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ABSTRACT
Worldwide efforts are underway to replace or repair lost or dysfunctional pancreatic b-cells to cure
diabetes. However, it is unclear what the final product of these efforts should be, as b-cells are
thought to be heterogeneous. To enable the analysis of b-cell heterogeneity in an unbiased and
quantitative way, we developed model-free and model-based statistical clustering approaches, and
created new software called TraceCluster. Using an example data set, we illustrate the utility of
these approaches by clustering dynamic intracellular Ca2C responses to high glucose in »300
simultaneously imaged single islet cells. Using feature extraction from the Ca2C traces on this
reference data set, we identified 2 distinct populations of cells with b-like responses to glucose. To
the best of our knowledge, this report represents the first unbiased cluster-based analysis of human
b-cell functional heterogeneity of simultaneous recordings. We hope that the approaches and tools
described here will be helpful for those studying heterogeneity in primary islet cells, as well as
excitable cells derived from embryonic stem cells or induced pluripotent cells.
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Introduction

Diabetes is the result of pancreatic islet b-cell dysfunc-
tion and/or death.1,2 Clinical studies demonstrate the
therapeutic potential of islet cell replacement for dia-
betes,3,4 and therefore many academic and industrial
laboratories have sought to produce functional b-cells
from sources such as embryonic stem cells. Up to this
point, single-cell analysis suggests that only a small
percentage of partially functional cells have been pro-
duced.5 Among the many technical challenges is the
fact that even the most sophisticated published proto-
cols generate highly heterogeneous cultures of cells.5

This necessitates high-throughput analysis at the sin-
gle-cell level. To do this, current functional studies
typically compare ‘representative example’ Ca2C signal
traces between stem cell derived cells (or groups of
cells) to primary human islet cell preparations of vari-
able quality.5,6 The reason for assaying Ca2C flux is
that the main function of a pancreatic b-cell is glu-
cose-stimulated insulin exocytosis, a process that

requires voltage-dependent Ca2C signals caused by the
closure of ATP-sensitive KC channels.7 The analyses
of mRNA, protein, and metabolites can further assist
with the comparison of stem cell derived cultures to
human islets,5,6,8 but these can be misleading as prepa-
rations are typically of mixed cell types. New break-
throughs in single-cell transcriptomics, epigenomics
and proteomics promise to enable snapshots of cell-
to-cell heterogeneity.9 However, the continuous analy-
sis of single living cells, including real-time measure-
ments of signal transduction events, is still required to
assess true phenotypic heterogeneity.

The development of surrogate b-cells is also ham-
pered by limited understanding of the function and
functional heterogeneity in fully responsive human
islets from healthy donors. In other words, it is not
clear exactly what the features are of the target cell
type, or cell types, that need to be generated. This
question is not trivial, and attempts to answer it reveal
critical gaps in the understanding of human islet cell
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physiology. Indeed, heterogeneity in cell state and cell
fate remains a poorly understood aspect of b-cell
physiology, despite several studies.10-18 Importantly, it
has been proposed that functional heterogeneity itself
may be critical for the ideal performance of the intact
islet.19-21 Studies in this realm typical focus on rodent
b-cells,11,24,25 as the majority of human islet prepara-
tions do not match the quality that can be achieved
under the controlled conditions of rodent islet isola-
tion, where we and others have documented low levels
of cell death in culture.9 Moreover, the majority of
human islet donors are older, with b-cells that have
endured decades of diets of variable quality.

Here, we present TraceCluster (https://jimjohnson
sci.shinyapps.io/TraceCluster), a software app
designed to enable the unbiased, high-throughput
analysis of functional heterogeneity between islets cells
using model-free and model-based clustering. We
demonstrate the utility of these approaches and the
new software on a rare set of »300 high quality simul-
taneous recordings of human islet cells from a young
donor and find two functional groupings of b-cell like

responses and one functional grouping of non-b-cell
responses.

