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This study aims to investigate the neuroprotective effect of the rhizome of Gastrodia elata (GE) aqueous extract on beta-
amyloid(A𝛽)-induced toxicity in vivo and in vitro. Transgenic Drosophila mutants with A𝛽-induced neurodegeneration in pan-
neuron and ommatidia were used to determine the efficacy of GE.The antiapoptotic and antioxidative mechanisms of GE were also
studied in A𝛽-treated pheochromocytoma (PC12) cells. In vivo studies demonstrated that GE (5mg/g Drosophila media)-treated
Drosophila possessed a longer lifespan, better locomotor function, and less-degenerated ommatidia when compared with the A𝛽-
expressing control (all 𝑃 < 0.05). In vitro studies illustrated that GE increased the cell viability of A𝛽-treated PC12 cells in dose-
dependent manner, probably through attenuation of A𝛽-induced oxidative and apoptotic stress. GE also significantly upregulated
the enzymatic activities of catalase, superoxide dismutase, and glutathione peroxidase, leading to the decrease of reactive oxidation
species production and apoptotic marker caspase-3 activity. In conclusion, our current data presented the first evidence that the
aqueous extract of GE was capable of reducing the A𝛽-induced neurodegeneration in Drosophila, possibly through inhibition of
apoptosis and reduction of oxidative stress. GE aqueous extract could be developed as a promising herbal agent for neuroprotection
and novel adjuvant therapies for Alzheimer’s disease.

1. Introduction

Beta-amyloid (A𝛽) protein plays a central role in Alzheimer’s
disease (AD). Although the exact mechanism of the disease is
unknown, the devastating effect of beta-amyloid is quite clear.
The protein would self-aggregate into a plaque [1], which
lead to the generation of reactive oxygen species, disrup-
tion of membrane potential, and increased vulnerability to
excitotoxicity, and eventually cause neuronal death [2] and
related cognitive defects [3]. Recent report postulated an
increasing prevalence of dementia all over the world, from

36 million in 2010 to 66 million by 2030, with majority
of AD [4]. Nowadays, AD threatens our aging population
with the possible loss of memory and cognitive functions
and leads to increasingly heavy health care burden to our
future economy. Despite advances in medical interventions,
Alzheimer’s disease is fatal, and presently, there is no cure.
Due to the complexity of pathology, AD is not very responsive
to current western medications [5, 6]. Increasing attentions
have turned to the conventional medicinal herbs, which are
multitargeting, to search for a novel way of AD treatment
[7, 8].

http://dx.doi.org/10.1155/2013/516741
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Drosophila melanogaster was recently developed as a
model organism for drug/herbal screening for neurodegen-
erative diseases. It provides several unique features such as
highly stable and fully-known genetics, highly conserved
disease pathways, high-throughput, and very low compara-
tive costs [9]. Most of the genes implicated in human AD
pathogenesis have Drosophila homologs, including amyloid
precursor protein (APP), 𝛾-secretase, and tau [10]. However,
there are some dissimilarities, such as the absence of 𝛽-
secretase, which cause a defect in endogenous production
of A𝛽42 [11]. In this study, the Drosophila models that
overexpress human A𝛽42 would be used. The neurodegen-
eration would result in reduced lifespan, reduced locomotor
activity, histological change to the neuronal structure, and
eye degeneration [10, 12]. These pathological phenotypes
could be observed within a few weeks, much faster than the
development of these phenotypes in transgenic mice [13].
Therefore, application ofDrosophila as model of AD provides
excellent tools for performing drug/herb screens to identify
small molecules/herbal formula that can suppress the toxicity
associated with A𝛽 accumulation.

There is a long history of the use of medicinal herbs in the
treatment of neurological disorders, like convulsion, stroke,
and epilepsy, that is, Poria cocos, Polygala tenuifolia, Uncaria
rhynchophylla, Ginkgo biloba, and Lycium barbarum [8, 14].
Modern pharmacological studies revealed that Ginkgo biloba
possessed neuroprotective effects towards D-galactose [15],
beta-amyloid [16], and ischemia-induced neuronal death
[17]. Uncaria rhynchophylla also prevented D-galactose [18],
beta-amyloid [19], 6-hydroxydopamine [20], and kainic acid-
induced neurotoxicity [21]. Similar neuroprotective effects
were found in other commonly used herbs in China [22–25].
Rhizome of Gastrodia elata (Tianma, GE) is also one of the
commonly used traditional Chinesemedicines. Many studies
have been performed to evaluate the neuroprotective effects
of GE and its biologically active ingredients against different
kinds of neuronal damages. The nonpolar extract of GE
inhibited the 1-Methyl-4-phenylpyridinium and glutamate-
induced apoptosis in neuronal cells [26, 27]. Additionally, the
nonpolar extract of GE protected mice and rat against kainic
acid [28] and aluminum chloride-induced neuronal damages
[29]. Its active ingredient, gastrodin, has been shown to
possess a protective effect against hypoxia injury on neurons
[30]. Other active compounds, hydroxybenzyl alcohol and
vanillin, could ameliorate ischemic cerebral injury in rats [31],
and prevent ischemic death of hippocampal neuronal in ger-
bils [32], respectively. Recently, an in vitro study indicated that
the aqueous extract of GE enhanced proteolytic processing
of APP towards the noncytotoxic nonamyloidogenic pathway
[33]. Previously, studies revealed that APP processing affected
the production of A𝛽, which strongly correlated to the
neuronal degeneration in AD pathology [34]. Mishra et al.
demonstrated that that GE was able to inhibit 𝛽-site APP-
cleaving enzyme 1 activity and promote 𝛼-secretase activity
[33]. The inhibition of 𝛽-site APP-cleaving enzyme 1 reduces
the cleavage of APP into A𝛽 [35], and the activation of 𝛼-
secretase increases the cleavage of APP into soluble-APP-𝛼
[36, 37].

