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Abstract: Aurora kinase B (AURKB) is a mitotic serine/threonine protein kinase that belongs to the
aurora kinase family along with aurora kinase A (AURKA) and aurora kinase C (AURKC). AURKB
is a member of the chromosomal passenger protein complex and plays a role in cell cycle progression.
Deregulation of AURKB is observed in several tumors and its overexpression is frequently linked
to tumor cell invasion, metastasis and drug resistance. AURKB has emerged as an attractive drug
target leading to the development of small molecule inhibitors. This review summarizes recent
findings pertaining to the role of AURKB in tumor development, therapy related drug resistance,
and its inhibition as a potential therapeutic strategy for cancer. We discuss AURKB inhibitors that are
in preclinical and clinical development and combination studies of AURKB inhibition with other
therapeutic strategies.

Keywords: aurora kinase B (AURKB); cancer; AURKB regulation; AURKB inhibitors; therapy related
drug resistance; combination therapy

1. Introduction

Aurora kinases (AURKs) are protein serine/threonine kinases consisting of three
members in the gene family—aurora kinase A (AURKA), aurora kinase B (AURKB) and
aurora kinase C (AURKC) [1]. AURKs are critical regulators of the cell cycle, with AURKA
and AURKB playing a key function in mitosis [1], whereas AURKC has a significant role in
gametogenesis [2,3]. AURKs have three different domains, of which the kinase domain
shares a high degree of homology among all the members [4]. The functions of AURKs are
well-defined by their localization and spatio-temporal expression [5] and also the sequence
differences in their N-terminal region [4]. Overexpression of AURKs in tumors has been
shown to trigger aneuploidy and genomic instability [6] that leads to tumor development,
invasion and metastasis. AURKA and its functions have been widely investigated and
several reviews were authored to highlight its importance in cancer [7,8]. The role of
AURKC in cancer is not completely understood and needs further investigations. This
review focuses on AURKB, a potential drug target from the AURK gene family.

Aurora kinase B is encoded by the AURKB gene located on chromosome 17 and is
also known by other names including AIK2, AIM1, ARK2, AIRK2, IPL1, STK1, STK5 and
STK12. AURKB along with other AURKs plays a vital role in the regulation of cell cycle.
Phosphorylation of histone H3 by aurora kinases is essential for chromosome segregation
during cell division. Both AURKA and AURKB have been shown to phosphorylate histone
H3 [9]. The role of elevated AURKB in increasing the phosphorylation of histone H3 on
Ser10 and aneuploidy has been elucidated in studies involving Chinese hamster embryo
cells exogenously overexpressing AURKB. The function of AURKB in transformation was
further demonstrated in vivo by injecting these AURKB overexpressing cells into BALB/c
nu/nu mice [10]. Induced AURKB expression is also linked to tumorigenesis mediated
by H-Ras [11].
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Based on its overexpression in various tumors, AURKB has emerged as an impor-
tant drug target. Small molecule inhibitors were designed to specifically inhibit AURKB
function in various tumors. In this review, we focus on AURKB and its function and
deregulation in tumorigenesis. Further, we discuss AURKB inhibition as a promising ther-
apeutic strategy and AURKB inhibitors that are in different phases of clinical development.
Additionally, the use of AURKB inhibitors in combination with other therapeutic targets
is discussed.

2. Structure and Function of AURKB

AURKB, similar to other members of the aurora kinase gene family, is composed of
three domains: (i) N-terminal domain, (ii) kinase domain, and (iii) C–terminal domain [12].
The kinase domain or catalytic domain is highly conserved between all the three members
of the aurora family, whereas the N-terminal domain shows a varied degree of sequence
dissimilarity that provides selectivity for protein-protein interactions. The kinase domain
in AURKB is composed of a β-stranded lobe on the N-terminal side and an α-helical
lobe on the C-terminal side. These two lobes are connected together by a hinge region,
which permits active kinase conformation [13]. The C-terminal lobe of the kinase domain
contains the catalytic T-loop whose auto-phosphorylation at Thr232 results in AURKB
activation. AURKB contains three types of degrons; KEN motif, D-box and DAD/A
box that are thought to mediate its degradation. The catalytic domain contains D-boxes
(reviewed in [14]). The non-catalytic N-terminal domain has a KEN motif and a DAD/A
box, whereas the C-terminal domain has a D-box. However, Nguyen et al., has showed
that only N-terminal KEN and DAD/A boxes are responsible for AURKB degradation [15]
(Figure 1a).
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The binding of E2F1, E2F4, FoxM1 and DP-2 to the AURKB promoter transcrip-
tionally regulates AURKB. These transcription factors bind to the cell cycle-dependent
element (CDE) and cell cycle gene homology region (CHR) located up-stream of the tran-
scription start-site (Figure 1b; reviewed in [14]). AURKB is an essential member of the
chromosomal passenger complex (CPC) which additionally includes INCENP, survivin
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and borealin [17,18]. AURKB is located on the chromatin before the onset of mitosis and
promotes chromosome condensation by the phosphorylation of histone H3 and centrosome
protein A (CENP-A) [19]. In pro-metaphase, AURKB, as part of the CPC, moves towards
the kinetochores and is associated with repairing faulty spindle kinetochore attachments
(spindle assembly checkpoint) [20]. AURKB ensures adequate alignment and segregation
of sister chromatids and relocates to the microtubules during the transition from metaphase
to anaphase [21]. AURKB regulates the distribution of Kif-2A and limits Kif-2A-controlled
depolymerization of microtubules, thereby, mediating microtubule formation and func-
tioning [22]. AURKB has also been implicated in cytokinesis, explained by its presence at
the mid-body during telophase [23–25].