Methods

Primary culture of human islet cells

Human islets were isolated at the I.K. Barber Islet
Transplantation Facility (Vancouver, Canada) from a
healthy 11.8-year old male who died suddenly of head
trauma (isolation code HR196). The warm ischemic
time was 0 min and the cold ischemic time was
135 min. The pancreas weight was 61 g. The digestion
time was 10 min. The final isolation yielded 378,006
IE (islet equivalents) with >90% purity. Some islets
were embedded in agar, fixed, sectioned and examined
with antibodies to insulin, glucagon or Pdx1 (Fig. 1a)
as described elsewhere.5,22 Once isolated, the islets
were transported to the laboratory within a few hours.
Islets were gently dispersed as described.23,24 The
resulting cells were plated on a coverslip (Fig. 1b) and
incubated in RPMI media (containing 5.5 mM glucose
and 100 IU/ml penicillin, 100mg/ml streptomycin,

Figure 1. Cell composition of intact islets and dispersed islet cells of test sample. (A) Representative immunofluorescence staining of
insulin, glucagon, and Pdx1 in intact islets from the donor. DNA counterstaining employed DAPI. The percentage of b-cells and a-cells
(out of the major endocrine population i.e., b-cells or a-cells) is shown. Intact islets from this preparation contained attached non-endo-
crine cells; insulin positive cells were 37.3% of all cells and glucagon-positive cells were 23.7% of all cells. (B) Cultures of dispersed islet
cells (including all endocrine and non-endocrine cells labeled with DAPI) contained 48.2% cells that stained robustly for insulin.
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10% fetal calf serum; pH 7.4 with NaOH) and main-
tained at 37�C, 5% CO2 and saturated humidity for
2 d.

Ca2C Imaging

Reagents were from Sigma (St. Louis, MO), unless
otherwise indicated. Ca2C imaging was performed in
Ringer’s solution containing (in mM): 5.5 KCl, 2
CaCl2, 1 MgCl2, 20 HEPES, 141 NaCl and 3 glucose
according to standard protocols.10,24,25 Briefly, islet
cell cultures were incubated with 1 mM Fura-2-AM
(Molecular Probes, Eugene, OR) in RPMI for
30 minutes and rinsed in Ringer’s solution for
30 minutes. Coverslips, in a 37�C chamber
(»300 mL), were continuously perfused with pre-
heated solutions, to maximize control over the con-
tents of the bath (especially ambient insulin levels).
Cells were excited at 340 nm and 380 nm using a
300 W Sutter DG4 and imaged with a Roper Cool-
SnapHQ2 CCD camera, mounted on a Zeiss 200 m
microscope (Intelligent Imaging Innovations). In total,
480 time points were recorded simultaneously for each
of 291 islet cells over 80 min. All individual traces are
provided in the Supplementary File, which is further
explained in the Supplementary Information. Over
the course of the experiment, cells were exposed to the
following conditions: 20 min in 3 mM (low) glucose,
30 min in 20 mM (high) glucose, 15 min in 3 mM glu-
cose, 10 min in 30 mM KCl, and 5 min in 3 mM glu-
cose. The ratio of emission intensity >510 nm from
excitations at 340 nm and 380 nm, was recorded for
all cells.

Normalization, quality control and analysis of live
cell imaging data

The minor signal drift (as can be seen in the individual
traces in the Supplementary File) was corrected per
cell by estimating median increase in fluorescence sig-
nal per time step under baseline conditions (first
20 minutes). Correction for signal drift did not signifi-
cantly alter the cell feature estimates described in this
work. Fifteen cells (»5%) were filtered from further
analysis due to poor overall signal response, defined as
a median KCl response less than 5% over baseline
(median signal within the first 20 min). All data nor-
malization, QC and analyses were performed within
the R environment, details of which are provided in
the Supplementary Information.

Results

Ca2C imaging

The islets used to demonstrate the utility of our cluster
analyses were isolated without complication and dis-
persed into single cells within 24 h (see Online Meth-
ods for details). Prior to dispersion, islets were
collected for characterization of cellular composition
using immunofluorescence staining for insulin, gluca-
gon and PDX1, a critical regulator of islet-cell health
and function10,26,27 (Fig. 1a). In these islets, b-cells
accounted for 61.1% of the major endocrine popula-
tion (i.e. b-cells and a-cells). Beta-cells were robustly
positive for the PDX1 transcription factor (Fig. 1a).
These observations compare favourably with the
b-cell percentage reported by others28,29 and with our
typical experience5 (see also Supplementary Fig. 5).
After islet dispersion, coverslips demonstrated a large
proportion of b-cells when compared to all cells
(endocrine and non-endocrine, Fig. 1b). Collectively,
these observations indicate that abundant and healthy
dispersed b-cells were prepared from the donor.