Although the nonpolar extract of GE was found to
have various neuroprotective effects, extraction of GE with
water is the traditional way of preparing Chinese medicine
for human consumption. The active ingredient content of
aqueous extract and nonpolar extract is theoretically differ-
ent, which aqueous extract should have a higher content
of hydrophilic gastrodin and polysaccharides and a lower
content of less hydrophilic ingredients, such as hydroxy-
benzaldehyde, hydroxybenzyl alcohol, vanillin, and vanil-
lyl alcohol. According to the Chinese pharmacopeia 2010,
aqueous extract of GE is a traditional Chinese medicine
that is widely used for treatment of convulsive disorders,
headache, dizziness, and vertigo [38]. However, there is a
lack of scientific evidence to support these medical claims.
Based on these previous studies and the traditional use of
GE, we hypothesize that aqueous extract of GE may also be
effective in protecting neurons against beta-amyloid-induced
neuronal death. Moreover, there is a lack of information
relating to the in vivo neuroprotective effects of GE aque-
ous extract. In hope of finding an extract which could
modulate APP cleavage and reduce neurotoxic effect from
beta-amyloid, in the present study, we aimed to investigate
the neuroprotective effects of GE on beta-amyloid-induced
neurodegeneration inDrosophila and its related mechanisms
using pheochromocytoma (PC12) cells. The mechanism of
the neuroprotective effects of GE on the downstreampathway
after the cleavage of APP to A𝛽 were studied, including the
reactive oxygen species production and the activity of the
antioxidative enzyme. The apoptosis caused by A𝛽 was also
determined by propidium iodide (PI)/Annexin V staining
and confirmed by caspase-3 activity assay.

2. Materials and Methods

2.1. Materials. A𝛽
25−35

peptide, 3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide (MTT), and caspase-3
assay kit were purchased from Sigma-Aldrich (St Louis, MO,
USA). RPMI medium 1640, fetal bovine serum (FBS), horse
serum (HS), and 2,7-dichlorodihydrofluorescein diacetate
(H
2
DCFDA) were obtained from Invitrogen (Carlsbad, CA,

USA). Annexin V-FITC and propidium iodide (PI) were
obtained from BD Biosciences (San Jose, CA, USA). Super-
oxide dismutase and glutathione peroxidase assay kits were
from Cayman Chemical (Ann Arbor, MI, USA). Catalase
fluorometric detection kit was obtained from Enzo Life
Sciences (Farmingdale, NY, USA). Formula 4–24 instant
Drosophila medium was obtained from Carolina Biological
Supply Company (Burlington, NC, USA).

2.2. Herbal Materials and Extraction. The raw herbs of the
rhizome of Gastrodia elata were purchased from Chinese
herbal stores in the Guangdong province in Mainland China.
It was chemically authenticated using thin layer chromatog-
raphy in accordance to the Chinese Pharmacopoeia 2010
and deposited in the museum of the Institute of Chinese
Medicine, the Chinese University of Hong Kong, with
voucher specimen number of 2010-3294. For extraction, the
raw herbs Tianma were firstly washed with tap water to
remove any contaminants. They were then cut into small
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pieces. The herbs were soaked with 10-fold of water (v/w)
for 1 h, followed by extraction at 100∘C for 1 h. Subsequent
extractions were carried out with 10-fold of water (v/w) for
another 1 h. The extracts were combined and concentrated
under reduced pressure to give dry Tianma powdered extract.
Ultimately, 48.90 g of the aqueous extract was obtained
from 100.00 g of raw GE herb. The content of gastrodin
was determined to be 2.2% w/w using high performance
liquid chromatography, according to the method listed in the
Chinese Pharmacopeia 2010 [38], which is higher than the
requirement of 0.2% w/w.

