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In 2012, bicyclo[1.1.1]pentanes were demonstrated to be bioisosteres of
the benzenering. Here, we report ageneral scalable reaction between
alkyliodides and propellane that provides bicyclo[1.1.1]pentaneiodides in
milligram, gram and even kilogram quantities. The reactionis performedin
flow and requires just light; no catalysts, initiators or additives are needed.
Thereactionis clean enough that, in many cases, evaporation of the reaction
mixture provides products in around 90% purity that can be directly used
in further transformations without any purification. Combined with the
subsequent functionalization, >300 bicyclo[1.1.1]pentanes for medicinal
chemistry have been prepared. So far, this is the most general and scalable
approach towards functionalized bicyclo[1.1.1]pentanes.

The benzene ring is the most popular ring in drugs'? and natural
products®. In 2012, bicyclo[1.1.1]pentane (BCP) was demonstrated
to mimic the para-substituted benzene ring in a biologically active
compound (Fig.1a)*. Since then, BCPs have been playing animportant
role in chemistry® 2, Synthesis and applications of BCPs are covered
in at least ten recent reviews® '*. Moreover, >300 patents describe an
application of BCPs indrug discovery projects (Fig. 1b). Most of these
compounds bear a (hetero)aromatic substituent, the hydrogen atom
oracarboxylicgroup derivative at the bridgehead position of the BCP
core, however, alkyl substituents are rare.

Worth specific mentioning is a recent collaboration between
Pfizer and the Baranlaboratory on developing ascalable ‘strain-release’
amination of propellane®**. This study allowed the preparation of BCP
amines with no substituents at the bridgehead position.

Aliphatic substituents increase the fraction of sp*-hybridized
carbon atoms (F(sp?)) in bioactive molecules and, therefore, it is not
surprising that medicinal chemists favour using them nowadays®~°.
In this context, alkyl-substituted BCPs are conceptually interesting,
yet almost unknown.

In this work, we have developed a general scalable reaction
betweeninexpensive starting materials—alkyliodides and propellane—
that gives alkyl-substituted BCP iodides in milligram, gram and even
kilogram quantities. The reaction proceeds in flow and requires only
light. No catalysts, initiators or additives are needed. The transforma-
tionissocleanthatin many cases, evaporation of the reaction mixture
provides productsinaround 90% purity that canbe directly usedin the
next steps without any purification. The subsequent modifications of
the obtained products allowed the preparation of >300 BCP building
blocks for use in medicinal chemistry. So far, this is the most general
and scalable approach towards functionalized BCPs.

Results

Optimization

In a search for a general scalable method towards alkyl-substituted
BCPs, we focused our attention on the reaction of alkyl iodides with
propellane. In 1991, this reaction was shown to take place under irra-
diation with a broad-wavelength Hanovia mercury lamp in a Pyrex
vessel (Fig.1¢)*. In 2000, it was demonstrated that the addition of
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Fig.1| Application and synthesis of BCPs. a, The concept begins with BCPs
as saturated bioisosteres of the para-substituted benzene ring®*. b, BCPs in
drugdiscovery projects. In the first two molecules (Pfizer in 2012, ref. 4 and
GlaxoSmithKline (GSK) in 2017, ref.16) BCPs have been used as saturated
benzene bioisosteres. ¢, Known approaches to alkyl-substituted BCP iodides.
r.t., room temperature; fac-Ir(ppy),, fac-tris(2-phenylpyridine)iridium(Ill); FG,
functional group.

an equimolar amount of methyl lithium also promoted the reaction
(Fig. 1c)*®. The challenges associated with the ultraviolet irradiation
in Pyrex glassware and the low compatibility of methyl lithium with
various functional groups lowered the practical potential of both
methods®**. In 2018, scientists discovered that triethylborane initi-
ated the reaction leading to the formation of products in good yields
(Fig. 1c)**~*¢.In 2019, the reaction scope was improved by perform-
ing the reaction in the presence of the fac-Ir(ppy), catalyst under the
photoredox conditions**%, The key disadvantage of the last method
was therelatively high price of the metal catalyst (price of fac-Ir(ppy);
(Aldrich): €852 for 250 mg). Itis worth noting that some activated alkyl
iodides, such as CF,l, HCF,land EtO,CCF,l, were reported to react with
propellane at room temperature without any initiation or catalysis* ",
The reaction was slow, and typically took place over 48-72 hours.
Known approaches towards alkyl-substituted BCPs are depictedin
Fig.1c. Thesereactions were described on a milligramscale. Therefore,
we first tried these protocols on agramscale withthe most challenging