Ca2C signals were simultaneously recorded from
291 cells, in 3 imaging fields, while sequentially
exposed to either low glucose (3 mM) or high glucose
(20 mM) before depolarization with 30 mM KCl
(Fig. 2a, Supplementary Fig. 1). The recordings were
technically sound and free of significant drift (correc-
tion for drift did not alter the main conclusions in this
work). Importantly, because all cells were imaged in a
single batch run, these data are free of experimental
variability. Based on extensive experience working
with human islets,12,23,24,26,30-33 it is estimated that
these were among the highest quality islet cells we
have studied. Therefore, we chose this data set as a
test case for detailed analysis and development of a
functional clustering strategy. Selected cells from this
data set have also been compared to embryonic stem
cell-derived cells in a recent publication.5

Exploratory analysis

Our goal was to analyze functional responses to
defined stimuli of human islet cells without using a
priori knowledge of ‘cell type’. Multi-dimensional scal-
ing (MDS) was initially used to explore low dimension
projections of the intracellular Ca2C traces acquired
using Fura-2 imaging. The distance matrix for the
projections was calculated as (1-rij)/2, with rij being
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the Spearman correlation between cell i and j. As
shown in Fig. 2b, we noticed that the first few dimen-
sions suggest 2 clusters of cells, largely representing
glucose responders (at low or high glucose) and non-
responders (Fura-2 response only with or close to KCl
perturbation). Non-responders were found to be in

different proportions between the three imaging fields,
suggesting nonhomogeneous dispersion of the cells
(¡log10P D 4.98 for the null hypothesis that the pro-
portions across the fields are the same). However, no
consistent spatial effect could be detected within the
imaging fields (Supplementary Fig. 2).

Ca2C trace feature extraction and clustering

Next we sought to perform less na€ıve analyses of glu-
cose responses in our human islet data set. To do this,
nine Ca2C response features were extracted from the
Ca2C imaging traces for further study. ‘High glucose
response’ was defined as the median high glucose
(20 mM) signal above baseline (median signal during
the first 20 min), normalized as a ratio of median KCl
signal above baseline. ‘High glucose oscillation’ was
defined as the magnitude of oscillations during high
glucose exposure, expressed as a ratio of the median
absolute deviation (MAD) to median KCl response
above baseline. ‘Low glucose oscillation’ was defined
as the magnitude of oscillations during the first 2 low
glucose exposures (3 mM before and after high glu-
cose respectively), estimated in a similar manner to
the high glucose oscillations. ‘Response speed’ was
defined as the inverse of time to first oscillation peak
with high glucose exposure, a measure of time respon-
siveness to perturbation. Number of ‘counted peaks’
during high glucose exposure were estimated as local
maxima from each trace, with the constraint that a
local maximum be considered a true peak if at least
one third of the signal difference between median KCl
and baseline glucose signal. Peak periodicity was used
also to estimate the mean ‘oscillation frequency’.
‘Return to baseline’ was defined as the local minimum
during the second low glucose exposure, normalized
as a ratio of median KCl signal above baseline. ‘KCl
response’ was defined as the maximum KCl response
above baseline, normalized as a ratio of median KCl
signal above baseline.

Hierarchical clustering of the features, as shown in
Fig. 3a (and detailed in the Supplementary Informa-
tion) pointed to 3 ‘feature’ clusters. The first feature
cluster was comprised of cells that responded with
clear oscillations when exposed to high glucose.
The number of high glucose peaks and estimated
oscillation frequency were, as expected, found to
largely correlate (Supplementary Fig. 3). The lower
the number of estimated peaks, the lower this