2.3. Drosophila Strains. Drosophila strains used in this study
wereOregon-R-C (OR) (#5),w1118 (#3605), and elav-GAL4C155
(#458) (Bloomington Drosophila Stock Center, Department
of Biology, Indiana University, Bloomington, IN, USA).UAS-
A𝛽42/CyO and GMR-A𝛽42K52; GMR-A𝛽42K53 heterozygous
were gifts from Dr. M. Konsolaki (Rutgers University, USA).
OR is a wild typeDrosophila. w1118 is a white-eye mutant with
a deletion in the sex-linked white gene. Elav-GAL4C155 is a
mutantwith an embryonic lethal abnormal vision (elav)-GAL4
insert on the X chromosome. UAS-A𝛽42/CyO is a mutant
with anUAS-A𝛽42 insert and a Curly of Oster (CyO) balancer
on the 2nd chromosome. GMR-A𝛽42K52; GMR-A𝛽42K53 het-
erozygous is amutant with 2 copies ofGlassMultiple Reporter
(GMR)-A𝛽42 inserts on the 3rd chromosome.

For longevity and climbing assay, genotypes ofDrosophila
used in this study were as follows: control: elav-GAL4c155/Y,
A𝛽42: elav-GAL4c155/Y; UAS-A𝛽42/+; +/+. Elav-GAL4C155
line was crossed with w1118 line to produce control. Elav-
GAL4C155 line was crossed with UAS-A𝛽42/CyO to produce
elav-GAL4c155/Y; UAS-A𝛽42/+; +/+. The genotypes of newly
hatched Drosophila are different between male and female.
The genotype of the male offspring is elav-GAL4c155/Y;
UAS-A𝛽42/+; +/+, while that of female offspring is elav-
GAL4c155/w; UAS-A𝛽42/+; +/+. The existence of the wild
type gene in par with our elav-GAL4c155 promoter would
half the overall expression of the transgene [39]. In order
to minimize the error due to genetic difference, male was
chosen in the present study. For the psuedopupil assay,
Drosophila genotypes were as follows: Control: OR, A𝛽42:
GMR- A𝛽42 K52; GMR- A𝛽42K53 heterozygotes.

2.4. Effect of GE on Longevity of A𝛽 Expressing Drosophila.
Genetic crosses were performed in the vials containing the
diet with treatments. The normal control, which did not
express A𝛽, was maintained on the normal diet. The A𝛽
expressing control and the positive control were maintained
on the normal diet and diet containing 10mmol donepezil/g
ofDrosophilamedia, respectively, whereas the twoGE groups
were fed with diets containing 1 or 5mg GE/g of Drosophila
media, respectively. Newly hatched male Drosophila in each
group was transferred to a new vial (30 Drosophila per vial),
continued with their respective treatments, and incubated at
25∘C. DeadDrosophilawere counted on day 1 and 5 in a 7-day
cycle, and the remaining live Drosophila were transferred to
a new vial containing the same diet. The feeding lasted for 65

days. One hundred and fifty Drosophila were tested for each
group.

2.5. Climbing Assay. Locomotor function of Drosophila was
measured according to the climbing assay as previously
reported by Lee et al. [40] with slight modifications. In brief,
30 male Drosophila were placed at the bottom of a 15mL
falcon tube and were given 10 s to climb up the tube. At the
end of each trial, the number ofDrosophila that climbed up to
a vertical distance of 8 cm or above was recorded. Drosophila
were tested on day 1 and 5 in a 7-day cycle. Each trial was
performed three times. One hundred and fifty Drosophila
were tested for each group.

2.6. Pseudopupil Assay. The control and A𝛽42 Drosophila
were treated with the same treatments as described above.
Drosophila heads were examined under a light microscope
(Olympus CX31; Olympus, Tokyo, Japan) as described previ-
ously [41]. Briefly, the compound eye of 5 days oldDrosophila
was viewed under microscope in a dark field. There were
eight photoreceptors in each ommatidium, and seven of them
were visible. Each photoreceptor projected a darkly staining
rod, the rhabdomere, into the center of the ommatidium.
Under the microscope, the rhabdomeres appeared as bright
spots and rhabdomeres in each ommatidium were counted.
In the control group, 7 rhabdomeres could be observed in
each ommatidium. One hundred ommatidia were observed
from 5 to 10 eyes, and the average rhabdomeres count per
ommatidium was calculated. Three trials were conducted for
each group.

2.7. Cell Culture and Drug Treatment. PC12 rat pheochro-
mocytoma cells were obtained from American Type Culture
Collection (Manassas, VA, USA) and maintained in RPMI
medium 1640 supplemented with 10% (v/v) heat-inactivated
HS and 5% (v/v) FBS at 37∘C under 95% air/5% CO

2
. Cells

were utilized for experiments during exponential growth.
A𝛽
25−35

was dissolved in sterile distilled water at a con-
centration of 1.0mM as a stock solution and preaggregated at
37∘C for 7 days prior to use. Confluent cells were trypsinized,
counted, and seeded on poly-L-lysine-coated 6-well culture
plates at a density of 3 × 105 cells/well and incubated for 24 h.
After that, cells were treated with various concentrations of
GE and 20𝜇M of aggregated A𝛽

25−35
for 48 h.

