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T follicular helper (Tfh) cells play an essential role in regulating the GC reaction and, con-
sequently, the generation of high-affinity antibodies and memory B cells. Therefore, Tfh
cells are critical for potent humoral immune responses against various pathogens and
their dysregulation has been linked to autoimmunity and cancer. Tfh cell differentiation
is a multistep process, in which cognate interactions with different APC types, costimula-
tory and coinhibitory pathways, as well as cytokines are involved. However, it is still not
fully understood how a subset of activated CD4+ T cells begins to express the Tfh cell-
defining chemokine receptor CXCR5 during the early stage of the immune response, how
some CXCR5+ pre-Tfh cells enter the B-cell follicles and mature further into GC Tfh cells,
and how Tfh cells are maintained in the memory compartment. In this review, we dis-
cuss recent advances on how antigen and cognate interactions are important for Tfh cell
differentiation and long-term persistence of Tfh cell memory, and how this is relevant
to the current understanding of COVID-19 pathogenesis and the development of potent
SARS-CoV-2 vaccines.
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Introduction

Upon activation, naïve CD4+ T cells can differentiate into dis-
tinct subsets of effector Th cells with varied functions. T follic-
ular helper (Tfh) cells form a unique subset of CD4+ T cells that
provides help to B cells and is essential for GC formation and reg-
ulation [1–5]. The differentiation and function of Tfh cells have
been shown to determine the kinetics and magnitude of GC B-cell
responses and the generation of high-affinity antibodies [1–5].
Tfh cell differentiation is commonly regarded as a multistage pro-
cess (Figure 1). During the early stages of CD4+ T-cell responses,
antigen presentation by DCs activates naïve CD4+ T cells and
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initiates Tfh cell differentiation including the induction of the
chemokine receptor CXCR5 and the transcription factor Bcl6.
Besides TCR signaling, costimulation and the local cytokine milieu
are also critical for Tfh cell fate decision. After initial interactions
with DCs, terminal Tfh cell differentiation requires interactions
with B cells. In the past decade, great progress has been made in
our understanding of Tfh cell differentiation and function. Here,
we will discuss these findings and highlight some important ques-
tions regarding how cognate interactions with APCs at the dif-
ferent stages of Tfh cell differentiation play a central role in this
process and how this knowledge can contribute to a better under-
standing of COVID-19.
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Figure 1. Antigen-dependent multistep differentiation of T follicular helper cells. Naïve CD4+ T cells are primed by dendritic cells (DCs) in the
T-cell zones of secondary lymphoid organs such as the spleen or lymph nodes. This antigen-specific interaction is mediated by presentation of
processed peptides by MHC-II molecules that are recognized by the cognate TCR. Together with the expression of costimulatory molecules and
production of cytokines, these signals induce the Tfh cell differentiation program that is characterized by upregulation of the chemokine receptor
CXCR5 and downregulation of CCR7, which allows these cells to migrate to the T/B border where they interact with activated B cells. This second
interaction with an APC type coincides with the expression of characteristic costimulatory (e.g. ICOS) and coinhibitory receptors (e.g. PD-1) by the
Tfh cells, which may be called “pre-Tfh” cells at this stage. After this cellular interaction, some activated B cells become extrafollicular short-lived
plasma cells (PCs) that secrete low-affinity antibodies and some of the interacting T and B cells relocate to the follicle to form germinal centers
(GCs). In these highly specialized microanatomical structures that consist of dark zones (DZ) and light zones (LZ), GC Tfh and B cells continue to
interact in an antigen-specific manner. GC Tfh cells are more polarized and express higher levels of PD-1, Bcl6, and CXCR5 than “pre-Tfh” cells.
In addition, they express the adaptor molecule SAP that is important for interactions with GC B cells and they produce IL-21 and IL-4 that act
on the B cells. While GC B cells mutate their immunoglobulin genes and proliferate in the DZ, GC Tfh cells provide essential signals to B cells in
the LZ of the GC, where they cooperate with follicular dendritic cells (FDCs) in the selection of high-affinity B-cell clones and in the generation
of memory B cells, which recirculate in the blood, and long-lived plasma cells that find their niche in the bone marrow to maintain serological
memory through the secretion of high-affinity antibodies. Once the GC reaction is resolved, some memory CXCR5+ CD4+ T cells reside in close
proximity with memory B cells in lymphoid organs, while others are released from the draining lymphoid organs and circulate in the blood. Both
memory Tfh cell subsets express decreasing amounts of Bcl6, CXCR5, and other costimulatory/inhibitory molecules as compared to their effector
counterparts. Upon antigen rechallenge, these cells rapidly acquire the effector functions of Tfh cells and strongly support secondary immune
response.