Table 1| Optimization of synthesis of BCP 1

A=365nm
Mel + E— Me@—l
U bl Et,0, 30 min, r.t.
M i) d'e | Propellane® flow
(Me«) radica previous 1,62%
Protocols failed
Entry Conditions Yield (%)°
1 MelLi(leq.), r.t., 24h 5
2 I, (0.25% mol.), rt., 24h 16
3 BEt, (10% mol.), Et,O, r.t., 24h 31
4 fac-Ir(ppy); (2.5% mol.), Et,O, 450 nm, Polymerization
12h
5 fac-Ir(ppy); (2.5% mol.), BUCN, 450 nm, Polymerization
12h
6 fac-Ir(ppy); (2.5% mol.), BUCN, 450 nm, 14
12h (2eq. propellane)
7 254nm, Et,O, r.t., 24h, in batch 12
8 310nm, Et,0, r.t., 24h, in batch 17
9 450nm, Et,0, r.t., 24h, in batch <5
10 365nm, Et,0, r.t., 24 h, in batch 43
M 365nm, Et,0, r.t., 30min, in flow 62
12 365nm, Et,0, r.t., 30min, in flow (2eq. 73
Mel)
13 365nm, MeO'Bu, r.t.,, 30min, in flow 51
14 r.t., 30min (control) ND
15 r.t., 24h (control) 6°
16 365nm, Et,O, r.t., in flow (8559 of 72°
product)

Scale, 10g of Mel in each experiment. ND, not detected. *Solution of propellane (0.7M) in
Et,0-CH,(OEL),. ®Isolated yield. Distillation as a purification method. °Crystallization as a
purification method.

alkyl substrate: methyl iodide (Mel). The methyl radical is the most
unstable among allcommon alkyl radicals. We thought thatif we could
elaborate onascalable protocol for the reaction of Mel, it would work
with other alkyliodides too.

The reaction of Mel with propellane (1.2 eq.) in the presence of
methyl lithium* or iodine gave only traces of the needed product 1
(Table1, entries1and 2). Initiation with BEt; (ref. 44) gave the product
1in31%yield, however, an extensive formation of polymeric products
was observed (entry 3). Catalysis with fac-Ir(ppy); (refs. 45,46) led to
the formation of a complex mixture (entries 4 and 5). With an excess
of propellane (2 eq.), however, we obtained iodide 1in14% yield. Next,
we attempted the reaction under various photochemical conditionsin
batch with no catalysts/initiators (entries 7-10). Irradiation of the reac-
tionmixture at 254 or 310 nm gave <20% of the needed product (entries
7and 8).Irradiation at450 nm (blue light-emitting diode (LED)) did not
promote the reaction (entry 9). However, the irradiation at 365 nmin
batch allowed obtaining the desired product 1in 43% yield (entry 10).
After further optimization, we found that performing the reaction
inflow for 30 minutes allowed increasing the yield to 62% (entry 11).