2.8. Cell Viability Assay. Cell viability was determined
using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
(MTT) assay. Briefly, the cells were plated on poly-L-lysine-
coated 96-well culture plates at the density of 1 × 104 cells/well
and incubated for 24 h. After that, the medium was replaced
with fresh medium, and the cells were incubated with
A𝛽
25−35

(1 𝜇M) in the presence or absence of aqueous extract
of GE (250-1000𝜇g/mL) for 48 h. Thereafter, cells were
incubated with 30𝜇L of MTT solution (final concentration,
1.5mg/mL) for 4 h. The supernatant was then removed
and 100 𝜇L of dimethyl sulfoxide was added to dissolve the
formazan crystal. Plates were shaken for 10min and optical
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density was determined with a microplate reader at 540 nm.
The optical density of control cell was 100% viability.

2.9. Flow Cytometric Detection of Apoptosis. Apoptotic cells
were quantified by Annexin V-FITC and PI staining by
flow cytometry. Briefly, the treated cells were trypsinized
and centrifuged at 450×g at 25∘C for 5min. The pellet
was washed twice with ice cold PBS and resuspended with
Annexin V binding buffer. Annexin V-FITC and PI were
added according tomanufacturer’s instruction and incubated
in dark at room temperature for 15min. 300 𝜇L of binding
buffer was added to each sample. The stained cells were
analyzed by fluorescence-activated cell sorter (FACS). Ten
thousands events were analyzed per sample.

2.10. Measurement of Apoptosis. The treated cells were
collected and washed twice with ice cold PBS. PC12
cells were lysed in cell lysis buffer (50mM Tris-HCl pH
7.4, 2mMMgCl

2
, 0.1% Triton X-100) with 2 freeze/thaw

cycles. The supernatant was collected after centrifugation at
15,000×g for 3min; after that, the total protein concentration
was determined by the bicinchoninic acid (BCA) assay, using
bovine serum albumin (BSA) as a standard. The samples
were then applied to caspase-3 activity assays, according to
manufacturer’s instructions. The activities were normalized
using the total protein concentrations.

2.11. Measurement of Reactive Oxygen Species (ROS) Produc-
tion. The 2,7-dichlorodihydrofluorescein diacetate (H

2
DCF-

DA) method was used to measure intracellular ROS pro-
duction. H

2
DCF-DA can pass through the cell mem-

brane and oxidized by ROS to form the fluorochrome
2,7dichlorofluorescein (DCF). Therefore, H

2
DCF-DA was

widely used to reflect the intracellular ROS content [42–44].
The treated cells were collected, washed twice with ice cold
PBS, and incubated with H

2
DCF-DA (20𝜇M) in the dark

at 37∘C for 15min. Then cells were washed once with PBS
and harvested for fluorescence-activated cell sorter (FACS)
analysis. Ten thousands events were analyzed per sample.

2.12. Measurement of the Antioxidative Enzyme Activities.
The treated cells were collected and washed twice with ice
cold PBS. The cells were lysed in cell lysis buffer (50mM
Tris-HCl pH 7.4, 2mMMgCl

2
, 0.1% Triton X-100) with

2 freeze/thaw cycles. The supernatant was collected after
centrifugation at 14,000×g for 3min, after that the total
protein concentration was determined by the bicinchoninic
acid (BCA) assay, using bovine serum albumin (BSA) as
a standard. The samples were then applied to antioxidative
enzyme activity assays, including glutathione peroxidase
(GPx), superoxide dismutase (SOD), and catalase (CAT),
according to manufacturer’s instructions. The activities were
normalized using the total protein concentrations.

2.13. Statistical Analysis. Multiple group comparisons were
performed using one-way analysis of variance (ANOVA)
followed by Dunnett’s test to detect intergroup differences.

Comparisons for survival assay were performed using Log-
Rank analysis and chi-square comparison.

All statistical analyses were performed using GraphPad
Prism version 5.0 for Windows (GraphPad Software Inc.,
California, USA). The data were expressed as mean ± stan-
dard deviation (SD). A value of 𝑃 < 0.05 was considered
statistically significant.

3. Results

3.1. Tianma Prolonged the Lifespan and Improved Locomotor
Abilities of A𝛽-Expressing Drosophila. In the present study,
we evaluated the neuroprotective effect of aqueous extract
of GE, using Drosophila AD model. Before performing the
experiments, we evaluated the effect of 5 and 50mg GE
extract/g of Drosophila media on food intake of Drosophila.
Both GE treatments did not affect the food intake of
Drosophila (data not shown), which ensured no experimental
differences were due to the alteration of feeding behavior.
For lifespan experiment, A𝛽42 Drosophila showed a reduc-
tion of median and maximum lifespan by 17 days and 32
days when compared with control, respectively. Both GE
treatments significantly improved the survival of Drosophila
(Figure 1(a)). At 1mg GE extract/g of Drosophila media,
median and maximum lifespan were increased by 4 days
(12.0%) and 4 days, respectively (𝑃 < 0.001 for mean
increases). At 5mgGE extract/g ofDrosophilamedia, median
and maximum lifespan were increased by 7 days (26.9%) and
7 days, respectively (𝑃 < 0.001 for mean increases).