DC priming for initial Tfh cell differentiation

DCs are the most important APCs for naïve CD4+ T-cell activa-
tion and differentiation (Figure 1). During the initiation of the
CD4+ T-cell response, DCs are sufficient to prime naïve CD4+

T cells and generate CXCR5+ Tfh cells [6, 7]. However, fur-
ther differentiation into GC Tfh cells still requires B-cell inter-
actions [8]. DCs can be subdivided into conventional DC (cDC)
and plasmacytoid DC. cDCs can be further subdivided into cDC1
and cDC2 based on their division of labor and both subsets have
been implicated in the differentiation of Tfh cells [9]. Using Batf3-
deficient mice (lacking cDC1s) and Dock8-deficient mice (lacking
cDC2s), it was shown that the migratory cDC2s, but not cDC1s,
uniquely induced Tfh cell responses at the T-B border [10]. Fur-
ther, it was demonstrated that monocyte-derived DCs were able
to promote Tfh cell differentiation in specific inflammatory con-
texts in mice [11]. It was also demonstrated that TCR-transgenic
EBI2-deficient CD4+ T cells after adoptive transfer and priming
exhibited reduced Tfh cell differentiation in a B cell-independent

manner [12]. More precisely, most of the TCR-transgenic EBI2-
sufficient activated CD4+ T cells colocalized with cDC2s in the
outer T zone. In contrast, in the absence of EBI2, activated TCR-
transgenic CD4+ T cells were dispersed, with only some colo-
calizing in proximity of cDC2s. Further, the authors revealed a
novel mechanism underlying DC-T-cell interactions at the inter-
follicular region with cDC2s expressing membrane-bound CD25
(IL-2R) and releasing soluble IL-2R to absorb the surrounding IL-
2, thereby reducing IL-2-mediated suppression of Tfh cell differ-
entiation as previously reported [13–15].

During CD4+ T-cell priming, increased doses of antigen favor
the differentiation of Tfh and GC Tfh cells [16]. It was also shown
that in the absence of DCs, high doses of antigen were able to
overcome the defective Tfh cell differentiation [17]. In the context
of viral infection, it was demonstrated that mice in which DCs are
constitutively ablated did not show marked alterations of Tfh cell
differentiation and response after systemic low-dose infection of
mice with lymphocytic choriomeningitis virus [18]. In addition to
antigen dose and nature of the antigen, it has been shown that
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antigen size also impacts Tfh cell differentiation. Indeed, immu-
nization with antigen-loaded 200 nm particles induced a stronger
Tfh cell and antibody response and provided protective immunity
to influenza virus infection in mice as compared to smaller
(40 nm) antigen-loaded particles, despite of inducing a similar
activated T-cell response [19]. This suggested that increasing
antigen size could lead to sustained antigen presentation by DCs,
resulting in enhanced Tfh cell differentiation.

TCR affinity, TCR signal strength, and TCR tonic
signaling in Tfh cell differentiation

