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Abstract

A novel integrative pipeline is presented for discovery of potential cancer-susceptibility regions (PCSRs) by calculating the
number of altered genes at each chromosomal region, using expression microarray datasets of different human cancers
(HCs). Our novel approach comprises primarily predicting PCSRs followed by identification of key genes in these regions to
obtain potential regions harboring new cancer-associated variants. In addition to finding new cancer causal variants,
another advantage in prediction of such risk regions is simultaneous study of different types of genomic variants in line with
focusing on specific chromosomal regions. Using this pipeline we extracted numbers of regions with highly altered
expression levels in cancer condition. Regulatory networks were also constructed for different types of cancers following the
identification of altered mRNA and microRNAs. Interestingly, results showed that GAPDH, LIFR, ZEB2, mir-21, mir-30a, mir-
141 and mir-200c, all located at PCSRs, are common altered factors in constructed networks. We found a number of clusters
of altered mRNAs and miRNAs on predicted PCSRs (e.g.12p13.31) and their common regulators including KLF4 and SOX10.
Large scale prediction of risk regions based on transcriptome data can open a window in comprehensive study of cancer
risk factors and the other human diseases.
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Introduction

Alteration in mRNAs and miRNAs expression and the

important role of a large number of these molecules have been

studied in the initiation, progression and metastasis of many types

of cancers [1,2,3]_ENREF_1. Changes in DNA methylation and

transcription factor (TF) regulation, genomic copy number

variation (CNV) [4], single nucleotide polymorphism (SNP) [5]

and microsatellite alternation [6] as well as other chromosomal

aberrations are characterized as major mechanisms of expression

alternation in different human cancers (HCs).

Different methods including genome wide association studies

(GWAS) have identified a large number of associated variants for

different cancers [7,8,9]. For example, common variants on region

19p13 were found to be associated with ovarian cancer [10],

CNVs at 6q13 and five risk loci at 21q21.3, 5p13.1, 21q22.3,

22q13.32 and 10q26.11 were directly linked to pancreatic cancer

[4,11]. In addition, new risk loci at 10q25.2, 6q22.2 and 6p21.32

were associated with lung cancer [12], and several risk loci at

9q31.2, 19q13.4 and 8q24 were shown to be associated with

prostate cancer [13,14,15].

However, challenges in GWAS are finding causal variants and

functional effects as well as interrelation of these variants in cancer.

While previous genetic studies of cancer have predicted a large

number of cancer-associated variants [8,9,10,15,16], identifying

causal variants is major obstacle, because the known causal genetic

variants are mostly located within non-coding regions or located at

various physical distances from the gene they influence [17]. In

addition, the employed linear modeling framework in GWAS

often considers only one SNP at a time and ignores the effects of

the other genotyped SNPs [5]. Therefore, the progression can be

arduous from statistical association obtained through GWAS to

inferred causality and functional consequences for cancer. Another

challenge in large-scale genomics investigations is that some of

these variants including microsatellites have been less studied

compared to the other types (SNP and CNV). In addition, many of

these studies are focused on one type of genomic variations in

cancer; consequently, the impacts of other involved factors are

neglected.

The common procedure employed in previous studies is

detection of causal variants and searching for functional effects

of these variants such as association of variants with expression

quantitative trait loci (eQTLs) [17]. However, there is also a

reverse strategy comprises prediction of potential cancer-risk

regions shared across different types of cancers based on

transcriptome expression data and then searching for causal

variants. Identification of these regions assists in discovery of new

variants as well as simultaneous study of different factors affecting

gene expression by limiting assessments to specific chromosomal

region. Here, we developed a pipeline which was comprised of

PCSRs prediction using calculating the transcript-expression

changes under cancer for each chromosomal region. We also

extracted common altered mRNAs and microRNAs using

microarray and expressed sequence tags (ESTs) data following
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by network analysis to achieve more insights about the predicted

PCSRs. Using this pipeline, we predicted potential risk regions

interacting with cluster of targets (mRNAs, miRNAs and/or TFs)

unravelling potential-candidates for further genome association

studies.