For locomotor abilities determination, A𝛽42 Drosophila
showed significant impaired locomotion from age of day 9
onwards (Figure 1(b-i)). GE-treated flies showed an improve-
ment in locomotor activity from age of days 12 to 23. At day
12, 19, and 23, 5mg GE extract/g ofDrosophilamedia resulted
in a 14.4%, 11.6%, and 9.74% improvement in locomotion,
respectively (𝑃 < 0.001, 𝑃 < 0.01, 𝑃 < 0.05) (Figure 1(b-
ii)) when compared with the A𝛽42 Drosophila without GE
treatment.

3.2. Tianma Rescued Neurodegeneration in Ommatidia of
A𝛽-Expressing Drosophila. We analyzed the effect of A𝛽42
on degeneration of retinal tissue of Drosophila, which were
mainly neurons. A𝛽42 Drosophila contained significantly
more degenerating rhabdomeres, compared with OregonR.
The number of degenerated rhabdomeres was 3.82 ± 0.09.
A𝛽42Drosophila treated with GE (1 and 5mg/g ofDrosophila
media) had significantly rescued rhabdomere in each omma-
tidium, with an increase of 0.49 and 0.97 rhabdomere count
per ommatidium, respectively (Figure 2), which reflected a
preventive effect of GE on neurodegeneration.The preventive
effect was comparable to donepezil medication (10 𝜇mol/g
of Drosophila media), in which there was an increase of
0.78 rhabdomere count per ommatidium than the A𝛽42
Drosophila.

3.3. Tianma Reduced A𝛽-Induced Cytotoxicity in PC12 Cells
and Prevented A𝛽-Induced Apoptosis. Exposure of PC12 cells
to aggregated A𝛽

25−35
(20𝜇M) for 48 h caused significant
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Figure 1: Intake of GE increases the (a) lifespan and (b-i) locomotor activity of A𝛽-expressing Drosophila. The lifespan of A𝛽42 group
(squares in red) is shorter than the control group (circles in blue), while GE (asterisks and triangles in purple) or donepezil (triangles in
green) treatments delay the mortality of the Drosophila. (b-ii) is an amplification of the region from days 12 to 23 showing the differences
among the A𝛽42 group and the treatment groups. The percentage of Drosophila climbing up 8 cm in 10 seconds was increased by GE or
donepezil treatments when compared with A𝛽42 group. Results are the means ± SEM from five independent crosses. ###𝑃 < 0.001 relative
to control; ∗𝑃 < 0.05, ∗∗𝑃 < 0.01, ∗∗∗𝑃 < 0.001 relative to A𝛽42 Drosophila by one-way ANOVA for locomotor activity. Log-Rank analysis
and chi-square comparison were applied to the survival data and 𝑃 < 0.001 was obtained when comparing A𝛽42 Drosophila and Donepezil
10𝜇mol/g or GE 1mg/g or 5mg/g treated ones (𝑛 = 150).

cytotoxicity. Concentration of GE in the range from 125
to 1000 𝜇g/mL was identified to be non-toxic to PC12 cells
by MTT assay (data not shown). The high concentration
of GE used is also correlated to its high extraction yield
in water (48.9%), compared with the yield of less than
a few percent in extraction by nonpolar solvents. Our
results demonstrated that GE imposed significant protective
effect against A𝛽

25−35
-induced damage in a dose dependent

manner, with the maximum effect observed at 1000 𝜇g/mL
(Figure 3). Therefore, concentration of GE in the range from
250 to 1000 𝜇g/mL was selected for the further apoptosis
study. In this regard, we investigated the effect of GE on
A𝛽
25−35

-induced apoptosis using Annexin V-FITC and PI
staining. Early apoptotic (PI: negative, Annexin V: positive)
cells and late apoptotic (PI andAnnexinV: positive) cells were

quantified by flow cytometry. For the control group treated
with A𝛽

25−35
only, the normalized percentages of early and

late apoptosis induced by A𝛽
25−35

were 14.1 ± 3.5% and 2.6 ±
0.3%, respectively. For the treatment groups, the percentage
of early and late apoptosis induced by A𝛽

25−35
with treatment

of GEwere 9.7±2.4%and 0.9±0.6% for 250𝜇g/mL, 8.2±0.3%
and 0.4 ± 0.7% for 500𝜇g/mL, and 3.1 ± 3.1% and 0.1 ±
0.1% for 1000 𝜇g/mL (Figure 4(b)).The results suggested that
GE can reduce A𝛽

25−35
-induced apoptosis dose dependently.

To further confirm the antiapoptotic effects of GE against
A𝛽
25−35

-induced toxicity, the activity of crucial mediator
of apoptosis caspase-3 was assessed. Caspase-3 activity was
increased by 31.8 ± 13.4% with A𝛽

25−35
treatment, and the

increase in activity was attenuated dose dependently with
treatment of GE (Figure 4(c)). At 1000𝜇g/mL of GE, the
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caspase-3 activation was totally abolished and reverted to
the normal activity level of the PC12 cells without A𝛽

25−35

treatment.