3. Deregulation of AURKB in Cancer

Drawing parallels with the functions of AURKB in mitosis, it is anticipated that alter-
ations of AURKB either as amplification or overexpression could provide a proliferative
advantage to cancer cells (Figure 1b). In fact, its role in tumor cell transformation was
clarified by overexpressing AURKB in murine epithelial cells. When these AURKB over-
expressing cells were injected into nude mice, formation of mammary epithelial tumors
was observed along with amplifications and deletions of DNA isolated from these mouse
mammary tumors [26]. Over the years, aberrant AURKB expression has been reported in
a variety of malignancies including human seminoma [27], and thyroid carcinoma [28].
Using mRNA expression analysis Smith et al., found that AURKB expression is markedly
elevated in non-small cell lung carcinoma (NSCLC) in comparison to matched untrans-
formed lung tissues. This study also showed that AURKB overexpression led to poor
progression free survival, however overall survival was not affected [29]. In contrast to
this finding, a study by Vischioni et al., has found that AURKB expression is significantly
associated with older age at diagnosis and reduced overall survival in adenocarcinoma
subtype of NSCLC [30]. Likewise, AURKB was found to be induced in the squamous
carcinoma subtype of NSCLC and the expression level of AURKB also served as a marker
for resistance to paclitaxel, a drug commonly used in the treatment of NSCLC [31]. Similar
to NSCLC, metastatic colorectal cancer patients lived significantly shorter when they had
high levels of AURKB expression in their tumor tissues [32] and the publicly available
databases further showed that increased AURKB expression also correlated significantly
with reduced survival in breast cancer patients [33]. AURKB expression has been identified
as a prognostic biomarker in glioblastoma [34], gastric cancer [35] and oral cancer [36–38].
AURKB overexpression was found to be increased in prostate cancer tissues compared to
healthy controls [39]. Hepatocellular carcinoma tissues also showed significantly elevated
mRNA expression of AURKB compared to paired healthy liver tissues and was found to
be an independent prognostic marker for tumor invasiveness and prognosis [40]. Pediatric
acute lymphoblastic leukemia and acute myeloid leukemia (AML) exhibited high levels of
both AURKA and AURKB compared to control bone marrow mononuclear cells; however,
the inhibition of AURKB alone resulted in apoptosis suggesting that AURKB is a putative
drug target but not AURKA in these hematologic malignancies [41]. Recently, we have
shown that AURKB is overexpressed in retinoblastoma compared to adjacent healthy retina
and its expression significantly correlated with histological risk factors such as optic nerve
and anterior chamber invasion [42]. Additionally, we have retrieved expression data of
AURKB from Gene Expression Profiling Interactive Analysis (GEPIA) database [43] for a
variety of cancers and compared it to their respective normal tissue counterparts (Figure 2).
The above studies demonstrating the overexpression of AURKB in tumors compared
to their non-cancerous counterpart tissues suggest the possible therapeutic targeting of
AURKB in tumors.
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4. Regulation of AURKB Function in Cancer

Over the years it has been shown that AURKB is overexpressed in various tumors and
contributes to tumor development and progression. Several mechanisms underlying the
regulation of AURKB and its interactions with other oncogenes or tumor suppressors are
currently being explored. AURKB is regulated by upstream activators such as Myc, and
cyclin K and it also regulates functions of certain proteins such as c-Myc and p53.

4.1. AURKB Regulation by Myc and Vice-Versa

The Myc oncogenes (c-MYC, MYCN, MYCL) are important determinants of tumor pro-
gression in malignancies driven by their overexpression or amplification. den Hollander et al.,
reported that c-MYC promotes expression of both AURKA and AURKB in c-Myc mediated
B-cell lymphoma [44]; however, the regulation of AURKB was rather indirect [44]. In our
recent study, we showed enrichment of a MYCN binding motif on the promoter of AURKB
in human retinoblastoma and that supports a direct regulation of AURKB by MYCN [42].
Previously, MYCN was shown to be a direct transcriptional regulator of AURKB in neurob-
lastoma [45]. Interestingly, Jiang et al., delineated that AURKB stabilizes c-MYC in T-cell
acute lymphoblastic leukemia (T-ALL) by phosphorylating at Ser67. c-MYC then activates
AURKB transcription, creating a positive feedback loop, in turn switching-on a cascade of
oncogenic interactions leading to T-cell leukemogenesis [46]. Oncogenes such as MYCN
also regulate the expression of a few other dysregulated genes such as enzymes involved
in altered metabolism in tumor cells [47,48].
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4.2. Bcr-Abl Positively Regulates AURKB

The Bcr-Abl oncoprotein is a protein tyrosine kinase associated with chronic myeloid
leukemia (CML) and ALL. Yang et al. have reported that Bcr-Abl induces the expression of
both AURKA and AURKB through Akt signaling [49].

4.3. AURKB Crosstalks with BRCA1 and BRCA2

The inactivation of BRCA1 and/or BRCA2 induces tumor development. Wang et al.
described that there is a cross talk between BRCA1/2 and AURKB wherein they inversely
control tumor proliferation and tetraploidy of tumor cells. This implies that AURKB
disruption leads to a decrease in cell proliferation and cytokinesis whereas disruption in
BRCA1/BRCA2 resulted in abnormal cytokinesis, eventually, encouraging tumor progres-
sion. It is further considered that this interplay may be through the action of p53 and
cyclin A [50].

4.4. RASSF7 Activates AURKB

Ras association domain-containing protein 7 (RASSF7) has been previously described
as an important mitotic protein and shown to be upregulated in various cancers namely
islet cell tumors, ovarian clear cell carcinoma, endometrial cancer and pancreatic ductal
carcinoma (reviewed in [51]). Along with activation of AURKB, RASSF7 has a significant
contribution in regulating the microtubule cytoskeleton [52]. Further, it was shown that
RASSF7 downregulation leads to a loss of AURKB activation in cancer cells [52].

4.5. p53 Dependent Tumor Suppressor FBXW7 Negatively Regulates AURKB

F-box and WD repeat containing 7 (FBXW7) protein is a component of the E3 ubiquitin
ligase complex and known p53-dependent tumor suppressor [53]. Previously it has been
shown that FBXW7 is mutated in breast, bladder and cervical cancers (reviewed in [54]).
Mutations or diminished levels of p53 result in increased expression of miR-25, which in
turn leads to decreased levels of FBXW7 and the subsequent increase in AURKA levels [55].
Similarly, it was demonstrated that FBXW7 is a negative regulator of AURKB [56].

AURKB in turn suppresses the activity of p53 by phosphorylation at Ser183, Thr211,
and Ser215 which quickens its degradation by the proteasome. As a result, the expression
of p21Cip1, which is a known cell cycle inhibitor and downstream target of p53, goes
down. Inhibition of AURKB was shown to restore the expression of p53 and its targets
(Figure 3a) [57]. The above studies indicate a potential feedback loop between p53, FBXW7
and AURKB.
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Additionally, it has been reported that AURKB in association with novel inhibitor
of histone acetyltransferase repressor (NIR), phosphorylates p53 at Ser269 or Thr284 and
greatly depletes its transcriptional activity, thereby, compromising its downstream targets
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p21 and Bax (Figure 3b) [58]. AURKB also contributes to Epstein-Barr Virus (EBV) induced
B-cell oncogenic transformation by downregulating the activity of p53 homolog p73 while
functioning along with the latently expressed viral membrane protein, Epstein-Barr nuclear
antigen 3C (EBNA3C) [59].

4.6. AURKB Regulation by MDM2

MDM2 is an E3 ubiquitin ligase that is shown to be an important oncoprotein in
various cancers. MDM2 exerts its functions both through and independent of p53. Recently,
using PCR array experiments and MDM2 inhibitor Nutlin-3, it was observed that MDM2
modulates cell cycle possibly through AURKB-CDK1 signaling pathway [60].

4.7. AURKB Is a Downstream Target of Cyclin K in Prostate Cancer

Cyclin K is a member of the cyclin family of transcription regulators which function
by association with cyclin dependent kinases. In prostate cancer, cyclin K was shown to
mediate proliferation and inhibit apoptosis likely through AURKB [61].

5. Targeting AURKB in Cancer

Deregulated expression of AURKs is increasingly viewed as a potential drug target.
AURKs are successfully inhibited in several preclinical cell line and animal models. A
variety of small molecule inhibitors to target AURKs have been developed and are in
different phases of clinical trials. The development of AURKA inhibitors and their progress
has been described recently [7]. The possibility of targeting AURKB has gained momentum
during last few years.