Results

Gene expression data of several types of cancers were

reanalyzed and the results were combined to predict common

cancer-risk regions. Another aim of this study was to obtain insight

into interrelation between PCSRs and altered mRNAs, miRNAs

and their common regulators. An overview of the workflow is

shown in Figure 1.

Results of transcript expression analyses for each cancer dataset

including breast, colorectal, endometrial, gastric, liver, lung,

ovarian, pancreatic, prostate, testicular, bladder, intestine neuro-

endocrine, cervical and renal cancers as well as glioblastoma are

presented in Table S1. These extracted genes and miRNAs were

then used for further analysis as outlined below.

Prediction of Potential Cancer-Susceptibility Regions
Using Microarray Datasets of Different Cancers

The percentage of region participation was calculated for each

chromosome (chr) from microarray data (with 2-fold changes

threshold) of 11 HCs. Details of procedure are described in

materials and methods. For each chromosome, five regions

covering the highest frequency of altered genes were recorded as

potential PCSRs (Table 1). Results showed that among these

PCSRs, two regions contain the highest number of over-expressed

genes; chr1p31.2 (27.27%) and chr13q13.2 (20.45%) (Table 1,

Columns 3 to 7). While in the case of down-expressed genes, the

highest percentage was recorded for regions located at chr13q13

(15.53%) and 4q34.2 (15.15%).

To test the reliability of the predicted PCSRs, the percentage of

region participation in cancer was calculated with different

threshold, where the frequencies of the first 200 probesets with

highest fold changes were identified for each region (Table S2).

While, a large number of these regions including 1q31.3,

2p25.2,3q25.2, 12p13.31 and 22q12.1 shared in both thresholds

(Table 1 and Table S2), some regions were recorded as a PCSR

for only one of these thresholds. For example 1p32.2 and 2q22.3

were identified for the 2-fold changes threshold, whereas, 1p22.3

and 2p12 were recorded for the highest fold changes (Table 1 and

Table S2).

Percentage of chromosome participation was also calculated for

11 HCs, to identify which chromosome(s) is more involved in

transcript expression changes (Table S3). Results showed that chr4

is harboring the highest number of genes altered in cancer

(excluding prostate and gastric cancers) (Table S3). In contrast,

chrY has the lowest number of genes expressed in cancer. A

summary of chromosomal participation of 11 HCs shows

significant differences as indicated by General Chi-squared test.

Four top chromosomes harboring the most down-expressed genes

were chrs 4, 5, 13 and X, whereas in the case of over-expressed

genes the highest numbers of alteration were recorded for chrs 1,

7, 8 and 12 (Figure S1).

Altered MRNAs Shared across Different Types of Cancers
Differentially expressed mRNAs with the highest fold changes in

at least 6 HCs were selected as the common altered mRNAs

(Table 2 and Table 3). These common altered mRNAs were

classified into three different expression groups. Class I showed

over-expression in majority of cancer types such as tubulin alpha

1b (TUBA1B) and glyceraldehyde-3-phosphate dehydrogenase

(GAPDH) (Table 2), class II represented down-expression in most

of HCs such as aspartoacylase (ASPA) and chemokine (C-X-C

motif) ligand 12 (CXCL12) (Table 2), while the rests (Class III)

showed a mixed expression patterns in different types of cancers

such as protein kinase (cAMP-dependent, catalytic) inhibitor beta

(PKIB) (Table 3).