3.4. Tianma Prevented A𝛽-Induced Oxidative Stress.
Figure 5(a) shows that 20𝜇M A𝛽

25−35
elevated the

production of ROS from 100% to 145.2 ± 16.3%, whereas
the fluorescence intensity in GE-treated groups decreased
significantly (110.9 ± 7.5%, 103.7 ± 23.1%, and 99.0 ± 15.1%,
resp.). The decrease of fluorescence by GE reflected the
reduction of ROS content, which possibly caused by the
activation of antioxidative enzymes.

The activities of antioxidative enzymes (SOD, CAT, and
GPx) in untreated PC12 cells and in those treated with 20 𝜇M
A𝛽
25−35

alone or with GE together are presented in Figures
5(b)–5(d). Activity of SODwas decreased by 24.75±9.07% in
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Figure 3: Protective effect of GE on A𝛽-induced cytotoxicity in
PC12 cells. Effect of 48 h treatment of GE extract on the viability of
PC12 cells was determined by MTT assay. Results are the means ±
SD from three separate experiments. ###𝑃 < 0.001 relative to control;
∗𝑃 < 0.05, ∗∗∗𝑃 < 0.001 relative to A𝛽 treatment only by one-way
ANOVA.

the cells exposed to 20𝜇MA𝛽
25−35

(Figure 5(b)). Exposure to
20𝜇MA𝛽

25−35
did not significantly affect the activity of CAT

(Figure 5(c)) and induced a 19.70±4.87% increase in activity
of GPx (Figure 5(d)). With 1000 𝜇g/mL of GE treatment, the
activity of SOD was reverted to the normal activity level of
the PC12 cells without A𝛽

25−35
treatment, while the activity

of CAT was enhanced by 63.30 ± 12.58% compared with
the normal control. Moreover, 1000 𝜇g/mL of GE further
increase the activity of GPx to 45.00 ± 7.71% higher than the
normal control. Overall, treatment with different doses of GE
significantly and dose-dependently enhanced the activities of
SOD, CAT, and GPx (Figures 5(b)–5(d)).

4. Discussion

In the present study, we have presented the first evidence
that the aqueous extract of GE could significantly ameliorate
the adverse morphological changes from A𝛽 protein in
Drosophila, as indicated by improving locomotor abilities,
prolonging the lifespan, and rescuing neurodegeneration in
ommatidia inA𝛽-expressingDrosophila. In vitro experiments
showed that A𝛽-treated cultures exhibited characteristic
features of ROS production, apoptosis, and cell death in PC12
cells. GE aqueous extract attenuated A𝛽-induced cytotoxic-
ity effectively, probably through increasing the activities of
antioxidative enzymes so as to reduce overall oxidative stress
and subsequently inhibiting A𝛽-induced apoptosis.

Two Drosophila lines were used to overexpress different
levels of A𝛽, one was using GMR promoter and one was
using GAL4-UAS system. GMR promoter element directs
the expression of the protein at the eye imaginal disc. The
advantage of expressing only in the eye is that flies producing
a highly toxic protein may still be viable. Rapid and severe
degeneration of the ommatidia (eyes of Drosophila) was
achieved due to the presence of two copies of gene encoding
for A𝛽 in our Drosophila with GMR promoter [10]. For the
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Figure 4: Antiapoptotic effect of GE on A𝛽-induced cytotoxicity in PC12 cells. (a) Representative plots for the flow cytometric analysis. (b)
GE extract reduced A𝛽-induced apoptosis in flow cytometric analysis.The fluorescence intensity was measured after PC12 cells were exposed
to 20𝜇MA𝛽 for 48 h, followed by incubationwithAnnexinV-FITC and PI for 15min. (c) 48 h treatment of GE extract attenuatedA𝛽-induced
activation of caspase-3. Results are the means ± SD from three separate experiments. #𝑃 < 0.05 relative to control; ∗𝑃 < 0.05, ∗∗𝑃 < 0.01,
∗∗∗𝑃 < 0.001 relative to A𝛽 treatment only by one-way ANOVA.

latter one, the GAL4-UAS system is more complex. Tissue-
specific expression of the UAS-A𝛽42 is achieved by crossing
the transgenicDrosophilawith driver lines that control tissue-
specific expression GAL4, which would bind with UAS to
activate gene transcription. Elav-GAL4 is a commonly used
pan-neuronal driver that directs the expression of transgene

throughout the brain, neuronal system, and retina of the
Drosophila [45].The advantage of this model is that the lethal
gene can be carried in the parents without affecting their
viability and fecundity. In this study, UAS-A𝛽42 would be
crossed with elavC155-GAL4 to express A𝛽42 in the brain
and the whole neuronal system and gradually accumulate to
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Figure 5: Antioxidative effect of GE on A𝛽-induced cytotoxicity in PC12 cells. (a) GE extract reduced A𝛽-induced oxidative stress in flow
cytometric analysis of DCF positive cells. The fluorescence intensity of DCF was measured after PC12 cells were exposed to 20 𝜇M A𝛽 for
48 h, followed by 20 𝜇MH2DCF-DA for 15min. 48 h treatment of GE extract increased the activities of antioxidative enzymes (b) superoxide
dismutase (c) catalase and (d) glutathione peroxidase in 20𝜇MA𝛽-treated cells. Results are the means ± SD from three separate experiments.
#𝑃 < 0.05, ##𝑃 < 0.01 relative to control; ∗𝑃 < 0.05, ∗∗𝑃 < 0.01, ∗∗∗𝑃 < 0.001 relative to A𝛽 treatment only by one-way ANOVA.

