elevated NO along with the production

of reactive nitrogen species is indispensable for the opti-

mal antimicrobial activity and the secretion of inflamma-

tory cytokines such as IL-6, TNF-a and interferons.7,8 On

the other hand, the alternatively activated (M2) macro-

phages highly express the hallmark enzyme Arginase1

(Arg1), which outcompetes the activity of iNOS on L-

arginine availability and reduces the NO production.9

Therefore, the fluctuation of NO metabolism serves as a

key molecular switch for control of macrophage function

to dynamically regulate the initiation or resolution of an

inflammatory response. In contrast to NO, CO, a haem

metabolism product produced by the haem oxygenase 1-3

(HO 1-3), attenuates macrophage activation, and there-

fore, HO-1 overexpression in myeloid lineages favours

M2 programme in macrophages and implies better out-

come in liver transplant patients.10 Consistently, HO-1

deficiency leads to increased M1 macrophages along with

enhanced inflammatory infiltration following ischaemia–
reperfusion injury.10 Similarly, CO suppresses lipopolysac-

charide (LPS)-induced macrophage activation and

induces the secretion of IL-10, which involves its effect

on the activation of mitogen-activated protein kinase

kinase 3 (MKK3).11

H2S, the latest identified gasotransmitter, was first rec-

ognized as a smelly and environmental toxic gas.12 Past

two decades of studies revealed that H2S can be generated

endogenously and work as an autocrine signalling mole-

cule.3,13,14 In mammals, three enzymes including cys-

tathionine c-lyase (CSE), cystathionine b-synthase (CBS)

and the 3-mercaptopyruvate sulphur transferase (3-MST)

are responsible for H2S generation.15,16 Specifically, CSE

and CBS catalyse de-sulphydration of cysteine to generate

H2S, while MST induces H2S production by regulating

the enzymatic activity of cysteine aminotransferase.17,18

The essential role of H2S signalling in T-cell biology has

been well addressed, in which ablation of CBS and CSE

leads to impaired T-cell activation and proliferation.19

Mice deficient in CBS also manifest reduced regulatory T

cells along with massive inflammatory infiltration, which

could be reversed by H2S donor supplementation.20

Interestingly, unlike its effect on T cells, in macro-

phages, H2S signalling is clearly anti-inflammatory in a

variety of interesting ways. It seems that H2S actively

impact macrophage on its activation, polarization and

inflammasome formation through distinct mechanistic

pathways. Particularly, macrophages likely also set the

threshold for the activation of H2S signalling under vari-

ous stimuli. Herein, we aim to summarize the regulatory

mechanisms underlying H2S signalling and discuss with

focus for the impact of H2S signalling on the regulation

of macrophage functionality. We also discuss the

potential that the cellular H2S content and the key H2S

metabolic enzymes serve as ideal biomarkers to indicate

distinct macrophage activation status.

The regulatory mechanisms underlying H2S
signalling

H2S signalling plays a critical regulatory role in diverse

immune responses, which involves H2S-induced protein

S-sulphydration, cellular redox homeostasis and epige-

netic chromatin remodelling (Fig. 1). In this section, we

briefly summarize the above regulatory mechanisms

underlying H2S signalling.

Protein S-sulphydration

H2S-induced protein S-sulphydration is a novel post-

translational modification occurring on specific cysteine

(Cys) residues of target proteins, by which it regulates the

biological activity of targeted proteins. It is noteworthy

that S-sulphydration of key enzymes, receptors and tran-

scriptional factors contributes a major part to H2S sig-

nalling and its regulatory function. Kir6.1, a subunit of

ATP-sensitive potassium channels (KATP), is S-sulphy-

drated at Cys43, which promotes KATP channel activity

and improves vasodilation.21 Other ion channels such as

voltage-activated calcium channels, and transient receptor

potential channel proteins TRPV6 and TRPV4, were also

suggested to be S-sulphydrated, thereby regulating cal-

cium flux.22,23 Together, these events perfectly explain the

effect of endogenous H2S and exogenous H2S donors on

vascular relaxation.