Interestingly, a number of common altered mRNAs are located

on the predicted PCSRs (Column 3 of Table 2 and Table 3). For

example, GAPDH at 12p13.31(as a predicted PCSR) showed

over-expression in all of HCs (Table2). CKS2 (chr9q22.2),

CEP55(chr10q23.33), UHRF1 (chr19p13.3), RRM2 (chr2p25.1),

AURKA (chr20q13.2), FLJ39632 (chr14q11.2), FAM83D

(chr20q11.23), NEK2 (chr1q32.3) and MAD2L (chr4q27) were

all located on PCSRs and showed over-expression in the 9, 8, 10,

9, 8, 9, 9, 8 and 9 types of cancers, respectively (Table 2 and

Table 3). In contrast, DCN (chr12q21.33), LIFR (chr5p13.1),

ABCA8 (chr17q24.2), C7 (chr5p13.1) and ZEB2 (chr2q22.3) on

predicted PCSRs were down-expressed in 9, 7, 8, 8 and 8 cancers,

respectively (Table 2 and Table 3). The rest of altered genes on

Figure 1. Analyzing workflow of prediction of potential risk
regions. It comprises expression data analysis of different human
cancers including breast, colorectal, endometrial, gastric, liver, lung,
ovarian, pancreatic, prostate, testicular, bladder, intestine neuroendo-
crine, cervical and renal cancers as well as glioblastoma. This primary
analysis followed by extraction of altered genes, count the chromo-
somal regions of altered genes and prediction of risk regions based on
region frequency.
doi:10.1371/journal.pone.0096320.g001
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PCSRs exhibited both down and over-expression patterns

(Table 3).

Altered MiRNAs Shared across Different Cancers
Several types of miRNAs (such as miR-93, mir-182, mir-196b

and mir-1274b) exhibited over-expression in majority of cancers

(Table 3). A number of miRNAs (such as miR-30a and mir-30c-2)

were down-expressed in various HCs, whereas, many other

miRNAs exhibited a mixed pattern of expression (Table 4).

The chromosomal locations were determined for common

altered miRNAs. Interestingly, miRNAs located on the same

region showed co-expression in some cancers, such as a cluster at

19q13.41 (including mir-99b and -125a). This cluster (19q13.41)

was down-expressed in cervical, prostate and renal cancers. In

contrast, the same cluster was over-expressed in bladder cancer.

Another co-expressed cluster was observed at 12p13.31 (mir-

141and mir-200c), which showed over-expression in ovarian,

prostate and bladder cancers, and conversely, it were down-

expressed in renal cancer (Table 4). The rest of co-expressed

clusters were listed for regions at 6q13 (including mir-30a and mir-

30c-2), Xp11.23 (including mir-362, mir-500, mir-501, mir-502

and mir-532), 14q32.2 (including mir-134, mir-379 and mir-382),

14q32.31 (including mir-127, mir-432 and mir-770), 9q22.32

(including let-7d, mir-23b and mir-27b) and 7q22.1 (including mir-

93 and mir-106b) (Table 3). Five out of nine miRNA co-expressed

clusters listed above are located at predicted PCSRs including

6q13, 12p13.31, 14q32.2, 19q13.41 and Xq26.2 (Table 4).

Interaction within and between Common Altered MRNAs
and MiRNAs Revealed by Network Analysis

Four separate networks were constructed including a network

for common altered mRNAs (with 409 entities and 1288 relations)

(Figure S2), a network for common altered mRNAs located on the

different predicted PCSRs (with 383 entities and 1121 relations)

(Figure S3), a network of common altered miRNAs (with 322

entities and 1041 relations) (Figure S4) and a network for common

altered miRNAs located on the different PCSRs (with123 entities

and 409 relations) (Figure S5). In addition, a combined network

was constructed by integration of altered mRNAs and miRNAs

data, which has 667 entities and 2482 relations (Figure S6).

Various type of transcription factors, protein kinases, small

molecules, mRNAs and miRNAs serve as either validated or

putative regulators in these networks. Additional details of each

network including number of imported genes and biological

processes presented in Table S4.

We identified networks with similar biological processes, such as

cellular process, biological regulation, metabolic process, multi-

cellular organismal process, developmental process and response

to stimulus (Table S4 Column 5). These shared processes imply

existence of common genes and miRNAs across different

constructed networks as listed in Table S5. For example, Zinc

finger E-box binding homeobox 2 (ZEB2), DEAD (Asp-Glu-Ala-

Asp) box helicase 5 (DDX5) and leukemia inhibitory factor

receptor alpha (LIFR) were shared between both constructed

networks of common altered mRNAs and miRNAs (Table S5).

Among common altered miRNAs, mir-21, mir-30a, mir-141 and

mir-200c were shared across all of the four constructed networks

(Table S5).