induce the degenerative phenotypes, such as the pathological
morphologies and behavioral changes, in weeks. Therefore,
to identify the efficacy against A𝛽 toxicity, the rationale of
the current assays aimed to see whether GE aqueous extract
can rescue retinal degeneration, locomotion and climbing
deficits, and increase the lifespan of the flies, restoration of
normal activity.

Using these two Drosophila models, the in vivo effects
of GE aqueous extract in Alzheimer’s disease were studied.
Firstly, we found that GE aqueous extract reduced the neuro-
toxic effect of A𝛽 to ommatidia. The degree of degeneration
of ommatidia reflected the extent of neurodegeneration [46],
based on the fact that photoreceptors were neurons in nature.
Overexpression of A𝛽 causes plaque formation and neuronal
degeneration, which was responsible for the eye morpholog-
ical changes [10, 12]. The intake of GE extract reduced the

adverse effect of A𝛽-associated plaque formation and rescued
the eye phenotype. Similar findings were observed in the
other Drosophila model with systemic pan-neuronal A𝛽42
expression. GE aqueous extract significantly prolonged the
lifespan and improved locomotor dysfunction of the flies.We
also found that the beneficial effects of GE were comparable
with the medicine donepezil. Hong et al. recently reported
that Chinese traditional medicinal prescription SuHeXiang
Wan improved the longevity and locomotor ability using the
sameDrosophilamodel system [47].The results of the current
study suggested thatGE aqueous extract confers a therapeutic
potential to AD-like pathology of A𝛽42 overexpressing in
different Drosophila models. In our Drosophila model, the
AD-like pathology was caused by the neurotoxic A𝛽 pro-
duced, secreted to and aggregated in the extracellular matrix
[48], yet there was no previous report on the effect of A𝛽 on
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apoptosis and oxidative stress onDrosophila. Previous reports
revealed the direct proportional relationship between the
manifestations of neuronal dysfunction in Drosophila, such
as locomotor deficits and reduced lifespan, and aggregation
rate of the A𝛽, which provide evidence that the aggregated
A𝛽 is the primary determinant of the pathological behavior in
theDrosophila system [49]. To study pathogenicmechanisms,
we have developed in vitro model that recapitulate many of
the signature events in A𝛽 neurotoxicity including the accu-
mulation extracellular aggregated A𝛽, leading to apoptotic
events and formation of reactive oxygen species. Basing on
previous studies that were using PC12 cells as a platform
to express and study the action mechanisms of Drosophila
proteins [50], we postulate that the PC12 cells would be able to
mimic the cellular environment of the Drosophila. Moreover,
there was a well-established platform using PC12 cells and
Drosophila toscreen and validate aggregation inhibitors of
polyglutamine, which resulted in neurodegeneration [51,
52]. The platform suggested that PC12 cells and Drosophila
would have correlation in neurodegeneration mechanisms.
Therefore, PC12 cell line was used to explain the in vivo effects
in the present study.

For the in vitromechanistic studies, PC12 cell line, which
is originated from transplantable rat adrenal pheochromo-
cytoma, was used. Due to their similarity with sympathetic
neurons and their reversible differentiation response to nerve
growth factor [53], PC12 cells were widely used in the
study of neuronal differentiation [54], neuronal function [55],
and neurodegeneration [56, 57]. A𝛽-induced cytotoxicity
on PC12 cell line is widely used to study the AD-related
neurodegeneration [58]. In the present study, we adopted
this cell line and found that GE possessed protective effect
against A𝛽-induced cell death inMTT assay. Previously, Kim
et al. had also demonstrated that the ethyl ether fraction of
GE was able to protect A𝛽-induced IMR-32 neuroblastoma
cell death [59]. However, the content of active ingredients
in the ethyl ether extract was expected to be different from
the aqueous extract. Although the dose of extract used in
the study was as low as 10𝜇g/mL, the extraction yield of the
extract was only 1.12%. When comparing with the present
study of extraction yield of 48.90%, the dose was equivalent
to 420.61𝜇g/mL in the present study, which is similar to
the present dose of 500 𝜇g/mL. Moreover, the study only
demonstrated the protective effect using MTT assay, but
lacked further elucidation of any protective mechanisms. A
complete picture from the in vivo effect to the downstream
neuroprotective mechanisms was yet to be provided, and
the present study was the novel one targeting this. Extensive
evidence shows that neuron cell death in AD is mediated
by apoptosis [60, 61]. For instance, postmortem analysis of
AD brain shows that there is DNA fragmentation in neurons
and glia of hippocampus and cortex as detected by TdT-
mediated dUTP nick end labeling [62]. It was also found
that the extracellular accumulation of A𝛽, which triggers the
intracellular formation of neurofibrillary tangles [63], leads
to the loss of cholinergic neurons [64]. Hence, a common
theory believed that the pathological neuronal loss in AD is
through apoptosis, whichmay be caused byA𝛽 accumulation
and cytotoxicity [2, 34]. In order to elucidate the possible