Itisworth noting thatallexperimentsinentries1-11 (Table 1) were
performed under the standard conditions: Mel (10 g; 1 eq.) and pro-
pellane (1.2 eq.). In each case, the product was isolated by distillation
under reduced pressure. Moreover, performing the reaction with an
excessof Mel (2 eq.) ledtoanimprovement of the yield to 73% (entry 12).
However, because many alkyliodides are expensive, for further stud-
ies we used the reaction conditions that require an almost equimolar
amount of reagents (entry11).
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Fig. 2| Synthesis of BCPs from primary alkyliodides. Reaction conditions Synthesis of compounds 6, 40, 42-47 was performed on 0.1-2 g scale (irradiated
were as follows: a solution of alkyliodide (1 eq.) and propellane (0.7 Min Et,0/ coil 7.6 ml; flow rate 0.75 ml min™; irradiation 365 nm LED; radiated power 257 W
CH,(OEt),; 1.2 eq.) in diethyl ether was passed through a coil (irradiated area and residence time 10.1 min). [MeLi]: MeLi (1 eq.), CH,(OEt),, 24 h, r.t., in batch.
160 ml) with a flow rate 10 ml min~ under irradiation with 365 nm LED (radiated [BEt;]: BEt; (0.1eq.), Et,0, 24 h, r.t., in batch; [Ir]. fac-Ir(ppy); (2.5% mol.), ‘BuCN,
power 420 W). Residence time was 16 min. Typical scale was 5-10 g of alkyl 12 h, r.t., in batch. X-ray crystal structure of compounds 14 and 19. Hydrogen
iodide. Compounds 1,2 and 22 were additionally obtained on amultigram scale. atoms are omitted for clarity. Boc, tert-butoxycarbonyl protecting group.
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Fig. 3| Synthesis of BCP halides and bicyclo[3.1.1]heptanes. Reaction
conditions were as follows: a solution of alkyl iodide (1 eq.) and propellane (0.7 M
in Et,0/CH,(OEt),; 1.2 eq.) in diethyl ether was passed through a coil (irradiated
area160 ml) with a flow rate 10 ml min under irradiation with 365 nm LED
(radiated power 420 W). Residence time was 16 min. Typical scale 5-10 g of alkyl
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iodide. Compounds 48, 60 and 63 were also obtained on a multigram scale.
[MeLi]: MeLi (1 eq.), CH,(OEt),, 24 h, r.t., in batch; [BEt;]: BEt, (0.1 eq.), Et,0,24 h,
r.t., inbatch; [Ir]: fac-Ir(ppy); (2.5% mol.), BuCN, 15 h, r.t., in batch. X-ray crystal
structure of compound 55. Hydrogen atoms are omitted for clarity.

Itisimportant to mention that propellane canalso be synthesized
inMeO'Buinstead of Et,0 (also Supplementary Information, page 27).
Itsreaction with Melunder the developed conditions also worked and
provided product1in51%yield (entry13).

Control experiments revealed that without irradiation the reac-
tion of Mel with propellane did not proceed efficiently (entries 14, 15).

Having anoptimized protocolinhand (Table1, entry 11), we synthe-
sized pure BCP1in 855 gamount in one run with almost no additional
modifications (Table 1, entry 16; also Supplementary Information,

pages 62-63). Inthis case, however, weisolated the product (72% yield)
from the reaction mixture by a low-temperature crystallization
from pentane.

Scope

Next, we studied the generality of the developed method. First, we
tried other primary alkyliodides (Fig. 2). Given the rise of deuterated
compounds in modern drug discovery***, we performed an addition
of CDsl to propellane under standard conditions to obtain product
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D,-1in 68% yield. The reaction worked well with other alkyliodides
(3-7), oxetane-containing substrates (8-10), tetrahydrofuran (11) and
tetrahydropyran-containing molecules (12,13). N-Boc-protected azeti-
dines (14), pyrrolidines (15) and piperidines (16,17) performed equally
well in the reaction. In addition, Bpin (18), PO(OEt), (19) and ‘BuC(O)
O groups (20) were compatible with the reaction conditions. Given
the importance of organofluorine compounds in modern medicinal
chemistry>*¢, we performed the reaction with various fluorinated
alkyliodides to obtain BCPs 21-27 in 69-92% yield. The structure of
products 14 and 19 was confirmed by X-ray analysis.

Various functional groups, such as nitrile (28-30), ester (31-33),
active chlorine (34) and bromine atoms (35), alcohol (36, 37) and
NHBoc (38-40) were compatible with the reaction conditions. Diverse
coresincluding2-oxabicyclo[2.1.1]hexane (44)*° and oxa-spirocycles
(45)°°also gave the desired BCP iodides 41-47in 41-69% yield.

Wealso studied the behaviour of secondary alkyliodides (Fig. 3).
The protocol efficiently worked for isopropyl (48), isobutyl (49) and
cycloalkyl (50-54) iodides.