The most frequent subnetwork observed in these networks was

centered on DDX5 (Figure 2). This subnetwork comprises 5

entities including DDX5, mir-20b, mir-21, mir-141 and mir-182.

DDX5 is negatively regulated by mir-20b and mir-141, while

DDX5 itself regulates mir-21 and mir-182. Down-expression of

DDX5 was observed in 7 types of HCs, while, mir-20b, mir-21,

mir-141 and mir-182 over-expressed in 3, 5, 3 and 4 HCs,

respectively (Table 3 and Table 4). It suggests the negative

interrelation between DDX5 and these four miRNAs.

Another subnetwork was constructed based on mir-141, mir-

200c, and GAPDH, which all located on predicted PCSRs at

12p13.31 (Figure 3). This network comprises of 17 entities and 29

relations (Figure 3). Thirteen downstream targets were observed

for mir-141, mir-200c, and GAPDH. For example, mir-141 and,

mir-200c, which were over-expressed in 3 HCs (shown as purple in

the Figure 3), have miRNA effects on ZEB2 (with down-expression

in 7 HCs). Interestingly, these altered RNAs including mir-141,

mir-200c and GAPDH (at 12p13.31) and also ZEB2 (at 2q22.3)

are all located at predicted PCSRs. In the case of upstream nodes,

TP53 and MYC were observed as upstream regulators of mir-200c

and GAPDH (Figure 3). TP53 is common positive regulator for

both mir-200c and GAPDH, but MYC is only regulating GPADH

(Figure 3).

Promoter Analysis of Altered MRNAs and MiRNAs across
Different Cancers

Promoters of over-expressed and down-expressed mRNAs and

miRNAs were individually analyzed across different cancers. A list

of common transcription factors for each set of down-expressed

and over-expressed mRNAs are provided in the Tables S6 and S7,

respectively. Among 18 common predicted TFs for over-expressed

mRNAs, Kruppel-Like Factor 4 (KLF4) located at PCSRs was

found to be down-expressed in 7 types of cancers (Table S6).

While, from total 13 common regulators predicted for down-

expressed mRNAs, 6 regulators are located on PCSRs. Among

these 6 regulators RAR-related orphan receptor A (RORA) was

down-expressed in 8 types of cancers (Except that Glioblastoma

with over-expression and no significant expression in prostate and

gastric cancers) (Table S7).

Common regulators were also predicted for cluster of altered

miRNAs on the same region (Table S8). For example, GATA2,

GATA3, ETS1, MZF1_1-4, SOX10, YY1, ZNF354C and SPI1

were predicted for miRNAs located on cluster at Xp11.23 (Table

S8). In total, 22 common regulators were predicted for different

clusters of miRNAs which eight of them are located at PCSRs

including YY1, SPIB, SOX10, NFIC, NR4A2, FOXD1,

NFATC2 and HOXA5 (Table S9). Interestingly, GATA2 was

predicted for both down-expressed mRNAs and altered miRNAs.

Discussion

An effective pipeline was developed to predict PCSRs using

microarray datasets of different cancer studies. Two different

thresholds were applied to predict PCSRs including probsets with

at least 2-fold changes and first 200 probsets with the highest fold

changes. Most of the predicted PCSRs on each chromosome were

similar in both applied thresholds, which confirm the reliability of

these PCSRs.

In addition to this confirmation, based on literature review we

found the presence of several important cancer-associated variants

on our predicted PCSRs. These variants have been reported

previously for pancreatic [4,11] (6q13, 21q21.3, 5p13.1, 21q22.3

and 22q13.32), lung [12] (6p21.32), prostate [13,14,15] (9q31.2,

19q13.4, 8q24 and 17q21-q22), ovarian [10] (19p13), breast [18]

(8q24, 12p13 and 20q13) and colorectal cancer [19] (11q23, 8q24

and 18q21). Our findings in agreement with these studies

identified region 8q24 as a risk region in variety of HCs

[8,14,19,20,21], which shows involvement of some of risk regions

in several types of cancers rather than a specific cancer. Moreover,

some of the predicted PCSRs in this study were reported in other
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types of human diseases including herpes simplex virus type 1 [22]

(21q), polycystic ovary syndrome [23] (9q33.3), Type 1 diabetes

and Rheumatoid arthritis [24] (both located on 18p11). This

similarity might indicate the efficiency of our approach in

prediction the risk regions associated with different human diseases

besides cancer.