mechanisms of the neuroprotective effect, the antiapoptotic
effects of GE were determined by flow cytometry using
PI/Annexin V staining method and caspase-3 activity assay.
Our PI/Annexin V data demonstrated that GE could strongly
attenuate not only the early stage but also the late stage of
apoptosis/necrosis induced by A𝛽. Besides, we also found
that GE could suppress A𝛽-induced caspase-3 activity, which
provided further evidence in antiapoptosis.

Although the exact underlying mechanism leading to
A𝛽-induced apoptosis was not well understood, oxidative
stress caused by the A𝛽 plaque was widely believed to
seriously impair various cellular function and play an impor-
tant role in apoptosis [65, 66]. Therefore, reducing reactive
oxygen species (ROS) production was a promising approach
to inhibit A𝛽-induced apoptosis. It has been previously
reported that the nonpolar fractions of GE and its active
constituents could inhibit ROS generation [32, 67]. In this
study, we found that the aqueous extract of GE also possessed
strong antioxidative action, which decreased the H

2
DCF-

DA-labeled ROS accumulation in PC12 cells. Antioxidative
action can be mediated by 2 mechanisms: activation of
antioxidative enzymes and direct free radical scavenging [68].
Antioxidative enzymes, including superoxide dismutase and
catalase, convert superoxides, a strong ROS, to hydrogen
peroxide and then to water. Glutathione peroxidase cat-
alyzes the reaction of glutathione and hydrogen peroxide,
which is a crucial endogenous antioxidative mechanism,
to water [69]. In the present study, although A𝛽 did not
affect the activity of CAT, the impairment of the upstream
SOD would cause the accumulation of superoxides. On the
other hand, the upregulation of GPx by A𝛽 was possibly
a response to the increased ROS and facilitated the action
of glutathione. Due to the fact that CAT and GPx could
not breakdown superoxides, the accumulation of superoxides
may be the explanation for the observed oxidative stress after
the A𝛽 treatment. Our results also demonstrated that GE
up-regulated the activity of SOD, CAT, and GPx during A𝛽-
insult. The activity of SOD was retained, which resume the
breakdown of superoxides to hydrogen peroxide. The up-
regulation of CAT and GPx can promote the clearance of
ROS, and that partially explained the antioxidative action
for GE. Other studies also demonstrated that both nonpolar
and polar fractions of GE have hydroxyl radical scavenging
activity and reduce lipid peroxidation [67, 70, 71]. Its active
constituents, including vanillyl alcohol, vanillin, hydroxy-
benzyl alcohol, and hydroxybenzaldehyde, were found to be
potent antioxidants [32, 72]. These compounds can be found
in aqueous extract of GE [73, 74].

As aqueous extract of GE was widely and traditionally
used in Chinese medicine as a supplement in diet and
an herbal medicine [75], and the further development of
GE as novel non-toxic preventive/treatment interventions
for life-threatening neurodegenerative diseases, such as AD,
is possible. In order to confirm our current findings, fur-
ther investigation of the neuroprotective effect of GE to
mammalian AD model is necessary. Since the traditional
way of consuming Chinese herbs is to be taken orally, the
gastrointestinal metabolic ingredients of GE are the final
effective elements. However, very limited information were
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found regarding the pharmacokinetic data of GE aqueous
extract, except that gastrodin was known to be metabolized
to p-hydroxybenzyl alcohol [76], and both gastrodin and p-
hydroxybenzyl alcohol possess significant free radical scav-
enging and memory consolidation effects [77, 78]. Hence,
further pharmacokinetic studies are required to understand
the post metabolism ingredients of GE. Besides, further
investigation is needed to determine the clinical efficacy
and safety of GE in human subjects because the presence
of blood-brain barrier (BBB) may block those beneficial
active ingredients from the brain. Although BBB exists in
Drosophila and serves the function of blocking the passage
of ions and small molecules [79, 80], the Drosophila’s BBB
is morphologically different from the mammalian one [81,
82]. Nevertheless, some previous studies demonstrated that
intravenous administration of gastrodin and hydroxybenzyl
alcohol were able to pass through BBB in rats [83, 84].
However, the pharmacokinetics of GE in the human brain is
yet to be investigated.

5. Conclusions

In conclusion, the present study demonstrated the novel
use of aqueous extract of GE against A𝛽-induced neurode-
generation in Drosophila. Its effect is mediated through the
increasing activity of antioxidative enzymes and reducing
oxidative stress in cells, together with the inhibition of
caspase-3, leading to the attenuation of apoptosis. Based on
these findings, we suggest developing GE aqueous extract
as a potential therapeutic intervention for neurodegenerative
diseases, such as Alzheimer’s disease.
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