Using two distinct TCR-transgenic mouse strains with different
TCR affinities for the exact same peptide-MHC class II (pMHCII)
complex, it was shown that high-affinity T cells developed sig-
nificantly more into Tfh cells, suggesting that a high-affinity TCR
on the surface of naïve T cells preferentially induces the Tfh cell
program [20]. The link between TCR affinity and Tfh cell differ-
entiation was further studied by monitoring the progeny of naïve
CD4+ T cells after pathogen infection [21]. The authors showed
that naïve CD4+ T cells specific for a certain pMHCII underwent
distinct effector fates based on their unique TCR, thus, each naïve
T cell is poised to generate certain types of effector cells. The
authors demonstrated that when the dwell time of TCR/pMHCII
interaction increased, Tfh cell differentiation also increased and
reached a plateau. As stated above, studies in viral infection mod-
els have shown that the IL-2/STAT5 pathway suppresses Tfh cell
differentiation [14–16]. Using IL-2 reporter mouse strains, it was
shown that newly activated CD4+ T cells could be subdivided
into IL-2+ cells enriched for Bcl6 mRNA expression and IL-2– T
cells expressing higher mRNA levels of Blimp-1, which is encoded
by Prdm1 [22]. It was further demonstrated that IL-2 reporter
expression was restricted to CXCR5+ CD4+ T cells and that spe-
cific depletion of IL-2-producing cells inhibited Tfh cell differ-
entiation, suggesting that Tfh cells derived from IL-2-producing
cells. The authors also demonstrated that IL-2 production and
Tfh cell differentiation correlated with TCR signal strength and
that higher TCR signaling favored Tfh cell differentiation. Inter-
estingly, it has been reported that low-affinity antigen did not
impact Tfh cell differentiation [23].

How TCR signaling induces downstream transcriptional reg-
ulation that influences T-cell differentiation has recently been
described. It was shown that the TCR signal-induced transcrip-
tion factor IRF4 was essential for the differentiation of Bcl6-
expressing Tfh cells [24]. It was further found that the amount of
IRF4 was increased proportionately to TCR signal strength [25].
Strikingly, the authors also showed that in specific conditions of
increased TCR signaling, high amounts of antigen or overexpres-
sion of IRF4, reduced Tfh cell differentiation. Mechanistically, the
authors demonstrated that greater IRF4 levels allowed binding to
low-affinity binding sites that were enriched in non-Tfh effector
genes, a process that was independent of IL-2 signaling. Another
layer of difficulty was recently added to this field of investiga-
tion. It was questioned whether another TCR-dependent factor

could contribute to Tfh cell fate determination, namely peripheral
TCR signaling in response to self-pMHCII, also called tonic signal-
ing [26]. It was revealed that tonic signaling instructed Tfh cell
fate, where strong tonic signaling inhibited Tfh cell differentia-
tion and weak tonic signaling promoted it. Overall, stronger TCR
signaling favored Tfh cell differentiation either through decreased
tonic signaling strength and/or through TCR activation induced
by increased antigen dose.

While the above studies investigated the role of TCR signal-
ing in Tfh cell differentiation, it remains elusive when the diver-
gence between CXCR5– and CXCR5+ cells occurs upon activa-
tion of naïve CD4+ T cells. Using single-cell RNA sequencing to
map effector CD4+ T-cell differentiation, the developmental tra-
jectories of Th1 and Tfh cells were recently reconstructed dur-
ing blood-stage Plasmodium infection in mice [27]. The authors
demonstrated that both cell subsets diverged after the initial cycle
of cell proliferation associated with an upregulation of aerobic
glycolysis and accelerated cell cycling. This is consistent with the
finding that CXCR5 expression was particularly upregulated in
activated CD4+ T cells that had proliferated the most and which
coexpressed high levels of Bcl6 [7].

Cognate T/B interactions in Tfh cell differentiation and
maintenance

After priming by APCs, activated CD4+ T cells proliferate and
those cells upregulating CXCR5 and concomitantly downregulat-
ing CCR7, migrate to the T/B border where they interact with
antigen-primed B cells in a cognate fashion [28, 29] (Figure 1).
Eventually, some of these early Tfh cells enter deeper into the
B-cell follicles and contribute to the formation of GCs, their termi-
nal differentiation into GC Tfh cells being dependent on B cells [8,
30-32]. Indeed, interaction with cognate B cells allows stable Bcl6
and, in turn, CXCR5 expression. Thus, efficient T- and B-cell inter-
actions are important as seen by the absence of GC Tfh cell dif-
ferentiation in SAP-deficient mice [33–36]. Moreover, other cos-
timulatory signals are critical for terminal Tfh cell differentiation.
ICOS/ICOS-L signaling was demonstrated to be crucial [37–39].
ICOS overexpression in mice that carry a mutation in the roquin
gene led to extensive Tfh cell differentiation and lupus-like syn-
drome [40]. Moreover, BCR stimulation inversely correlated with
ICOS-L expression, which consequently decreased Tfh cell differ-
entiation [41]. Thus, the decision between the extra-follicular ver-
sus the GC pathway relies on affinity for the antigen of the BCR
expressed by naïve B cells [42] and the impact of BCR affinity on
the quality of T/B interactions [41].