Metabolic reprogramming and stress responses includ-

ing oxidative stress and endoplasmic reticulum (ER)

stress are critical regulators in immune cells and their fate

decision. Other than the well-known role in cardiovascu-

lar system, H2S-mediated protein S-sulphydration also

engages in the metabolic processes and cellular stress

responses. S-sulphydration of peroxisome proliferator-ac-

tivated receptor-c (PPARc) at Cys139 enhances its DNA

binding activity and the subsequent expression of adi-

pogenic genes, thus increasing glucose uptake and lipid

metabolism.24 Additionally, H2S promotes the activities

of PPARc coactivator-related protein (PPRC), alpha sub-

unit of ATP synthase (ATP5A1) and interferon regulatory

factor 1 via S-sulphydration, by which it stimulates mito-

chondrial biogenesis and protects against mitochondrial

dysfunction.25–27 P66Shc is an upstream activator of

mitochondrial redox signalling, and studies suggested that

H2S protects neuronal cells against stress-induced senes-

cence by inducing its S-sulphydration at Cys59 residue.28

H2S also induces Keap1 S-sulphydration (Cys151, Cys226

and Cys613) to promote the dissociation of Keap1-Nrf2

complex, thereby releasing Nrf2 to transcribe the expres-

sion of antioxidant genes 29,30. Similarly, PTP-1B is a
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protein tyrosine phosphatase related to the deactivation

of protein kinase RNA-like ER kinase (PERK), while H2S

mediates PTP-1B S-sulphydration at Cys215 to inhibit its

enzymatic activity, thereby activating PERK pathway to

alleviate ER stress.31

It is worthy of note that some immune regulatory

molecules are the direct targets for H2S-induced S-sulphy-

dration. For example, S-sulphydration of nuclear tran-

scription factor Y subunit beta (NFYB) at Cys105

increases the transcription of the ten-eleven translocation

(Tet) genes.32 Tet1 and Tet2 in turn bind to the regula-

tory regions within the Foxp3 gene to maintain the

hypomethylation status of its promoter and the conserved

non-coding sequence 2 (CNS2) region, thereby ensuring

Foxp3 expression and the stability of Treg cell lineage.20

Similarly, S-sulphydration of the free thiol group Cys38

in p65 inhibits NF-jB activity in macrophages.33 More-

over, S-sulphydration of c-Jun at Cys269 attenuates

hydrogen peroxide (H2O2)-induced NLRP3 inflamma-

some activation and reduces IL-1b production in macro-

phages.34

Cellular redox homeostasis

Theoretically, most H2S can dissolve in surface water and

dissociate into HS� under normal circumstances (37°,
pH = 7.4),35 and HS� in turn could serve as a powerful

one-electron chemical reductant to scavenge ROS. In real-

ity, however, the physiological concentration of H2S is at

the sub-micromolar level,36 which is too low for H2S to

act as a direct antioxidant. Nonetheless, low concentra-

tion of endogenous H2S can exert potent antioxidant

effects in alternative manners. Specifically, other than the

aforementioned Keap1 S-sulphydration-mediated path-

way, hypoxia-inducible factor 1a (HIF-1a) also serves as

another important molecule downstream of H2S sig-

nalling.37 Studies in THP-1 cells, a human macrophage

cell line, revealed that H2S induces HIF-1a nuclear

translocation to enhance the expression of glucose trans-

porter GLUT1 along with the abrogation of its pro-in-

flammatory effect.37 Consistently, it was also found that

H2S could activate the antioxidant Nrf2/HO-1 pathway

by stimulating the p38 mitogen-activated protein kinase

(MAPK) activity.37 Therefore, H2S has been found to

attenuate LPS-induced acute lung injury by reducing

oxidative and nitrative species,38 and H2S administration

improves glutathione (GSH) level along with alleviated

lipid peroxidation and allergic lung inflammation.39 Col-

lectively, as a negative regulator in cellular redox home-

ostasis, H2S exhibits anti-inflammatory potency amid

stress-related inflammatory disorders.

Epigenetic chromatin remodelling

Another critical mechanism underlying H2S signalling is

that H2S also manifests a remarkable capacity to regulate

epigenetic chromatin remodelling. Apart from the above-

introduced NFYB-Tet pathway, which mediates DNA

demethylation of the Foxp3 regulatory regions in Treg

cells, H2S exhibits high potency to remodel chromatin
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Figure 1. Potential regulatory mechanisms underlying H2S signalling. The mechanisms underlying H2S signalling in the regulation of macrophage

function presumably involve direct mediation of protein S-sulphydration, cellular redox homeostasis and epigenetic chromatin remodelling.
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structure through regulation of histone modifications in

macrophages.