Taking into account that the members of the aurora kinase family have very high
homology in the kinase domain, most small molecule inhibitors developed against au-
rora kinases have overlapping inhibitory activity. Despite this, pioneering collaborations
between industry and academia led to the development of hesperadin and ZM447439,
the former being predominantly selective for AURKB. ZM447439 was further modified to
develop AZD1152 [62]. Most of the inhibitors were synthesized with an aim to improve
therapy, but over the years, they have been extensively used to understand the varied
functions and complex regulations mediated by AURKB. In the following section, we
discuss some of the AURKB inhibitors that have high selectivity for AURKB and have
undergone clinical trials.

5.1. AURKB Specific Inhibitors
5.1.1. Hesperadin

Hesperadin is an indolinone-based ATP-competitive AURKB inhibitor with an IC50
of 250 nM in cell free assays [63]. The indolinone moiety of hesperadin binds to the
catalytic cleft of the active enzyme. The forces of interaction between the two molecules are
through hydrogen bonding and van-der Waals contact [64]. Further research on hesperadin
analogues has revealed that additional hydrogen bonding by lipophilic substitution in the
indolinone core could confer enhanced stability and activity to the drug [65]. It has been
previously shown that hesperadin causes abnormal mitosis and impairment in cytokinesis.
HeLa cells treated with hesperidin do not proliferate and become polyploid in nature [65].

5.1.2. Barasertib

Barasertib is an ATP-competitive AURKB inhibitor developed by optimizing ZM447439.
It is also known as AZD1152, AZD1152-HQPA and AZD2811. The novel acetanilide-
substituted pyrazole-aminoquinazoline prodrug efficiently gets converted to the active
form AZD1152-hydroxyquinazoline pyrazol anilide (AZD1152-HQPA) that lacks the phos-
phate group found in the pro drug. Barasertib is highly selective for AURKB with an IC50
value of 0.37 nM in cell free assays. It shows a 1000-fold more selectivity for AURKB when
compared with AURKA [16]. Over the years, barasertib has been extensively tested in a
variety of tumors and has emerged as a lead therapeutic molecule.
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Barasertib has been shown to inhibit cell proliferation, induce polyploidy and subse-
quently increase apoptosis in AML cell lines. Also, the efficacy of chemotherapy agents
was potentiated by AZD1152 in murine xenograft models [66]. Moreover, barasertib was
used to target AURKB in NSCLC that had acquired resistance to anti-EGFR therapy [67].
In small cell lung cancer (SCLC) with high amplification of the MYC family proteins,
AZD1152 inhibited tumor growth in-vivo [68]. Further, AURKB inhibition by AZD1152
hindered the growth of human lung, colon and hematologic malignancy xenografts in
immunodeficient mice [69]. Apart from pre-clinical studies, AZD1152 has been tested in
a number of clinical trials to study its efficacy and safety profile predominantly in AML.
A study conducted in Japanese patients reported an overall hematologic response rate of
19%. This was a promising result considering no dose limiting toxicities were reported
with neutropenia and febrile neutropenia being the most common adverse events [70].
Further, the pharmacokinetics, metabolism and excretion of barasertib was assessed and
it was reported that the rate of clearance was slow, and the drug was excreted mostly
through feces [71].

A study comparing the responses of barasertib and low dose of cytosine arabinoside
(LDAC) as monotherapy was conducted on AML patients. LDAC has been shown to have
therapeutic benefits in patients unable to go through intensive chemotherapy. The primary
endpoint of the study was the objective complete response rate (OCRR), which is defined as
the proportion of patients reaching complete response (CR). A CR is measured according to
the criteria established by the international working group for AML trials [72]. Treatment
with barasertib showed a significant improvement in OCRR (35.4%) in comparison to
LDAC (11.5%). The median overall survival for barasertib was found to be 8.2 months vs
4.5 months for LDAC. This study has shown that barasertib treatment was beneficial, albeit
with an increased but manageable toxicity [73]. A combination treatment of barasertib
with LDAC was performed in 22 patients with AML. An overall response rate of 45%
(n = 10/22) was achieved with two patients reporting dose limiting toxicities [74].

Additionally, barasertib was tested on patients with solid tumors and in relapsed/refractory
diffuse B-cell lymphoma [NCT01354392]. In case of solid tumors, neutropenia was reported
as the most common dose-limiting toxicity and the toxicity profile was found to be tolerable.
The recorded responses were at best modest [75,76]. The report on B-cell lymphoma de-
scribed that AZD1152 induced a short-lived reduction in tumor. However, the combination
of inconvenience in administering the drug and modest responses did not warrant further
investigation of AZD1152 in the treatment of B-cell lymphoma [77].

Overall, the clinical trials established the proof-of concept that AURKB could possibly
be targeted with AZD1152 (Table 1). Majority of the reports suggested a positive response
to the treatment and a manageable toxicity profile with neutropenia being the most com-
mon adverse event, but, it is also known that barasertib at higher concentrations inhibits
FLT3 and KIT kinases required for hematopoiesis and hence may result in dose-limiting
neutropenia [78,79]. However, the mode of administering the drug, which is intravenous
infusion for a period of 4 days in diffuse B-cell lymphoma [77] and 7 days for AML [80],
has made it highly inconvenient. This led to the development of AZD2811(formerly known
as AZD1152) nanoparticle formulation which exceeded the anti-tumor activity reported for
AZD1152 drug alone. The improved activity of the nanoparticle formulation was attributed
to increased inhibition of phospho-histone H3, polyploidy and apoptosis [80,81]. The
details of the clinical trials with AZD2811 nanoparticle formulation are included in Table 1.
The IC50s of various cell lines [82–91] that have been tested with AZD1152 are included in
Table S1.
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Table 1. List of clinical trials with AURKB inhibitors. Part of the data for the clinical trials have been extracted from
clinicaltrials.gov (accessed on 29 March 2021).

Sl. No. Drug Study Tumor Phase Sponsored by Remarks
References/Clinical

Trials.Gov
Identifier

1 AZD1152

A Phase I, Open
Label,

Multi-centre
Study to Assess

the Safety,
Tolerability, and

Pharmacokinetics
of AZD1152 in

Japanese Patients
With Acute

Myeloid
Leukaemia.

Leukemia 1 AstraZeneca
(Cambridge, UK)

Promising
response rate of

19%
(3/16 patients)
indicating the
requirement of

additional
studies.

[70]/
NCT00530699

2 AZD1152

A Phase 2 Trial of
AZD1152 in Re-

lapsed/Refractory
Diffuse Large

B-cell Lymphoma

Lymphoma 2

Oxford
University

Hospitals NHS
Trust (Oxford,

England)

Although,
AURKB appears

to be a valid
target, the

relatively low
responses and

difficulty in
administering

makes AZD1152
an unsuitable
candidate for
monotherapy.

[77]/
NCT01354392

3 AZD1152

A Phase I,
Open-Label,
Multi-Centre

Study to Assess
the Safety,

Tolerability and
Pharmacokinetics

of AZD1152
Given as a 2-h or
48-h Intravenous

Infusions in
Patients With

Advanced Solid
Malignancies

Solid tumors 1 AstraZeneca

Manageable
tolerance with

neutropenia and
leukopenia.