Figure 2. Ca2C traces and exploratory data analysis. (A) Raw Ca2C

traces from Fura-2 stained islet cells showing the timed glucose
perturbations and KCl depolarisation. (B) Cells were imaged in
three microscopy fields (Supplementary Fig. 1). Shown are the
five top ranked MDS dimensions of the raw Ca2C traces based on
large mean silhouette width between the fields (details provided
in Supplementary Information). Cells are colored red, dark gray
or light gray to reflect the three different microscopy fields. We
noticed that the cluster of cells circled in yellow enriched for cells
of one field due to inhomogeneous dispersion, but more impor-
tantly that these cells showed a distinct Ca2C trace pattern irre-
spective of field. The traces are shown for these cells which are
mostly/only responding during KCl depolarisation.
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correlation, suggesting a possible relationship between
level and variability in oscillation frequency. Future
studies will require longer high glucose exposures to
study this relationship with sufficient statistical power.
Overall, the defining relationship found in this cluster
was the correlation between oscillation frequency and
oscillation magnitude during high glucose exposure
(Spearman r ¡log10P D 15.05). The second observed
feature cluster (Fig. 3a) consists of the correlation
between high glucose response, response speed (Spear-
man r ¡log10P D 11.44) and magnitude of low glu-
cose oscillations after high glucose exposure
(Spearman r ¡log10P D 7.61). This suggests a sub-
type of predominantly rapid responders, usually with
low/no oscillation during high glucose but some oscil-
lation during subsequent low glucose instead of com-
plete return to baseline. The final observed feature
cluster (Fig. 3a) largely contains cells of little/no high
glucose response. The same ‘non-responders’ were
observed with the exploratory data analysis. Interest-
ingly, these cells demonstrated greater relative low
glucose oscillation magnitudes (during the initial
20 min) than high glucose oscillation magnitudes.
This, despite their absolute magnitudes typically
being much smaller than observed oscillation magni-
tudes for the oscillators in the first feature cluster.
With 3 predominant clusters suggested by the data,
we note that 2 features would suffice to capture the

gross behavior in this sample. Parametric (Gaussian)
mixture models of high glucose response and oscilla-
tion are presented in Fig. 4, with the Baysian Infor-
mation Criterion (BIC) suggesting the same 3
dominant cell behaviors. Although tempting to fur-
ther sub-divide the cells based on responsiveness to
high glucose, as shown in Fig. 4, the agreement
between the drift-corrected and raw data breaks
down beyond three clusters.

Considering the different clustering strategies and
normalized versions of the data, the most robust con-
clusion is that there is a non-responding (perhaps
a-like cells) and responding (b-like cells) population,
with a further sub-division of the responders into
oscillators and non-oscillators. We anticipate that sim-
ilar high quality samples from the community will
enable the meaningful study of further functional sub-
divisions. Moreover, we expect that post-hoc immu-
nostaining and/or single-cell transcriptomics will
enable characterization of functional islet cell sub-
types. After filtering out cells that did not respond to
KCl, the proportion of cells responding to high glu-
cose (71%) was reasonably similar to the expected
b-cell frequency within the endocrine cell population
of this preparation (Fig. 1b). Interestingly, the non-
oscillating cells of this population tended to possess a
faster glucose response time. The 2 suggested cell
states are reminiscent of the 2 b-cell sub-states,

Figure 3. Hierarchical clustering of Ca2C trace features and cells. The heatmap shown is reproduced from the provided software app
(Supplementary Software), where users are able to select similar behaving cells and visualize their traces. In the heatmap, columns are
clustered Ca2C trace features while rows are clustered cells. Example traces from the software are also provided, where the first column
of traces are cells from the top black box in the heatmap and the second column of traces are from the bottom black box. These are rep-
resentative cells for the 2 b-like subtypes observed: oscillators and non-oscillators. The correlations between the features are provided in
Supplementary Figure 3.
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immature and mature, we have previously described
in adult human and mouse b-cells based on mouse
Ins1 promoter activity and gene expression analysis.6-8

We speculate that the non-oscillators provide sensitiv-
ity in response while the oscillators syncronise the pul-
satile insulin secretion. Worth noting is that the 15
cells (»5%) filtered out for lack of any Fura-2
response, including to KCl, may represent non-excit-
able endothelial cells, exocrine cells, or unhealthy cells.
However, the Fura-2 imaging technique tends to
under-represent unhealthy cells, as they typically do
not take up and cleave the Fura2-AM dye efficiently
because AM esterase activity is energy-dependent.