Four-to-six-membered rings with oxygen (55-58), sulfur (59) and
N-Boc (60-64) gave the desired productsin30-92%yield. Secondary,
MeCH(I)CO,Bu, and tertiary, Me,C(1)CO,'Bu, iodides also reacted with
propellane to provide products 65, 66 in lower yields of 25-36% due to
a problematic purification®. Various fluoroalkyl iodides (67-73) and
evenbromides (74-78)%* were compatible with the reaction conditions
too. The structure of product 55 was confirmed by X-ray analysis.

Several representative (hetero)aromatic iodides also were sub-
jected to the standard reaction conditions, and products 79-81 were
obtained in 47-90% yield. Phenyliodide did not react, however.

Recently, bicyclo[3.1.1]heptanes were proposed to mimic the
meta-substituted benzene ring in bioactive compounds®. In this con-
text, we studied the reaction of [3.1.1]-propellane with two representa-
tivealkyliodides under the above-developed conditions. The desired
bicyclo[3.1.1]heptanes 82 (45%) and 83 (38%) were obtained as a result
of these efforts (Fig. 3).

Scalability

Most of the syntheses depicted in Figs. 2 and 3 were performed with
5-10 gof starting alkyliodides. The typical reaction time was less than
30 minutes. Only syntheses of BCPs 6, 40, 42-47 were performed on
asmaller scale due to the low availability of the corresponding alkyl
iodides.

For many examined substrates, we compared the performance of
our conditions with the literature protocols on the same scale (Figs. 2
and3).MeLigave pooryields of the desired products bearing functional
groups; initiation with triethylborane often gave good results (3-5, 55,
57,60 and so on). In each case, however, a standard aqueous workup
followed by purification by column chromatography or distillation
was needed.

The photochemical protocol developed here gave the best yields
of productsin all cases, where different protocols were examined and
compared. In many cases, the reaction was so clean that evaporation
of the reaction mixture provided products with around 90% purity
that can be directly used in the next steps without any purification.
It allowed us therefore to subsequently scale up the preparation of
BCPiodides1-3,5,7,14-16, 21-27, 48, 50, 55, 57, 59-63, 67-69, 71,
75 and 77 to 50-800 g quantities (also Supplementary Information,
pages 62-70).

Mechanism

Product 62 (Fig. 3) was obtained from the derivative of the optically
pure (2S,4S)-4-iodoproline as a 3:2 mixture of two diastereomers at
C(4)-atom (Fig. 3). This observation suggested the radical mechanism
ofthereactionwith theinitial photochemical formation of the configu-
rationally unstable alkyl radicals. To validate this hypothesis, we per-
formed ‘radical clock’ experiments (also Supplementary Information,

Radical clock experiments

A=365nm |
Et,0, 10 min g/
x>
r.t., flow N
A/, + @ 85, 54% (77%)?
84 Propellane A=1365nm
Et,0, 10 min
— No product
r.t., flow
TEMPO
A=365nm
Et,0,1h
A/' —— !
r.t., flow
84 86, 20% conversion
O\/Q/ !
AN A=365nm 88
Et,0, 10 min
+ O +
r.t., flow = |
88:89 = 5:1
Propellane
61% (87%)?

87 89

Fig. 4 |Radical clock experiments with alkyliodides 84 and 87. °NMR yield
using1,3,5-trimethoxybenzene as an internal standard.

pages 71-87)%*. Alkyliodide 84 was reacted with propellane under the
developed conditions to selectively form the ring-opened alkene 85
(Fig.4).Inthe nuclear magneticresonance (NMR) spectroscopy of the
crude reaction mixture, we did not observe even traces of the cyclo-
propanering.Inthe presence of (2,2,6,6-tetramethylpiperidin-1-yl)oxyl
(TEMPO), the formation of product 85 was not observed. Inthe absence
of propellane, anisomerization ofiodide 84 into compound 86 slowly
took place. Similarly, the reaction of alkyl iodide 87 with propellane
gave mostly the rearranged cyclopentane-containing product 88 with
only traces of alkene 89 (88:89 = 5:1, Fig. 4). These experiments sup-
ported the original hypothesis of the radical pathway of the reaction.