The Jumonji domain-containing protein 3 (JMJD3) is a

histone 3 Lys27 (H3K27) demethylase and plays a critical role

in chromatin remodelling.40 There is evidence that LPS

upregulates CSE expression in macrophages in a mouse

model with septic shock, and enhanced CSE in turn inhibits

JMJD3 expression to increase H3K27me3 levels, thereby

attenuating LPS-mediated inflammatory response.41 Studies

in macrophages further noted that H2S is capable of sup-

pressing histone acetylation at the IL-6 and TNF-a promoter,

by which it inhibits chromatin openness to repress the tran-

scription of inflammatory cytokines following LPS stimula-

tion.42 Although no direct evidence shows the existence of

H2S-NFYB-Tet pathway in macrophage, Tet2 resolves

macrophage inflammatory response by recruiting HDAC2

and deacetylating permissive histone markers in the IL-6 pro-

moter, the mechanism of which is DNA methylation-inde-

pendent and quite different from what happens in Treg

cells.43 These results suggest that the CSE/H2S signalling

could be vital to prevent uncontrolled macrophage inflam-

matory responses via epigenetic machineries.

Heretofore, the major mechanism underlying H2S sig-

nalling is likely attributed to the S-sulphydration of sub-

strate proteins (Table 1). Moreover, the impact of H2S

signalling on the regulation of redox homeostasis and

chromatin remodelling seems independent of S-sulphy-

dration, but additional studies would be necessary to fully

address this issue. It should be also important to keep in

mind that characterization of additional unidentified S-

sulphydration proteins would help to completely clarify

the regulatory mechanisms.

H2S signalling in maintaining the M1/M2
homeostasis in macrophages

As described earlier, macrophages display different func-

tional phenotypes depending on their residing environ-

mental milieu. For simplicity, they are classified into two

distinct subtypes: one is classically activated (M1) macro-

phages, and the other is alternatively activated (M2)

macrophages. LPS and IFN-c induce the generation of

M1 macrophages, which then augment the production of

pro-inflammatory cytokines. In contrast, M2 macro-

phages are elicited by glucocorticoids or type II cytokines

such as IL-4, IL-13 and IL-10. M2 macrophages are

responsible for wound healing, tissue repair and the reso-

lution of inflammation, thus generally regarded as an

anti-inflammatory cell type.

Recent studies provided compelling evidence that H2S

signalling is implicated in dictating macrophage polariza-

tions. Initially, the endogenous H2S was found to attenuate

LPS-induced oxidative stress and inflammatory damage by

inhibiting NOX4-ROS signalling pathway in macro-

phages.44 GYY4137, a novel H2S-releasing molecule, was

confirmed to inhibit rat endotoxic shock and mucosal

wound through abrogating M1 programme in macro-

phages.45,46 Similarly, FW1256, another slow-releasing H2S

donor, was further noted to exhibit anti-inflammatory

properties by reducing the production of inflammatory

mediators such as TNF-a, IL-6, PGE2, IL-1b, COX-2 and

NO in macrophages.47 Subsequent mechanistic studies

demonstrated that NaHS promotes macrophage M2 polar-

ization by enhancing mitochondrial biogenesis and fatty

acid oxidation (FAO).48 Similar results were also observed

in the central nervous system, in which H2S exerts neuro-

protection against hypoxia-induced neurotoxicity through

induction of M2 programme in microglia cells by inhibit-

ing iNOS, NF-jB, ERK and p38 MAPK signalling path-

ways.49 Therefore, H2S signalling serves as a critical

regulatory mechanism to maintain the homeostatic M1/M2

balance in the setting of inflammatory resolution.

H2S signalling in macrophage activation and
inflammasome formation

It was noted that LPS-stimulated macrophages and adi-

pose tissue macrophages (ATMs) derived from diet-

Table 1. Potential S-sulphydration targets relevant to macrophage regulation

Potential

target Modification site Major cell types Biological consequence Reference

P65 Cys38 Macrophage Inhibiting NF-jB activity 33

c-Jun Cys269 Macrophage Attenuating inflammasome activation and IL-1b production 34

Keap1 Cys151, Cys226,

Cys613

Fibroblast Dissociation of Keap1-Nrf2 complex; antioxidative response 29,30

PTP1B Cys215 293T cell Alleviating ER stress 31

PPARc Cys139 Adipocyte Enhancing DNA binding activity of PPARc, increasing lipid

metabolism

24

NFYB Cys105 Regulatory T

cell

Promoting the transcription of Tet1/2 20,32

Keap1, Kelch-like ECH-associated protein 1; NFYB, nuclear transcription factor Y subunit beta; PTP1B, protein tyrosine phosphatase 1B; Tet, tet

methylcytosine dioxygenase 2.
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induced obese mice manifest lower intracellular concen-

tration of H2S,
50 suggesting that depletion of macrophage

H2S content occurs during both acute (LPS-induced) and

chronic (obesity) inflammatory conditions. Indeed, oxi-

dized low-density lipoprotein (oxLDL) induces the CSE

promoter to undergo DNA hypermethylation in macro-

phages, leading to attenuated CSE transcription and H2S

production in favour of inflammatory responses,51 which

involves the activation of JNK/NF-jB signalling.52 Simi-

larly, homocysteine (HCy) induces DNA hypermethyla-

tion in the CSE promoter in macrophages, through which

it exaggerates inflammation by inhibiting CSE-H2S sig-

nalling53 (Fig. 2).