Discussion

The goals of the present study were to develop new
statistical approaches for the analysis of functional
heterogeneity from live-cell imaging data and to
develop a software app, called TraceCluster, (Supple-
mentary Software) to allow direct comparative analy-
sis of similar data sets with the presented data. Details
for the installation and running of the software app
are provided in the Supplementary Information. The
thorough characterization of Ca2C response

heterogeneity from simultaneously imaged cells con-
trols for any technical variation in this unique high-
quality reference resource of Ca2C responses from a
young healthy donor. We expect that these data may
serve as a target for efforts to generate functionally
young pancreatic b-cells and for studies of the systems
biology of these sub-types using emerging single-cell
‘omic’ technologies. It is important to note that the
goal of our study was not to characterize b-cell hetero-
geneity, but instead to merely provide the tools to do
so. Robust characterization of b-cell heterogeneity will
require highly powered studies with perhaps hundreds
of donors.

Complete characterization of human islet cell func-
tionality is essential for efforts aimed at b-cell replace-
ment in type 1 diabetes or even type 2 diabetes,5,6,34 as
it is not exactly clear how the desired output of cells
from pluripotent stem cell differentiation protocols
should behave. While there remains some controversy
around how close the field is to producing true b-cells
from human stem cells,5,6,34 it is clear that the field is
now at the stage of optimizing the insulin secreting
cells such that they exhibit relevant functional charac-
teristics of bona fide human b-cells. Several key ques-
tions remain. Should we attempt to generate

Figure 4. Model-based clustering of high glucose response and oscillations. All scatter-plots are of the same two features, though col-
ored according to suggested clusters for drift-corrected (top row) and raw (bottom row) versions of the data. Gaussian mixture model
BICs suggest optimal clustering of 3 major cell sub-types: non-responders (blue), oscillating responders (red) and non-oscillating res-
ponders (green). Drift-corrected BIC for four clusters was similar to that for three clusters, it did not suggest the same clustering pattern
as the raw data. Three clusters therefore robustly describe the cell sub-type number. The drift-corrected 3-cluster plot highlighted is pro-
vided in the Trace Cluster software app (Supplementary Software), where users can upload their own data for analysis.
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functionally homogeneous b-cell replacements, and if
so, what functional characteristics are ideal? On the
other hand, perhaps the goal should be to generate a
range of functional islet cell types that more accurately
mimics primary human islets. There is also the ques-
tion of age. The peak age of type 1 diabetes diagnosis
is between 10–14 years of age, so perhaps the ideal
b-cell replacement cells would respond to glucose in a
manner similar to the ‘teen-aged’ cells studied here.
Little is known about age-dependent changes in
human b-cell function, after the initial post-natal mat-
uration.35 Evidence from rodent studies suggest some
important functional differences between young mice,
such as those from the most commonly studied ages
(8–16 weeks of age), and mice older than 1 y.36 Previ-
ous studies have noted important differences in gene
expression and proliferative capacity between young
and old mice that mimic known differences in
humans.37-41 It is notable that the oscillatory glucose
responses observed in a large percentage of b-cells in
the current study are not typical of published exam-
ples of b-cell responses from older human donors,
which tend to exhibit brief, disorganized fluctua-
tions23,32,33,42-45 or no fluctuations at all,18 much like
dysfunctional mouse b-cells.45 Moreover, many of the
Ca2C responses in the current case exhibited the tran-
sient decrease in Ca2C that initiates the response to
glucose, known as ‘phase 0’,46 which is not typically
observed in other studies of human b-cells.32 Collec-
tively, our data demonstrate that b-cells from a
healthy young donor can exhibit Ca2C responses to
glucose that resemble those observed commonly in
mouse b-cells.25,27,42,43,46,47 Thus, it seems possible
that some of the functional differences assumed previ-
ously to be species-specific, may actually represent the
effects of age on human islets, or their quality. While
there may be important morphologic, genomic and
functional differences between islets of different spe-
cies,43,48-50 the effects of age and quality should be
considered in all studies. These speculations will
require robust replication with multiple human and
murine islet donors at multiple ages, which our new
tools will enable.

Indeed, an obvious limitation of the experimental
work described here is that it was conducted on a sin-
gle donor, preventing any broad conclusions about
the heterogeneity between donors. However, our
main goal was to develop a statistical framework for
analyzing heterogeneity of individual responses in

populations of cells. These approaches and the soft-
ware tools are modular and can be adapted to a variety
of biological problems.

In summary, our statistical clustering to Ca2C

responses from »300 human islet cells imaged side-
by-side was capable of identifying 2 functional b-cell
states within this test sample. The approaches applied
to this high-quality data set can be used to examine
other b-cell states and in vitro generated replacement
b-cells, or any other cell type.
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