[76]/
NCT00338182

4 AZD1152

A Phase I Open,
Non-randomised,

Single-centre
Study to Assess
the Metabolism,
Excretion and

Pharmacokinetics
of AZD1152 and
AZD1152 hQPA

Following
Intravenous

Administration of
[14C]-AZD1152 in

Patients With
Acute Myeloid

Leukaemia
(AML)

Leukemia 1 AstraZeneca

The drug was
well tolerated in

the tested
population and

excreted via
hepatic metabolic
routes. Potential
benefits can be
achieved with

further
investigations.

[71]/
NCT01019161

clinicaltrials.gov
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Table 1. Cont.

Sl. No. Drug Study Tumor Phase Sponsored by Remarks
References/Clinical

Trials.Gov
Identifier

5 AZD1152

A Phase I/II,
Open Label,
Multi-centre

Study to Assess
the Safety,

Tolerability,
Pharmacokinetics

and Efficacy of
AZD1152 in

Patients With
Acute Myeloid

Leukaemia.

Leukemia 1 AstraZeneca

A manageable
toxicity profile
was observed

with a response
rate of 25%

[92]/
NCT00497991

6 AZD1152

A Phase I,
Open-label,

Multi-centre,
Multiple

Ascending Dose
Study to Assess
the Safety and
Tolerability of
AZD1152 in
Combination

With Low Dose
Cytosine

Arabinoside
(LDAC) in

Patients With
Acute Myeloid

Leukaemia
(AML)

Leukemia 1 AstraZeneca

The combination
of Barasertib with
low dose cytosine

arabinoside
showed

acceptable
tolerability with

an overall
response rate of

45% at the
maximum

tolerated dose

[74,93]/
NCT00926731

7 AZD1152

A Randomised,
Open-label,

Multi-centre,
2-stage, Parallel
Group Study to

Assess the
Efficacy, Safety

and Tolerability of
AZD1152 Alone

and in
Combination

With Low Dose
Cytosine

Arabinoside
(LDAC) in

Comparison With
LDAC Alone in

Patients
Aged ≥ 60 with

Newly Diagnosed
Acute Myeloid

Leukaemia
(AML)

Leukemia 2/3 AstraZeneca

AZD1152 shows a
significant

improvement in
response when

compared to
low-dose cytosine
arabinoside with

relatively high
but manageable

safety profile.

[73,93]/
NCT00952588
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Table 1. Cont.

Sl. No. Drug Study Tumor Phase Sponsored by Remarks
References/Clinical

Trials.Gov
Identifier

8 AZD1152

A Phase I,
Open-Label,
Multi-Centre

Study to Assess
the Safety,

Tolerability and
Pharmacokinetics

of AZD1152
Given as a

Continuous 7-Day
Intravenous
Infusion in

Patients With
Advanced Solid

Malignancies

Solid tumors 1 AstraZeneca

The study was
discontinued

because of
technical

difficulties in
administering the
drug and lack of

efficacy.
Additionally, the

prescribed
schedule was
inconvenient.

[76]/
NCT00497679

9 AZD1152

A Phase I,
Open-Label,
Multi-Centre

Study to Assess
the Safety,

Tolerability and
Pharmacokinetics

of AZD1152
Given as a 2 Hour

Intravenous
Infusion on Two

Dose Schedules in
Patients With

Advanced Solid
Malignancies

Solid tumors 1 AstraZeneca

The study was
terminated

because of lack of
efficacy of

AZD1152 in
monotherapy on
solid tumors at

the time of study

[75]/
NCT00497731

10 AZD1152

A Phase I/II,
Open-Label,

Multicentre 2-Part
Study to Assess

the Safety,
Tolerability, Phar-
macokinetics, and

Efficacy of
AZD2811 as

Monotherapy or
in Combination in
Treatment-Naïve

or Re-
lapsed/Refractory

Acute Myeloid
Leukaemia

Patients Not
Eligible for
Intensive
Induction
Therapy.

Leukemia 1/2 AstraZeneca

The study is
currently in the

recruitment
phase.

NCT03217838
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Table 1. Cont.

Sl. No. Drug Study Tumor Phase Sponsored by Remarks
References/Clinical

Trials.Gov
Identifier

11 GSK1070916

A Cancer
Research UK

Phase I Trial to
Evaluate Safety,

Tolerability,
Pharmacokinet-

ics and
Pharmacody-

namics of
Aurora B
Inhibitor

GSK1070916A
in Patients With
Advanced Solid

Tumors.

Solid tumors 1
Cancer Research

UK (London,
UK)

Neutropenia was
the dose limiting

toxicity with
85 mg/m2/day

being the maximum
tolerated dose.

[94]/
NCT01118611

12 AT9283

A Phase I Study
of AT9283

Given As a 24-h
Infusion on

Days 1 and 8
Every Three

Weeks in
Patients with

Advanced
Incurable

Malignancy

Non-
Hodgkin’s
lymphoma
and solid
tumors

1

NCIC Clinical
Trials group
(Kingston,
Canada)

AT9283 showed
manageable

tolerability with
recommended
phase 2 dose at
40 mg/m2/day

given on day 1 and
8 every 21 days.

The dose limiting
toxicity was febrile

neutropenia.

[95]/
NCT00443976

13 AT9283

A Phase II
Study of AT9283
in Patients with

Relapsed or
Refractory
Multiple
Myeloma

Multiple
myeloma 2 NCIC Clinical

Trials group

The study reports
that the dose and

schedule of AT9283
used in the study is
not recommended

for further
investigation for the

treatment of
multiple myeloma.
Although, aurora

kinases as a
possible drug target

is not ruled out.

[96]/
NCT01145989

14 AT9283

A Phase I/IIa
Open-label

Study to Assess
the Safety,

Tolerability and
Preliminary
Efficacy of

AT9283, a Small
Molecule

Inhibitor of
Aurora Kinases,
in Patients With

Refractory
Hematological
Malignancies

Leukemia 1/2

Astex Pharma-
ceuticals, Inc.

(Pleasanton, CA,
USA)

The study reports
cardiac

tachyarrythmias
and severe
reversible

cardiomyopathy in
addition to other

toxicities associated
with cytotoxic

therapy. Reduction
of leukemic blasts
were observed in
some patients but

this did not lead to
a significant clinical

response.

[97]/
NCT00522990
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Table 1. Cont.

Sl.
No. Drug Study Tumor Phase Sponsored by Remarks

References/Clinical
Trials.Gov
Identifier

15 AT9283

A Cancer
Research UK

Phase I/IIa Trial
of AT9283 (A

Selective
Inhibitor of

Aurora Kinases)
Given Over 72 h
Every 21 Days

Via Intravenous
Infusion in

Children and
Adolescents

Aged 6 Months
to 18 Years With

Relapsed and
Refractory Acute

Leukemia

Leukemia 1 Cancer Research UK

The study shows
that although
toxicity was

tolerable, there
was no evidence

suggesting
efficacy of
AT9283.