We also found that eight chromosomes harbor the most altered

genes in different types of cancer including chromosomes 1, 4, 5, 7,

8, 12, 13 and X. Interestingly, chromosomes 1, 4 and 13 were also

recorded as the chromosomes with the highest percentage of

predicted PCSRs, which suggests the important role of these

chromosomes in cancer biology. Based on these results and those

previously reported on chromosomes abnormality [7,25,26,27], it

can be concluded that our pipeline is able to predict risk regions as

well as risk chromosomes in a variety of diseases including cancer.

This pipeline can also be applied to the fast growing (but still

limited number of) RNA-seq datasets in future studies.

Network analysis indicates that DDX5, LIFR, ZEB2, mir-21,

mir-27b, mir-30a, mir-141, mir-182 and mir-200c were shared

across different constructed networks, indicting their crucial role in

cancer biology and progression, which has been reported

previously [28,29,30]. For example, the potential clinical utility

of DDX5 and its associated miRNAs (mir-21 and mir-182) are

suggested as therapeutic target in breast cancer [29,31]. In

addition, clinical application of different miRNAs in cancer such

as let-7, mir-21and mir-122 are discussed in recent study of Nana-

Sinkam and Croce [28].

Because miRNAs do not function in isolation [28], we analyzed

the cluster of miRNAs on same regions to understand the relative

contribution of multiple miRNAs rather than individual miRNA.

Co-expression of different miRNA implies the presence of

common transcription regulators and/or common causal variants

for these regions. It is also previously reported that common

modules on the promoters can cause co-expression of the genes

[32].

We found that different common regulators for altered mRNAs

and miRNAs including, KLF4 (at 9q31.2) and RORA (15q22.2)

were on the predicted PCSRs. These two TFs mediate a set of cell-

cycle genes and exhibits both oncogenic and tumor suppressive

functions [33,34]. Interestingly, down-expression of mir-30c-2 (at

6q13) as well as over-expression of GATA3 was observed across

different types of HCs in this study, which confirm regulation of

mir-30c-2 through GATA3. Bockhorn and collogues recently

demonstrated that mir-30c is transcriptionally regulated with

GATA3 [35].

Presence of another level of interrelation between cancer-risk

regions was suggested, where mRNAs and their common

regulators at different PCSRs interact with each other as well as

their targets. The subnetwork centered on DDX5 with total 5

nodes and 4 relations (Figure 2) and the subnetwork of GAPDH,

miR-141 and mir-200c confirm such interactions (Figure 3). In

these subnetworks, different RNAs are located on PCSRs

including GAPDH, ZEB2, mir-20b, mir-21, mir-141 and mir-

200c supporting the important effects of these RNAs and their

regions in cancer.

Subnetwork centered on DDX5 is shared across networks

constructed for altered mRNAs and miRNAs in different cancers.

RNA helicase DDX5 (also known as p68) is involved in RNA

metabolism and serves as a transcriptional co-regulator and has

been reported as regulator of mir-182 in breast cancer [29].

Significant association has been also reported between DDX5

rs1991401 (OP = 7.9061025) and malignant peripheral nerve

sheath tumor [36]. Our results showed that up regulation of mir-

20b and mir-141 down regulates DDX5.
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Second subnetwork (Figure 3) contained GAPDH, mir-141 and

mir-200c that are located at 12p13.31 as predicted PCSRs.

Amplification of 12p13 region was observed in breast cancer [37],

T cell lymphomas and lymphocytic leukemia [38,39], causing

over-expression of GAPDH, mir-141 and -200c. Upstream

regulators can involve in up-regulation of these RNAs and a

positive effect has been reported for TP53 located on the upstream

region of GAPDH [40]. In addition, Yoshihara et al [41] reported

some sporadic ovarian cancer-unique CNVs at 12p13.31. In

general, these reports in combination with our in silico findings

indicate the crucial role of 12p13.31 in HCs.