Modifications
Having a practical and scalable protocol towards alkyl BCP iodides in
hand, we converted theminto various BCP-containing building blocks
(compounds with one or two functional groups) for use in medicinal
chemistry. Treatment of BCP iodides with ¢-Buli in Et,O followed by
trapping of the formed carbanions with (‘PrO)Bpin gave boron pinaco-
lates a (Fig. 5)°°7>. The reaction of the last with potassium fluoride in an
acetone-water mixture smoothly gave trifluoroborates b. Oxidation
of boron pinacolates with H,0, gave alcohols c (ref. 74). Trapping of
BCP-carbanions with diverse electrophiles was also studied. Reaction
with BocN=N-Boc followed by the acidic N-Boc deprotection produced
hydrazines d (Fig. 5)”>’°. Reaction with sulfur dioxide followed by the
oxidative chlorination of the intermediate sulfinate salts gave sulfonyl
chloridese (refs. 77-81). Reaction with hexachloroethane afforded BCP
chlorides f. An analogous reaction with 1,1,2,2-tetrabromo-1,2-diflu
oroethane provided BCP-bromides g. The addition of CD,0D followed
by the N-Boc deprotection gave deuterated amines 60h and 63h. The
addition of ethyl formate gave aldehydes i. Treatment of carbanions
with methanol followed by optional hydrolysis of the ester group or
the N-Boc deprotection gave mono-substituted BCPs: carboxylic acids,
amines and alcohols j. Reaction with dry ice gave carboxylic acids k
(refs. 82-101). Standard Curtius reactions of the last gave amines|
(refs. 83,102-106).

The obtained BCPiodides were also compatible with radical cross-
couplings. Several successful representative [Fe]- and [Cu]-catalysed
reactions'”'% of iodide 1 with ArMgCland N-azoles were performed to
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21 examples (and 1a, 2a, 21a, 25a, 26a, 48a, 52a,
53a, 55a, 57a, 59a, 60a, 63a, 67a, 69a)

(Alcohols), (Aminoalcohols)
12 examples (and 2c, 21c, 57c, (+)-61c, 67c, 69c)

S0,CI S0,CI S0,CI SO,CI
T (a) % % ?
CoFs
M F7OF
(y ©
2e (43%) 67e (55%) 69 (41%)  T1e (56%)

(Sulfonyl chlorides) Five examples (and 57e)

1-78 D@—CNH OHc@—CNBoc
(h) or (i)

[1.1.1]-iodides
0
60f (68%) 60g (69%) / and 82, 83 \ 60h (71%) 60i (65%)
63f (66%) 639 (69%) l(k) 63h (79%) 63i (70%)
(Chlorides) (Bromides)  (and 55g, 69g) 0 (?D-compounds) (Aldehydes) (and 55i, (+)-61i, 68i)
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671 (63%) 631 (86%) 0,591 (69%) 38k (38%) 60k (83%) 83k (63%) 60j (70%)  (+)61j (71%)  62j (41%, d.r. = 3:2)

(Primary amines), (Diamines)
35 examples (and 11-51,71, 141, 161, 221, 241-27I,
411, 481, 501, 521-571,591-611,681-71I)

aYas

m (41%)

p(MeO)CgH,4MgBr
Fe(acac)3
TMEDA, THF, r.t, 1h
(Fe)-coupling

Fig. 5| Modifications of BCP and bicyclo[3.1.1]heptane iodides. Reaction
conditions for all conditions are shown. a, (PrO)Bpin, t-BulLi, Et,0,-100 °C.
b, KHF,, acetone-water, r.t. ¢, KH,PO,, H,0,, THF-water, r.t.d, (i) BocN=N-
Boc, ¢-Buli, Et,0,-100 °C; (ii) dioxane-HCI, r.t. e, (i) t-BuLi, SO,, Et,0; (ii) Cl,,
CH,CI,-H,0, 0-5°C.f, (i) t-BuLi, CI,CCCl,, Et,0,-100 °C; (ii) deprotection:

HCI-dioxane or TFA-CH,Cl,. g, (i) t-BuLi, C,Br,F,, Et,0,-100 °C; (ii) deprotection:
HCI-dioxane or TFA-CH,Cl,. h, (i) t-BuLi, CD,0D, Et,0, -100 °C; (ii) deprotection:

HCl-dioxane or TFA-CH,Cl,. i, t-BulLi, ethyl formate, Et,0,-100 °C.j, Four

(Carboxylic acids), (Amino acids)
42 examples (and D31k, 1k-5k, 7k, 14k, 16k, 21k, 22k, 24k-27k, 34k,
39k, 41k, 48k, 51k-54k, (+)-56k-59k,0,-59k, (+)-61k, 63k, 67k—71k, 82k)

[Reduced derivatives]
16 examples (and 14j-16j,
31j-33j, 38j, 60j, 65j, (+)-74j)

HN
/§ Cu(TMHD),

NPh  Ks;PO,

Dioxane, 100 °C, 18 h ~

1 (Cu)-coupling 1n (50%) O

methods for the reduction of the C-1bond: ¢-BuLi, MeOH, Et,0, =100 °C;
Raney-Ni, EtOH, ethylenediamine, r.t.; Bu;SnH, AIBN, CCl,, r.t.; or Pd-C, H,,
NEt,;, MeOH, r.t. K, t-BuLi, CO,, Et,0,-80 °C.1, (i) (PhO),P(O)N,, Et;N, t-BuOH,
95 °C; (ii) HCIl-dioxane, Et,0, r.t. Bpin, 4,4,5,5-tetramethyl-1,3,2-dioxaborolane;
TFA, trifluoroacetic acid; acac, acetylacetonate; AIBN, azobisisobutyronitrile;
Cu(TMHD),, copper bis(2,2,6,6-tetramethyl-3,5-heptanedionate); TMEDA,
tetramethylethylenediamine.
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Fig. 6 | Synthesis, physicochemical properties and biological activity

of Benzocaine analogue. a, Synthesis of saturated analogue of the local
anaesthetic drug, Benzocaine, compound 91. Sol., the experimental kinetic
solubility in phosphate-buffered saline, pH 7.4 (uM). logD (7.4), the experimental
distribution coefficientin n-octanol-phosphate-buffered saline, pH 7.4. clogP,
the calculated lipophilicity. CL,,, the experimental metabolic stability in human
liver microsomes (pl min™ mg™). t,, (min), the experimental half-time of a
metabolic decomposition in human liver microsomes. b, Time course of the
antinociceptive effect of Benzocaine and its analogue 91 in tail flick test. The data
Are presented as mean s.e.m. (n =5).*P(t) < 0.05 and **P(t) < 0.001 compared
with the control group (vehicle) data were analysed using a two-sided Student’s
t-test without multiple comparisons. ¢, The area under the curve (AUC) of the
withdrawal latency of Benzocaine and its analogue 91 in a tail flick test"’. The data
were presented as mean +s.e.m. (n =5). *P(t) = 0.026; **P(t) = 0.002 compared
with the control group (vehicle) data were analysed using a two-sided Student’s
t-test without multiple comparisons. n, sample size.

obtainproductslmand1n (Fig.5; see also Supplementary Information,
pages 175-178 for other examples).

Using this strategy, we have prepared >200 functionalized BCPs
ingram quantities (Fig. 5). So far, this is the most general and scalable
approachtofunctionalized BCPs. Many of these molecules have already
found an applicationin drug discovery projects (Supplementary Infor-
mation, pages 182-187).

Replacement of benzene by BCP in drugs

To independently validate the BCP scaffold as a saturated benzene
bioisostere’ ¥, we aimed to incorporate it into existing drugs. We also
planned to study the impact of such replacement at the experimen-
tal physicochemical properties and biological activity. We chose the
FDA-approved local anaesthetic drug Benzocaine and the antihistamine
drug Buclizine with the para-substituted benzene rings.

The synthesis of asaturated analogue of Benzocaine commenced
from N-Boc amino acid 90. Acidic N-Boc cleavage in ethanol and the
simultaneous esterification of the carboxyl group gave the desired
compound 91as a hydrochloride salt (Fig. 6).