[98]/
NCT01431664

16 AT9283

A phase I dose
escalation study

of AT9283, a
small

molecule
inhibitor of

aurora kinases,
in patients with
advanced solid
malignancies

Solid tumors 1

Astex Therapeutics
Ltd. (Pleasanton,

CA, USA); Cancer
Research UK;

Experimental Cancer
Medicine Centre
(UK); National

Institute for Health
Research Biomedical

Research Centre
(UK)

AT9283 was well
tolerated up to a

maximum
tolerated dose of
27 mg/m2/72 h

and febrile
neutropenia was
the dose limiting

toxicity.

[99]

17 AT9283

A Phase I Trial of
AT9283 (a
Selective

Inhibitor of
Aurora Kinases)
in Children and

Adolescents with
Solid Tumors: A
Cancer Research

UK Study

Solid tumors 1

Experimental Cancer
Medicine Network

(UK); Cancer
Research UK; the

Oak Foundation at
The Royal

Marsden Hospital
(London, UK);

National Institute for
Health Research

Biomedical Research
Centres; Children’s

Cancer and
Leukemia Group
(Leicester, UK)

AT9283 had
manageable

toxicity and was
well tolerated.

[100,101]/
NCT00985868

18 PHA-
739358

An Exploratory
Phase II Study of
PHA-739358 in
Patients With

Multiple
Myeloma

Harbouring the
t(4;14)

Translocation
With or Without

FGFR3
Expression

Multiple
myeloma 2

Nerviano Medical
Sciences (Milan,

Italy)

The study was
terminated due

to low
recruitment rate.

NCT00872300
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Table 1. Cont.

Sl. No. Drug Study Tumor Phase Sponsored by Remarks
References/Clinical

Trials.Gov
Identifier

19 PHA-
739358

A Pilot Phase II
Study of

PHA-739358 in
Patients With

Chronic Myeloid
Leukemia

Relapsing on
Gleevec or c-ABL

Therapy

Leukemia 2

Jonsson
Comprehensive
Cancer Center

(Los Angeles, CA,
USA)

Results have not
been reported so

far
NCT00335868

20 PHA-
739358

A Phase I
Dose-Escalation

Study of
danusertib

(PHA-739358)
Administered as a

24-h Infusion
With and Without

G-CSF in a
14-day Cycle in

Patients with
Advanced Solid

Tumors

Solid tumors 1

National Cancer
Institute

(Bethesda, MD,
USA)

The study
concluded that it

was safe to
administer

danusertib and
the recommended
phase 2 dose was

determined.

[102]

21 PHA-
739358

A phase I study
of danusertib

(PHA-739358) in
adult patients

with accelerated
or blastic phase
chronic myeloid

leukemia
and Philadelphia

chromosome-
positive acute
lymphoblastic

leukemia
resistant or

intolerant to
imatinib and/or

other second
generation

c-ABL therapy

Leukemia 1 Nerviano
Medical Sciences

Danusertib
treatment had an
acceptable toxicity
profile and could

be a promising
agent for

malignancies
associated with

Bcr-Abl.

[103]

22 PHA-
739358

Randomized
phase II study of

danusertib in
patients with

metastatic
castration-
resistant

prostate cancer
after docetaxel

failure

Prostate
cancer 2 Nerviano

Medical Sciences

Drug was
well-tolerated

with neutropenia
being the most

common adverse
event.

Monotherapy
with danusertib
showed minimal

efficacy and
further studies are

recommended.

[104]/NCT00766324
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Table 1. Cont.

Sl. No. Drug Study Tumor Phase Sponsored by Remarks
References/Clinical

Trials.Gov
Identifier

23 PHA-
739358

Phase I
Pharmacokinetic
and Pharmacody-

namic Study of
the Aurora

Kinase Inhibitor
danusertib in
Patients With
Advanced or

Metastatic Solid
Tumors

Solid tumors 1 Nerviano
Medical Sciences

The
recommended

phase 2 dose was
determined in the

study and
neutropenia was
reported as the
dose limiting

toxicity. However,
it was short

lasting and there
were no reported
non-hematologic

toxicities.

[105]

24 AMG900

A Phase 1 Study
Evaluating the

Safety,
Tolerability,

Pharmacokinetics
and Pharmacody-
namics of Orally

Administered
AMG900 in Adult

Subjects With
Acute Myeloid

Leukemia

Leukemia 1
Amgen

(Thousand Oaks,
CA, USA)

The study
reported

manageable
hematologic

toxicities but the
patient response

was modest. Dose
escalation was

hampered due to
prolonged
cytopenias.

[106]/
NCT01380756

25 AMG900

A Phase 1,
First-in-Human

Study Evaluating
the Safety,

Tolerability,
Pharmacokinetics
and Pharmacody-
namics of Orally

Administered
AMG900 in Adult

Subjects With
Advanced Solid

Tumors

Solid tumors 1 Amgen
AMG900 showed

acceptable
tolerance.

[107]/
NCT00858377

26 CYC116

A Phase I
Pharmacologic

Study of CYC116,
an Oral Aurora
Kinase Inhibitor,
in Patients With
Advanced Solid

Tumors

Solid tumors 1

Cyclacel
Pharmaceuticals,

Inc.(Berkeley
Heights, NJ,

USA)

The study was
terminated by the

sponsors
NCT00560716
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Table 1. Cont.

Sl. No. Drug Study Tumor Phase Sponsored by Remarks
References/Clinical

Trials.Gov
Identifier

27 BI 811283

An Open Phase I
Single Dose

Escalation Study
of Two Dosing
Schedules of BI

811283
Administered
Intravenously

Over 24 h
Continuous
Infusion in

Patients With
Advanced Solid
Tumours With

Repeated
Administration in

Patients With
Clinical Benefit

Solid tumors 1

Boehringer
Ingelheim

(Ingelheim am
Rhein, Germany)

The study
demonstrated a

manageable
toxicity profile
with disease
stabilization
recorded for
19 patients.

Although, the
limited

anti-cancer
activity did not
warrant further
development of

the drug as a
monotherapy

agent.

[108]
NCT00701324

28 BI 811283

An Open Phase
I/IIa Trial to

Investigate the
Maximum

Tolerated Dose,
Safety, Efficacy

and
Pharmacokinetics

of BI 811283 in
Combination

With Cytarabine
in Patients With

Previously
Untreated Acute

Myeloid
Leukaemia

Ineligible for
Intensive
Treatment

Acute
Myeloid

Leukemia
2 Boehringer

Ingelheim

An acceptable
safety profile was
demonstrated but

the use of BI
811283 with

LDAC did not
show increased

treatment efficacy
in comparison to
LDAC treatment

in isolation.

[109]
NCT00632749

29 AZD2811

A Phase I,
Open-Label,

Multicentre Dose
Escalation Study

to Assess the
Safety,

Tolerability, and
Pharmacokinetics

of AZD2811 in
Patients With

Advanced Solid
Tumours.