Interestingly, some other common RNAs between cancers in

this report, are observed in prior studies of tumors and other

diseases [16,42]. For example, presence of synonymous SNP

(rs12948217) affecting the exonic splicing enhancers site nearby

ASPA has been reported for neurodegenerative disease [43]. Loss

of regions including 14q32.2 (location of mir-127, mir-432 and

mir-770) and 14q32.31 (mir-134, mir-379, and mir-382) were

reported in previous studies of renal cancer and osteosarcoma

[16,44]. In our study, mirRNAs located at 14q32.2 and 14q32.31

showed down-expression in several cancers, implying down-

expression of miRNAs following chromosome loss in these regions.

Figure 2. Subnetwork center on DDX5 derived from network of common altered variants in different cancers. Network is including
mir-21, mir-182, -mir20b and mir-141. Network was constructed using pathway studio 9 software. Network was assembled based on bioinformatics
and literature, combined with biological interpretation of the microarray data and enriched Gene Ontology functional groups. Red: over-regulated
entities in most of cancers. Blue: down-regulated entities in most of cancers. \represents negative-regulated.
doi:10.1371/journal.pone.0096320.g002

Figure 3. Network of common altered variants in different cancers including mir-200c, mir-141, and GAPDH at 12p13.3. Network was
constructed using pathway studio 9 software. Shortest path algorithm was applied to construct network. Network was assembled based on
bioinformatics and literature, combined with biological interpretation of the microarray data and enriched Gene Ontology functional groups. Purple:
over-regulated entities in most of cancers Blue: down-regulated entities in most of cancers. O-vertex represent TFs, +represents positive-regulated,
and \represents negative-regulated.
doi:10.1371/journal.pone.0096320.g003
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In conclusion, predicted PCSRs in the current study opens new

avenue in further genome association studies for finding different

types of cancer-causal variants. Since multiple variations accu-

mulated in a gene or a cluster of genes may all contribute to the

phenotype, studying different types of variations or regulatory

mechanisms over a gene, cluster of genes or specific region might

be a useful tool for improving association detection. The

identified common altered RNAs at PCSRs in our constructed

networks have great potential to be used for finding associated

SNPs, CNVs and/or SSRs near these genes. In addition, these

results suggest the potential of novel regulator-based (rather than

gene-based) cancer therapy in order to restore the disrupted

cluster of mRNAs and/or miRNAs. In general, our pipeline can

be effectively used to predict cancer-risk regions and cancer-risk

chromosomes.

Methods

Expression Data Analysis
Raw CEL expression data for different HCs were obtained from

Gene Expression Omnibus (GEO) database (Table S10). The

RMA (Robust Multichip Average) algorithm was first applied to

the microarray raw data to obtain normalized data using

Expression Console software (Affymetrix, CA, USA). Data were

then analyzed using FlexArray software (http://genomequebec.

mcgill.ca/FlexArray/). Differential gene expression pattern for

each experiment (cancer vs. normal) was evaluated using empirical

Bayes test (a moderated t test) (p,0.05). Genes exhibiting at least

2-fold changes in gene expression and 1.5 fold changes in miRNA

expression were selected for further analysis. Also, 1.2-fold change

was considered to trace common altered mRNAs and miRNAs in

different cancers.

The digital differential display (DDD) tool (http://www.ncbi.

nlm.nih.gov/UniGene/ ddd.cgi) was used to screen the cancer-

related genes in different HCs. EST libraries selected for DDD

comparisons of different tissues (cancer vs. normal) are listed in

Table S11. Pools A and B were assigned for normal and cancerous

libraries in each cancer, respectively. The output provided a

numerical value in each pool denoting the fraction of sequences

within the pool that mapped to the UniGene cluster. Statistically

significant hits (Fisher’s exact test) showing .10-fold differences

were compiled, and a preliminary database was created. Fold

differences were calculated by using the ratio of pool B/pool A,

according to previously described method [45].