In line with above observations, a time-dependent

change of H2S content in macrophages was found fol-

lowing activation. A decrease of H2S level in murine

macrophages following 24 hr of LPS or IFN-c stimula-

tion was observed (early phase), but the H2S content

was restored to normal level after 48 hr of stimulation

(late phase), which was associated with the feedback

regulation between CBS and CSE.54 It is worthy of note

that H2S production was correlated with LPS-induced

macrophage late-stage apoptosis, which could be

blocked by the addition of H2S inhibitor.55 Therefore,

it is possible that sustained LPS stimulation renders

macrophages that undergo apoptosis through the pro-

duction of H2S (Fig. 2).

Macrophages not only sense exogenous pathogen-associ-

ated molecular patterns (e.g. LPS) derived from micro-or-

ganisms, but also respond to endogenous stimuli. The most

commonly seen endogenous insults originate from harmful

metabolites, such as excessive free fatty acids (FFAs) and

oxLDL. Interestingly, these metabolites alone could lead to

abnormal macrophage activation, while they could also

serve as the second signals essential for inflammasome for-

mation. Inflammasome is a complex of proteins found in

macrophages that regulates the activation of caspase

enzymes and induces the secretion of pro-inflammatory

cytokines (e.g. IL-1b and IL-18). Importantly, recent stud-

ies demonstrated that both exogenous and endogenous

H2S inhibit NLRP3 inflammasome activation and reduce

inflammatory cytokine production in macrophages.56 In

particular, upregulation of H2S content by treating the cells

with NaHS reduces the expression level of inflammasome-

associated proteins such as TXNIP, NLRP3, ASC and cas-

pase-1 by inhibiting thioredoxin-interacting protein–
NLRP3 (TXNIP-NLRP3) signalling pathway.57 Taken

together, H2S signalling not only directly represses macro-

phage activation, but also inhibits inflammasome forma-

tion, thereby attenuating inflammatory responses.

LPS (early stage) LPS (late stage)

CSE

CSE
(hyper-methylation) Inflammation Apoptosis

IL-1β, IL6
TNF-α

H2S H2S

JNK NF-κB

oxLDL, HCy

Figure 2. H2S signalling regulates macrophage functionality for the initiation and resolution of an inflammatory response. Upon stimulation

(e.g. LPS and oxLDL), H2S production is shut down at the early stage to facilitate pro-inflammatory cytokine secretion, while at the late stage,

the H2S content becomes increased for induction of those mission-completed macrophages to undergo apoptosis. Alerted H2S signalling would

lead to the development of immune or metabolic disorders. LPS, lipopolysaccharide; oxLDL, oxidized low-density lipoprotein.
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The therapeutic potential for targeting H2S
signalling in macrophages

Macrophages are critical participants in the immune sys-

tem, which are involved in innate immunity and also help

to recruit other immune cells for adaptive immune

responses. Macrophages can be found essentially in all tis-

sues, and their dysfunction is linked to a variety of dis-

eases. Dysregulation of macrophages is related to various

diseases ranging from infection to metabolic disorders,

wherein H2S donors exhibit significant therapeutic poten-

tial.

It has been well recognized that enhanced H2S sig-

nalling in macrophages abrogates the progression of sep-

tic shock,45 a severe inflammatory disorder caused by

bacterial infection and now faces up with limited thera-

peutics in clinic. Microglia, a specialized macrophage in

the nervous system, is involved in the pathogenesis of

Alzheimer’s and Parkinson’s disease. Given the role of

H2S signalling in the resolution of neuronal inflamma-

tion,58–60 H2S donors are proven to be effective in

numerous neuronal disorders.49,60 Similarly, as H2S

reduces FFAs and oxLDL-induced metabolic stress and

inflammasome formation, H2S donors could inhibit foam

cell formation and attenuate the release of pro-inflamma-

tory cytokines, thus leading to the amelioration of arterial

atherosclerosis and other inflammasome-associated dis-

eases such as DSS-induced colitis.57,61,62 MicroRNA-186

(miR-186) plays an important role in atherosclerotic dis-

eases. Mechanistic study revealed that miR-186 directly

binds to the 3’-UTR of CSE and destabilizes the mRNA

transcripts. As a result of decreased CSE-H2S axis, the

human macrophages take up more lipids and become

pro-inflammatory.63 Exogenous administration of H2S

donor NaHS or GYY4137 decreases the inflammatory

cytokine secretion, prohibits lipid accumulation in

macrophages and down-tunes the expression of chemo-

kine receptors (CX3CR1 in particular), thus demonstrat-

ing the effectiveness in atherosclerosis treatment.64,65 As

aforementioned, intracellular concentration of H2S was

lower in ATMs of obese mice, and not surprisingly,

exogenous supplementation of H2S donors could curb

the development of obesity and the subsequent metabolic

syndromes.50

Alternatively activated M2 macrophages substantially

participate in inflammation resolution and tissue repair.