Solid tumors 1 AstraZeneca

The study
determined the

maximum
tolerable dose and

the drug is in
further

investigation

[110]
NCT02579226
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Table 1. Cont.

Sl. No. Drug Study Tumor Phase Sponsored by Remarks References/Clinical
Trials.Gov Identifier

30 AZD2811

Phase II, Single-arm
Study of AZD2811
and Durvalumab

(MEDI4736)
Combination
Therapy in

Relapsed Small Cell
Lung Cancer
Subjects With

c-MYC Expression
[SUKSES-E]

Small cell lung
cancer 2

Keunchil Park,
Samsung Medical

Center (Seoul,
South Korea)

The study is in the
recruitment phase NCT04525391

31 AZD2811

Phase II, Single-arm
Study of AZD 2811

Monotherapy in
Relapsed Small Cell

Lung Cancer
Patients

[SUKSES-N3]

Small cell lung
cancer 2 Samsung Medical

Center

The study was
terminated as the

purpose of the study
was fulfilled earlier.

[111]
NCT03366675

32 AZD2811

A Phase II
Multicenter,

Open-Label, Single
Arm Study to
Determine the

Efficacy, Safety and
Tolerability of
AZD2811 and
Durvalumab

Combination as
Maintenance

Therapy After
Induction With
Platinum-Based
Chemotherapy
Combined With

Durvalumab, for the
First-Line Treatment

of Patients With
Extensive Stage
Small-Cell Lung

Cancer

Small cell lung
cancer 2 AstraZeneca

New study. The
recruitment has not

started yet
NCT04745689

33 AZD2811

A Phase I/II,
Open-Label,

Multicentre 2-Part
Study to Assess the
Safety, Tolerability,
Pharmacokinetics,

and Efficacy of
AZD2811 as

Monotherapy or in
Combination in

Treatment-Naïve or
Re-

lapsed/Refractory
Acute Myeloid

Leukaemia Patients
Not Eligible for

Intensive Induction
Therapy.

Acute Myeloid
Leukemia 1/2 AstraZeneca

This is an ongoing
study and the latest

update suggests
good tolerability of

the drug. Dose
escalations are
currently being

planned.

[112]
NCT03217838

5.1.3. SP-96

This is a quinazoline-based AURKB inhibitor with an IC50 of 0.316 nM and is the first
described non-ATP competitive inhibitor against AURKB. It has been shown to inhibit
the triple negative breast cancer cell line MDA-MD-468 [78]. SP-96 is 2000-fold more
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selective for AURKB in comparison to FLT3 or KIT. It is known that barasertib at higher
concentrations also inhibits FLT3 and KIT [78,79]. Both FLT3 and KIT kinases play an
important role in hematopoiesis and their inhibition may result in neutropenia as observed
in the clinical trials for barasertib. Hence, SP-96 plausibly can reduce the adverse effects
caused by barasertib [78].

5.2. Pan Aurora Kinase Inhibitors in Clinical Trials
5.2.1. GSK1070916

It is an azaindole-based ATP-competitive inhibitor that is highly selective for AURKB
and AURKC with IC50 values of 0.38 and 1.5 nM, respectively. It is more than 250-fold more
selective for AURKB when compared with AURKA. The discovery of GSK1070916 was
initiated by optimizing a series of 7-azaindole based molecules in which cellular activity
was enhanced by introducing a 2-aryl group onto the azaindole. Further, treatment of
A549 human lung cancer cell lines with GSK1070916 produced a half-maximal effective
concentration of 7 nM [113]. GSK1070916 has been shown to inhibit proliferation of tumor
cells in more than 100 human tumor cell lines with IC50 values of <10 nM [114]. The
IC50s of various cell lines tested in pre-clinical studies [115,116] with GSK10710916 have
been shown in Table S1. It also shows anti-tumor activity in human tumor xenograft
models including breast, colon and lung cancer [114]. A phase 1 clinical trial sponsored
by Cancer Research UK has been conducted with GSK1070916 in patients suffering from
advanced solid tumors. [NCT01118611]. The maximum tolerated dose was determined to
be 85 mg/m2/day with neutropenia as the dose-limiting toxicity [94].

5.2.2. Danusertib (PHA-739358)

Danusertib is a 3-aminopyrazole-derived pan-aurora kinase inhibitor with IC50s of
13, 79 and 61 nM in AURKA, AURKB and AURKC, respectively. It has been shown that
danusertib induces apoptosis, cell cycle arrest and autophagy in ovarian cancer cells [117].
Additionally, danusertib can inhibit growth of liver metastases both in vitro and in vivo, in
gastroenteropancreatic neuroendocrine tumors [118]. The IC50s of danusertib for various
cell lines have been reported [119–127] and summarized in Table S1. A phase 1 clinical trial
of danusertib in patients with advanced solid tumors showed satisfactory tolerance with
preliminary indications of anti-tumor activity [102].

T315I mutation in Bcr/Abl confers resistance to treatment with Bcr/Abl inhibitors in
ALL patients with Philadelphia chromosome (Ph). Fei et al., showed that treatment of Ph
positive ALL cells carrying T315I mutation with danusertib can be an alternate therapeutic
strategy, especially for imatinib-, nilotinib- or dasatinib-resistant tumors [128]. A phase
1 clinical trial with 37 patients (22 with advanced stage CML and 15 with Ph positive
ALL) was conducted for danusertib. The results showed an acceptable toxicity profile with
promising anti-tumor activity [103]. Phase 2 clinical studies have also been conducted for
danusertib and details of all the clinical trials have been summarized in Table 1.

5.2.3. AT9283

1-Cyclopropyl-3-(3-(5-(morpholinomethyl)-1H-benzo[d]imidazol-2-yl)-1H-pyrazol-4-yl)urea is a
pan-aurora kinase inhibitor that shows similar selectivity for AURKA and AURKB with an
IC50 of 3 nM. AT9283 is also effective against additional kinases such as Janus kinases (JAKs)
and Abl (T315I) [129]. It was shown to inhibit AURKB activity, induce endoreduplication,
suppress cell proliferation and enhance apoptosis in B-cell non-Hodgkin’s lymphoma
cell lines. Additionally, AT9283 represses tumor growth in mice xenograft models [130].
Pre-clinical studies with AT9283 have been reviewed in Mills, et al., [131]. A recent re-
port showed that AT9283 exhibits anti-proliferative activity in tyrosine kinase inhibitor
resistant CML [132].