Animpact of the replacement of the benzene ring in Benzocaine
with BCP at the experimental physicochemical properties—water
solubility, lipophilicity—and metabolic stability was investigated
(Fig. 6). Such replacement slightly decreased the water solubility:
385 uM (Benzocaine) versus 319 (91). To estimate the influence of
the replacement on lipophilicity, we used two parameters: calcu-
lated (clogP) (clogP was calculated with ChemAxon (v.22.13)) and
experimental (logD) lipophilicities. According to both indices, the
replacement of the benzene ring with BCP notably decreased the lipo-
philicity by 1.5 clogP/logD units. The replacement also decreased
the metabolic stability, CL;,, (mg min™ pl™): 83 (Benzocaine)
versus 140 (91).

We also measured the experimental anaesthetic activity of Ben-
zocaine and its analogue 91 in vivo. We studied the antinociceptive
effect of both compounds using the ‘tail flick test”’*’ in 2-month-old
CD-1 female mice (Fig. 6 and Supplementary Information, pages
880-885. Study design, animal selection, handling and treatment
were in accordance with Bienta Animal Care and Use Guidelines, and
European Union directive 2010/63/EU). On the one hand, compound 91
was found tobeless active compared to the original drug Benzocaine:
no substantial difference in response time to tail flick was present
throughout the observation period. On the other hand, analogue 91
demonstrated a clear analgesic activity: anotableincreasein coverage
ofanalgesiaby time (area under the curve level) compared to that of the
vehicle (Fig. 6).

The synthesis of asaturated analogue of Buclizine was performed
from the carboxylic acid 92. Amide coupling of the latter with the
appropriately N-substituted piperazine provided compound 93.
Reduction of the amide group with LiAlIH, followed by addition of
hydrochloric acid gave the desired compound 94 as a hydrochloride
salt (Fig. 7).

Replacement of the benzene ring in Buclizine by BCP (94) did
not affect its water solubility, as both compounds were poorly solu-
ble in water: <1 uM (Fig. 7). The replacement substantially decreased
the lipophilicity, however, by 1-2 clogP/logD units. An impact of the
replacement on the metabolic stability was not observed, as both
compounds had high stability, thus outside the reliable range for meas-
urements (Fig. 7).

Buclizine is an antihistamine agent used as a drug for the
treatment of allergy symptoms and the prevention of nausea and
vomiting. Recently, Buclizine was suggested for repurposing for
cancer treatment, following an observation that the original target
(histamine-releasing factor) and the suggested one (translationally
controlled tumour protein) were identical™. Subsequently, Buclizine
was found to exhibit cytostatic effect in MCF-7 human cancer cell line.
The cell growth arrest was observed in a suppression of cell respiration
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Fig.7|Synthesis and lipid droplets fluorescent imaging assay of Buclizine
analogue. a, Synthesis of saturated analogue of the antihistamine drug
Buclizine, compound 94. Sol., the experimental kinetic solubility in phosphate-
bufferedsaline, pH 7.4 (uM). logD (7.4): the experimental distribution
coefficient in n-octanol-phosphate-buffered saline, pH 7.4. clogP, the
calculated lipophilicity. CL,,, the experimental metabolic stability in human
liver microsomes (ul min™ mg™). t,, (min), the experimental half-time of a
metabolic decompositionin human liver microsomes. *Parameter should be

b Lipid droplets fluorescent imaging assay
0.5% DMSO

Buclizine

Compound 94

50 uM

10 pM

Compound I1Cs5o ECso
Buclizine 31.3+7.8 UM 19.11£1.45uM
(+)-94 245+1.51M 16.49 + 0.56 pM

considered as approximate due to the high stability of compounds. b, Confocal
images of the lipid droplet formation in MCF-7 cells on incubation with Buclizine
and analogue 94 for 72 h. Nuclei were stained with Hoechst 33342 (cyan), lipid
droplets were stained with Nile Red (red). Scale bars, 20 pm. Effectiveness of
inhibition of the growth of the human cancer cell line MCF-7 (IC5, index); and
lipid droplet formation (ECs, index) by Buclizine and its analogue 94. HATU,
1-(bis(dimethylamino)methylene)-1H-1,2,3-triazolo(4,5-b)pyridinium 3-oxid
hexafluorophosphate; DMSO, dimethyl sulfoxide.

followed by the resazurin reduction assay. Buclizine also induced cell
differentiation, which was seen in an accumulation of intracellular
lipid droplets. In this work, we tested analogue 94, for its ability to
arrest cellgrowth andinduce lipid droplets and compared it to the par-
ent Buclizine molecule (for details, see Supplementary Information,
pages 886-889). By doing so, we expected to characterize indirectly
theinteraction of the compounds with the tumour protein depending
onthe presence of anisostere in the molecule.