Given the role of H2S signalling played in M2 macro-

phages, it is not surprising that H2S would play a pivotal

role in myocardial infarction (MI) and wound healing.

Studies showed that H2S promotes macrophage migration

towards the infracted area at the early stage, then induces

M2 polarization by enhancing mitochondrial biogenesis

and FAO, the two steps of which cooperatively accelerates

the post-MI recovery.48,66 During the wound healing pro-

cess, the local H2S content was found to significantly

reduce amid injured tissue granulation. Replenishment of

H2S inhibits macrophage activation and improves wound

healing in both oral mucosal wound model and diabetic

wound model.46,67 In situ induction of M2 macrophages

by employing the novel H2S-releasing hydrogel greatly

improves wound healing process, which displays a

promising translational potential.68 Together, these results

support that targeting H2S signalling in macrophages

could be a viable approach to fight against immune and

metabolic disorders in clinical settings and to restore tis-

sue homeostasis upon trauma.

Concluding remarks and perspectives

It would be important to note that the relationship

between H2S signalling and macrophage functionality is

reciprocal and dynamic. H2S actively modulates macro-

phage activation, polarization and inflammasome forma-

tion (Fig. 1), and macrophages in turn influence the

intrinsic H2S synthetic machinery following external stim-

uli. Specifically, upon LPS stimulation, H2S production is

shut down at the early stage to facilitate pro-inflamma-

tory cytokine secretion, while at the late stage, the H2S

content becomes increased for induction of those mis-

sion-completed macrophages to undergo apoptosis. This

complex feedback loop underpins the multifaceted func-

tion of macrophages, which reflects a fine control of

macrophage-mediated immune response (Fig. 2).

Generally, H2S induces S-sulphydration of key sig-

nalling molecules, such as p65 and c-Jun, to impact on

NF-jB pathway and canonical NLRP3 inflammasome for-

mation, while H2S also regulates cellular redox homeosta-

sis and chromatin remodelling to affect macrophage

function. However, we cannot exclude the possibility that

additional unrecognized S-sulphydrated proteins could be

also engaged in H2S signalling. As for the regulation of

cellular redox homeostasis, it is intriguing that H2S-in-

duced S-sulphydration shares great similarity as GSH-me-

diated S-glutathionylation,69,70 and both of which even

possess the same substrate, PTP1B.31,71 There is evidence

that S-glutathionylation regulates redox homeostasis,72

and a typical example is MKP1, which has been verified

to be a substrate for S-glutathionylation.73 It is therefore

plausible that H2S could either directly mediates MKP1

S-sulphydration to regulate macrophage redox homeosta-

sis, or indirectly influences MKP1 S-glutathionylation by

elevating GSH levels, which could perfectly explain the

inhibitory effect of H2S on MAPK signalling.

Macrophages demand distinct intracellular metabolic

pathways depending on their functional state. The activa-

tion of M1 macrophages by LPS or IFN-c is associated

with higher glycolysis along with attenuated tri-carboxylic

acid (TCA) cycle and mitochondrial oxidative phosphory-

lation (OXPHOS).74 In contrast, M2 macrophages require

higher mitochondrial biogenesis, fatty acid uptake and
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FAO.75,76 Collectively, those discoveries support that H2S-

mediated metabolic reprogramming finely controls the

initiation and resolution of an inflammatory response.48

Therefore, a better understanding of the role for H2S sig-

nalling in macrophages would demonstrate great potential

to develop therapies against either acute or chronic

inflammatory responses in clinical settings of patients

with immune or metabolic disorders. Indeed, some com-

monly prescribed drugs have already been indicated to

affect endogenous H2S signalling pathway. For example,

statins are able to modulate H2S metabolism77,78 in the

cardiovascular system, while the well-known antidiabetic

drug, metformin, could promote H2S production by ele-

vating CSE.79 These discoveries prompt us to rescrutinize

the ‘new function of old drugs’ while pursuing for novel

H2S regulating compounds in the future investigations.
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