A phase 1 trial conducted in advanced malignancies showed that AT9283 was well tol-
erated, and the recommended dose for phase 2 trial was determined to be 40 mg/m2/day
administered at day 1 and day 8 every 21 days. The dose limiting toxicities were febrile
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neutropenia and neutropenia [95]. A phase 1 trial in leukemia patients reported myocar-
dial infarction, cardiomyopathy, hypertension, pneumonia and multiple organ failure as
dose limiting toxicities, thus, suggesting extensive cardiovascular monitoring in further
studies [97]. A phase 2 study in multiple myeloma reported that no objective responses
were observed in the treated patients. They suggested that AT9283 was not recommended
for further study for treating multiple myeloma, but the limitations of the trial could not
warrant firm conclusions [96]. Overall, AT9283 showed a manageable toxicity profile in
clinical trials but further studies are essential to determine its efficacy in clinical use. The
list of clinical trials conducted with AT9283 have been summarized in Table 1. The IC50s of
AT9283 in CML cell lines are shown in Table S1. [133]

5.2.4. AMG900

AMG900 is N-(4-(3-(2-Aminopyrimidin-4-yl)pyridin-2-yloxy)phenyl)-4-(4-methylthiophen-
2-yl)phthalazin-1-amine, a highly selective pan-AURK inhibitor with IC50s of 5, 4 and 1 nM
for AURKA, AURKB and AURKC respectively. It is a phthalazinamine-based compound
which competitively inhibits binding of ATP to the active site of aurora kinases [134].
Reports have shown that AMG900 inhibited the growth of glioblastoma cells in vitro
ultimately leading to cell cycle arrest and senescence [135]. In MOLM-13 AML cell line,
treatment with AMG900 was linked to inhibition of histone H3 phosphorylation, polyploidy
and increased apoptosis with the upregulation of p53 [136]. The IC50 concentrations of
AMG900 on breast cancer cell lines are shown in Table S1 [137].

In a phase 1 clinical trial with AML patients, the safety and efficacy of AMG900 was
investigated. Nausea, diarrhea, febrile neutropenia and fatigue were the most common
adverse events with 9% of patients showing complete response. Additionally, the study
reported that patients with higher baseline expression of AURKA, TTK, CDC2, BIRC5
and CCNB1 were more susceptible to showing a positive outcome [106]. In a different
phase 1 study, AMG900 was shown to be rapidly absorbed with quick clearance. The
maximum tolerated dose was determined with or without granulocyte-colony stimulating
factor (G-CSF) and found to be 40 and 25 mg/day, respectively. Overall, AMG900 showed
a manageable toxicity when used with G-CSF with neutropenia being the most common
adverse event [107].

5.2.5. CYC116

CYC116 (4-methyl-5-(2-(4-morpholinophenylamino)pyrimidin-4-yl)thiazol-2-amine)
is an orally bioavailable panAURK inhibitor which is derived from N-phenyl-4-(thiazol-
5-yl) pyrimidin-2-amine with IC50 values of 8 and 9.2 nM for AURKA and AURKB, re-
spectively. CYC116 has been shown to suppress histone H3 phosphorylation and induce
polyploidy [138]. A clinical trial for CYC116 was subsequently started in patients with
advanced solid tumors but was terminated due to a decision taken by the sponsors Cyclacel
Pharmaceuticals, Inc. (Berkeley Heights, NJ, USA) The trial was aimed at examining the
safety profile of CYC116 (NCT00560716).

5.2.6. Other Pan-AURK Inhibitors

Additionally, PHA680632 [139], reversine [33,140], CCT129202 [141], CCT137690 [142,143],
SNS-314 [144], quercetin [145,146] are pan-aurora kinase inhibitors that have been tested in
pre-clinical studies. Furthermore, VX-680 [147–149] and BI 811283 [108,109] are pan-AURK
inhibitors that have been studied in clinical trials. VX-680 has been extensively reviewed
in Pinel, et al., and Portella, et al., [16,150]. The details of clinical trials with BI 811283
are included in the Table 1. The IC50s pertaining to pre-clinical studies with AURKB
inhibitors are summarized in Table S1. The structures of the described inhibitors are shown
in Figure 4.
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(h) SP-96 [78].

6. Therapy-Related Drug Resistance and AURKB

Therapy-related drug resistance and the resultant tumor progression are major causes
of poor prognosis in various cancers. The resistant tumors usually develop mutations in
certain oncogenes or tumor suppressors, or certain genes are expressed at abnormally high
levels. AURKB expression has been linked to therapy related drug resistance in different
malignancies including vemurafenib-resistant melanoma [154], temozolomide-resistant
glioblastoma [154], and epidermal growth factor receptor tyrosine kinase inhibitor-resistant
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NSCLC [67]. Head and neck squamous cell carcinoma cells exhibiting resistance to cetux-
imab were found to show elevated expression of AURKB on a microarray analysis [155].
Breast cancer cells resistant to the drug fulvestrant showed increased AURKB phospho-
rylation and AURKB inhibitor barasertib preferentially reduced growth of tumor cells
resistant to fulvestrant and tamoxifen [156]. Similarly, MCF7 breast cancer cells resistant to
aromatase inhibitors when screened with 195 compounds identified AURKs as novel drug
targets. These aromatase resistant breast cancer cells also showed significant growth inhibi-
tion when treated with barasertib (specific to AURKB) and JNJ-7706621 (AURKA/B and
CDK inhibitor) [157]. Likewise, CML cells resistant to tyrosine kinase inhibition specifically
showed reduction in cell proliferation with dual ABL and AURKB inhibitors PHA-739358
and R763/AS703569 [158]. Also, HI-511, a dual inhibitor of AURKB and BRAF V600E
achieved drug sensitivity in both susceptible and resistant melanoma cell growth [154].
Overexpression of AURKB in response to various chemotherapeutic drugs suggests that
targeting AURKB would be a strategy to overcome therapy-related drug resistance.

On the contrary, mutations in AURKB kinase domain were also identified. T-cell
ALL cells were modeled to study the in vitro drug resistance mechanism against AURKB
inhibition. When the cells were exposed to high concentrations of ZM447439, a Gly160Glu
mutation was observed in the kinase domain of AURKB that could prevent the inhibitor
binding in addition to other AURKB independent mechanisms at further high concen-
trations [159]. Using barasertib-resistant pancreatic carcinoma cell lines and microarray
analysis, Guo et al., have shown that elevated expression of multi-drug resistant protein
(MDR1) and breast cancer resistant protein (BCRP) is responsible for drug resistance and
their expression could serve as a marker for barasertib sensitivity [160].

In some of the studies, it has been shown that AURKB inhibition should not be
combined with certain drugs. Treatment with barasertib along with paclitaxel enhanced
resistance to paclitaxel treatment in NSCLC cell lines in a dose-dependent manner. In
addition, these studies showed that taxanes should not be used if patients express high
levels of AURKB [31]. Therefore, expression of AURKB can be used as a predictive
biomarker for treatment of NSCLC patients with taxanes.

Using a mutation-prone cell line, Girdler et al., have shown that point mutations
can also arise in ATP-binding pocket of AURKB against treatment with AURKB inhibitor
ZM447439 [161]. This study suggests that mutations in response to AURKB inhibition
might develop similar to other kinase inhibitors and thus additional studies are warranted
to understand drug resistance mechanism and subsequent development of novel inhibitors
or combination strategies to overcome the therapy-mediated resistance.