In the resazurin reduction assay, the original drug, Buclizine,
showed moderate effectiveness (half-maximum inhibitory concentra-
tion (IC,o) 31.3 + 7.8 uM; Fig. 7). The BCP analogue 94 behaved similarly
(IC5o=24.5+1.5 uM). In an experiment assisted by fluorescence imag-
ing, Buclizine (half-maximum effective concentration (ECs,) 19 pM)
and the BCP analogue 94 (EC,, = 16 pM) also showed a similar onset of
lipid droplet formation.

This overall preservation of activity in both analogues 91 (Ben-
zocaine) and 94 (Buclizine) demonstrates that the benzene-to-BCP
replacement is bioisosteric, thus supporting the literature data**%.

Summary

In2012, BCPs were demonstrated to mimic the benzene ring in bioac-
tive compounds*. Here, we report a general scalable reaction between
alkyliodides and propellane that gives alkyl-substituted BCPiodidesin
milligram, gram and even kilogram quantities. The reaction proceeds
inflow and requires only light. No catalysts, initiators or additives are
needed. The reaction is so clean that in many cases, evaporation of
thereaction mixture provides productsinaround 90% purity that can
be directly used in the next step without any purification. With the
subsequent modifications, we have prepared >300 of BCPs for use
in medicinal chemistry. So far, this is the most general and scalable
approach towards functionalized BCPs.

We hope that this work will help process chemists at pharmaceu-
tical companies with the preparation of bioactive BCPs suggested by
medicinal chemists for clinical trials.

Methods
Synthesis of 3-iodo-BCPs and 3-iodobicyclo[3.1.1]heptanes
General protocol A. To a solution of Mel (10.00 g, 0.0704 mol,
1.00 equiv.)in Et,0 (100 ml), wasadded propellane (120 ml, 0.0840 mol,
0.7 Msolutionin Et,0-diethoxymethane;1.20 equiv.) under anargon
atmosphere. The resulting mixture was passed through a photoreactor.
The flow rate was 10 ml min™; the irradiated coil was 160 ml, irradiation
was 365 nm, LED, and theirradiated power was 420 W (50% of the maxi-
mal). Beforeentering theirradiated area, the solution was precooled to
0 °Cwith Huber Unistat 510 chiller. Theirradiated coil was also cooled
to 0 °Cwith Huber Unistat 510 chiller. The temperature of the reaction
mixture after the coil was around 10 °C. After passing through the
coil, after around 40 min (residence time in the irradiated coil, 160/10
approximately 16 min) the solution was evaporation under areduced
pressure (around 50 mmHg, 20 °Cin an external water-cooling bath),
and the residue was purified by distillation under a reduced pressure
(boiling point 38-40 °C at 10 mmHg). After cooling down to room
temperature, the product1(9.21g,0.0438 mol, yield 62%) slowly solidi-
fied. Alternatively, the crude residue (after evaporation of the reaction
mixture after the irradiation) could be purified by adding pentane
(around 50 ml) and cooling the formed suspension with an external
dry ice bath to around -60 °C. The formed precipitate was quickly
filtered off. The filtered solid was washed with the precooled pentane
(=60 °C, 50 ml) on the filter, and was dried under vacuum (20 mmHg)
during 30 min atroom temperature. Yield was 9.77 g, 0.0465 mol, 66%,
white crystals, melting point <30 °C.

NMR spectrawere analysed with MestreNova (v.11.0.3-18688).
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Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The dataunderlying this study are available in the published articleand
its Supplementary Information, including experimental procedures,
calculations, characterization data, copies of 'H, *°F, ®C NMR spectra.
Crystallographic data for the structures reported in this Article have
been deposited at the Cambridge Crystallographic Data Centre, under
depositionnumbers CCDC 2260408 (14),2244857 (19), 2244859 (55),
2237112 (2k) and 2244856 (21k). Copies of the data can be obtained free
of charge via https://www.ccdc.cam.ac.uk/structures/.
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