Among probsets with highest fold changes, common altered

mRNAs and miRNAs (at least in 6 out of 11 HCs) were extracted

using DDD tools together with microarray datasets. These

common altered RNAs afterward used for network constructions.

Detecting of Shared-Cancer Susceptibility Regions
The numbers of differentially expressed genes were counted for

each region (as frequency of the region) using an in-house

developed python script (The python script is available in Script

S1). The frequency of region involved in expression was calculated

for probsets with at least 2-symmetrical fold changes (Table S12)

and 200 first probsets with the highest fold changes (Table S13).

Next for each region, percentage of region participation in

differentially expressed probsets in all 11 types of HCs was

calculated using following equations:

Region participation for over� expressed probsets(%)~

(FOR=(FTP|n))|100

Where FOR is the frequency of region for over-expressed probsets

(summation of 11 HCs), n is the number of cancers (here is 11) and

FTP is frequency of region for total probsets (Table S14 and S15).

Region participation for down� expressed probsets(%)~

(FDR=(FTP|n))|100

Where FDR is the frequency of region for down-expressed

probsets (summation of 11 HCs), n is the number of cancers (here

is 11) and FTP is the frequency of region for total probsets (Table

S14 and S15). Finally, five regions with the highest ratio were

selected as potential cancer-risk regions for each chromosome.

In addition, percentage of chromosome participation in

differentially expressed probsets in total 11 HCs was calculated

using following equations:

Chromosome participation for over� expressed probsets(%)~

(FOC=(FCTP|n))|100

Where FOC is the frequency of chromosome for over-expressed

probsets (summation of 11 HCs), n is the number of cancers (here is

11) and FCTP is the frequency of chromosome for total probsets

(Table S16).

Chromosome participation for down� expressed probsets(%)~

(FDC=(FCTP|n))|100

Where FDC is the frequency of chromosome for down-expressed

(summation of 11 HCs), n is number of cancers (here is 11) and

FCTP is the frequency of chromosome for total probsets (Table

S16). Moreover, the percentages of chromosome participation for

each cancer (Table S17) were calculated using fraction of

chromosome frequency for altered probsets to chromosome

frequency for total probsets (Table S17). The differences of

chromosomes were investigated based on general chi square test.

Construction of Networks on Common Altered MRNAs
and MiRNAs

Pathway Studio 9 software (Ariadne Genomics, Rockville, MD)

was used to construct different networks. Pathway Studio uses the

RESNET Mammal database, which is a comprehensive pathway

and molecular interaction database [46]. This database includes

new aliases for human genes, miRNAs and entries from other

mammals. The shortest path algorithm was used to construct four

different networks based on altered mRNAs and miRNAs [47].

Five networks were constructed based on common altered RNAs,

including network of commonly altered mRNAs, network of

commonly altered mRNAs on PCSRs, network of commonly

altered miRNAs, network of commonly altered miRNAs on

PCSRs and integrative network of common altered mRNAs and

miRNAs. The biological process of each network was identified

using the DAVID (http://david.abcc.ncifcrf.gov/tools.jsp) suite of

bioinformatics tools. DAVID bioinformatics resources consists of

an integrated biological knowledgebase and analytic tools aimed at

systematically extracting biological meaning from large gene/

protein lists [48].

Promoter Analysis of Altered RNAs
Promoter analysis was conducted for co-expressed mRNAs

across different cancers using pscan[49]. Transcription factors

(TFs) were predicted in the promoter regions (21 kb to 0) of
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mRNAs using Jaspar database (TFs with P-value,0.1 were

selected). In the case of miRNAs, common regulators were

predicted for altered miRNAs at same region using Jaspar web

tool (http://jaspar.genereg.net/). TFs were predicted in the

putative promoter regions (23 kb to +1 kb) of microRNAs with

at least 99% relative profile score threshold. Expression of

predicted TFs was determined using transcript-microarray ex-

pression data of 11 different cancers including breast, colorectal,

endometrial, gastric, liver, lung, ovarian, pancreatic, prostate,

testicular, bladder, intestine neuroendocrine, cervical and renal

cancers as well as glioblastoma.
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