7. Combination Therapy with AURKB Inhibition

Aurora kinase B inhibition has achieved good in vitro and in vivo efficacy in pre-
clinical models. Currently, some AURKB inhibitors are in clinical trials, but have not
yet reached the clinic. The combination studies involving AURKB inhibitors with other
anticancer drugs hold promise and efforts were made in that direction using in vitro and
in vivo models. The efficacy of AURKB inhibition along with other therapeutic strategies
was initially tested using cell line models and the pan-AURK inhibitor VX-680 in combi-
nation with chemotherapy drug doxorubicin. VX-680 reduced cell viability of C1A, PC3
and LNCaP cells. The decrease in cell viability was elevated when VX-680 was used in
combination with doxorubicin. In addition, VX-680 was shown to sensitize PC3 cells for
treatment with doxorubicin [162]. Another pan-AURK inhibitor CCT137690 demonstrated
synergistic anti-oral cancer activity when used in combination with EGFR inhibitor gefitinib
or PI-3K inhibitor pictilisib [143]. Subsequently, several studies attempted combination
therapies along with AURKB inhibition. Barasertib augmented the therapeutic response
of vincristine and daunorubicin in AML cell lines as well as mouse models [66] and a
topoisomerase I inhibitor CPT-11 in HCT-116 colorectal carcinoma cells [163]. Combination
targeting of AURKB and orally available BH3 mimetic, ABT-263 led to a decrease in cell
viability in several different tumor cell lines compared to monotherapy with VX-680. siRNA
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knockdown with AURKA and AURKB further confirmed that synergistic activity was
due to inhibition of AURKB [164]. Similar to studies above, AURKB inhibitor barasertib
was shown to enhance combination effectiveness of oxaliplatin and gemcitabine in colon
and pancreatic cancer respectively [155]. In vitro and in vivo analysis demonstrated that
AURKB inhibition along with inhibition of DNA repair protein PARP1 had synergistic ac-
tivity against skin cutaneous melanoma cells [165]. However, AURKB inhibitor barasertib
and cytarabine used in combination exerted a greater-than-additive cytotoxicity in AML
cells [166].

Recently, a few other studies attempted to identify the synthetic lethal interactions
with AURKB inhibition. One of the studies using CRISPR/Cas9 identified that haspin
kinase when inhibited in combination with AURKB inhibition considerably enhanced the
antitumor activity in a synthetic lethal manner [147]. A different study using CRISPR/Cas9
parallelly identified that SCLC cells with loss of RB1 tumor suppressor gene are hyper-
dependent on AURKB for their survival and inhibition with AURKB inhibitors signifi-
cantly reduced cell proliferation demonstrating that loss of RB1 is synthetic lethal with
AURKB inhibition [167]. AURKB inhibition was also found to be synthetic lethal with
Myc overexpression [168,169]. Similarly, TAK-901, AURKB inhibitor from Takeda Phar-
maceuticals showed synthetic lethal activity along with BCL-XL inhibition [170]. Further,
loss-of-function RNAi screen identified that AURKB inhibition along with rapamycin had
a synergistic activity in breast cancer cell lines [171]. Additional approaches including
pharmacological small molecule inhibitor screens were employed to identify combination
therapy treatments. One such screen identified synergistic efficacy of AURKB inhibitor
Barasertib when combined with focal adhesion kinase inhibitors PF-562271 and VS-4718 to
inhibit Ewing’s sarcoma cell growth [172].

AT9283 suppresses tumor growth in aggressive B-cell lymphomas and in these cells, it
had a potent anti-AURKB activity. When AT9283 was used in combination with a taxane do-
cetaxel, it showed a synergistic anti-tumor activity [130]. On the contrary, AT9283 showed
both anti-AURKA and AURKB activity in multiple myeloma cells. The antimyeloma
activity of AT9283 was further enhanced in a synergistic manner when used in combination
with lenalidomide, a dicarboximide used in the treatment of multiple myeloma [153].

AURKB inhibition in combination with other drugs was successfully tested as a strat-
egy to mitigate therapy-related drug resistance. Inhibition of AURKB using siRNA along
with temozolomide enhanced the in vitro chemotherapeutic response of temozolomide-
resistant glioma cells [173]. Nanoparticles of AURKB siRNA also showed comparable
synergistic activity when used in combination with temozolomide in glioblastoma and
enhanced survival of orthotopic mouse models of glioblastoma [174]. In a different study,
Alafate et al., have performed kinome analysis and identified that AURKB is an important
candidate responsible for the chemoresistance in temozolomide-resistant glioblastoma cells
and the associated drug resistance could be mitigated by combined targeting of AURKB
along with temozolomide [175]. Similarly, inhibition of AURKs enhanced the chemosen-
sitivity to temozolomide and caused radio-sensitization in glioblastoma cells [176]. To
incorporate AURKB inhibitors into clinical practice, additional studies involving exhaus-
tive combination therapies should be tested, particularly, for the chemotherapy resistant
tumors with elevated levels of AURKB expression.

8. Computational Chemistry Approaches to Develop Promising Inhibitors for AURKB

In the last few decades computational chemistry approaches have helped accelerate
the process of drug development for various cancers. Molecular docking studies were
employed to predict more efficient inhibitors against oncogenic protein kinases including
aurora kinases. A recent in-silico analysis using docking-based comparative intermolecular
contacts analysis (dbCICA) identified a lead molecule 85 (NCI 14040). The molecule 85
was further validated for its in vitro efficacy against AURKA. The study showed that the
compound 85 has activity against pancreas, breast and prostate cancer cell lines [177].
8-amino-substituted purine-based derivatives were synthesized to inhibit AURKs and
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the in vitro efficacy analysis against various tumor cell lines further identified that breast
cancer cell lines were more sensitive compared to other cell lines tested [178]. In a different
study, 4-anilinoquinoline derivatives with sulfonamide moiety were synthesized to inhibit
AURKA/B. Docking studies were employed to confirm the molecular interactions between
the inhibitors and the AURKs. The in vitro analyses identified that compound 9d among
different synthesized molecules was more effective [179]. Further, Fernandes et al., using
the Molegro Virtual Docker (MVD) software identified that IAF79 compound is a promising
dual AURKB and FLT3 inhibitor for the treatment against various cancer types particularly
for AML [180]. All the above studies highlight the role of computational approaches in
drug development, and this specifically speeds up the process for rational drug design.

9. Conclusions

Deregulation of cell cycle plays a critical role in tumor initiation, progression, invasion
and metastasis and the proteins involved in the regulation of cell cycle including AURKB
are overexpressed in various tumors. AURKB promotes tumorigenesis and chemotherapy
associated drug resistance. The expression of AURKB is regulated by other proteins such
c-Myc, MDM2, MYCN, and cyclin K. Targeting AURKB is increasingly seen as a feasible
therapeutic strategy against various tumors. Nevertheless, the currently available AURKB
inhibitors though showed in vitro and in vivo therapeutic efficacy, they have not reached
the clinic so far. Combination therapy of AURKB inhibition along with other small molecule
inhibitors with activity against tumors or traditional chemotherapy agents is the need of
the hour and should be pursued rapidly to achieve additional armamentarium in the fight
against cancers. Further, several of the AURKB inhibitors have off-target effects on other
kinases; and therefore, we need to develop and test more specific AURKB inhibitors for
future use in fight against cancer.

Supplementary Materials: The following are available online. Table S1. IC50 values for AURKB
inhibitors in preclinical studies.
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