GC Tfh cells interact with GC B cells in the light zone (Figure
1). One important characteristic of GC reactions is affinity matu-
ration. It was shown in mice that increased propensity to present
antigen to Tfh cells and to interact with GC Tfh cells led to a
decrease in the number of high-affinity B cells since GC B cells
were in less competition with each other [43]. These observations
provided evidence for a model in which Tfh cells are the limiting
factor that shape the GC response and affinity selection therein.
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Using similar technologies, another study showed that Tfh cells
were able to recirculate between different GCs, thus, maximizing
the diversification of T cell help during GC responses [44].
Notably, Tfh-GC B-cell interaction impacts the outcome of GC B
cells, with stronger interaction promoting formation of plasma
cell precursors versus recycling GC cell fate [45]. Continued T
cell-specific Bcl6 expression in CD4+ T cells is required for the
maintenance of established Tfh cells and GCs, and prevents the
trans-differentiation of established Tfh cells into Th1 cells during
acute viral infection [46]. Similarly, global miRNA expression is
not only required for the induction of Tfh cells [47], but also for
their maintenance [48], further highlighting the fragile nature of
the Tfh cell program, which is dependent on continued presenta-
tion of antigen as well as costimulation [8, 16, 37, 38, 49].

Tfh memory

Initially, Tfh cells were thought to be effector cells that would die
once the GC reaction had ended [50, 51]. Nevertheless, it was
also reported that CXCR5+ CD4+ memory T cells form in mice
after protein vaccination and viral infection [52–55] and their
existence in humans was also demonstrated [56–60]. While it was
further shown that Bcl6 was essential for the formation of mem-
ory CD4+ T cells in mice [61], intrinsic Bcl6 expression was lower
in memory cells as compared to GC Tfh cells [62–64], which cor-
related with a less differentiated phenotype than their effector
counterparts in mice [55, 65, 66]. Finally, 30 days after immu-
nization of Bcl6-reporter mice, it was demonstrated that Bcl6+

CXCR5+ T cells were memory Tfh cells, since they preferentially
gave rise to GC Tfh cells upon reactivation [62]. Interestingly, the
Tfh cell compartment can be subdivided into resident cells, which
remain in the draining LNs as well as circulating cells in nondrain-
ing secondary lymphoid organs or in the circulation (Figure 1).
Both cell subsets have the capacity to support secondary humoral
immune responses, but they reside in different anatomical loca-
tions, with resident cells being in B-cell follicles and circulating
ones in T-cell areas or in the blood [67]. Further, this cell subdi-
vision was demonstrated to rely on cognate interactions between
resident memory B and T cells, from which the circulating T-cell
pool emerged, emphasizing the role of antigen presentation even
in the memory phase. In this context, it was observed that after
antigen reactivation, memory B cells induced rapid Bcl6 expres-
sion and effector function by memory Tfh cells, thereby, high-
lighting the close functional relationship between memory B cells
and Tfh cells [68]. In mice infected with Listeria monocytogenes,
it was shown that CXCR5+ memory CD4+ T cells were multi-
potent as they generated secondary Tfh- and Th1-cell responses
and these cells behaved more like central memory T cells as they
expressed CCR7 and were mainly located in T-cell areas [69].
More recently, it was reported that long-lived Tfh cells are sus-
ceptible to cell death induced by NAD-mediated ribosylation of
P2RX7 [70]. Blocking this process during tissue isolation yielded
many additional live cells that were used to confirm by single-
cell RNA sequencing that memory Tfh cells retained plasticity.

Whether the memory T-cell multipotency depends on the plastic-
ity of these cells or whether these cells represent a heterogeneous
population remains unclear.

In humans, circulating Tfh (cTfh) cells found in the blood
stream represent a relatively easily accessible Tfh cell popula-
tion that shares characteristics with bona fide Tfh cells found in
secondary lymphoid organs [57]. It was shown that these cTfh
cells originate from GCs in LNs [71] and they may serve as cir-
culating memory cells that can be rapidly recruited to secondary
immune responses. Due to their lower expression of costimula-
tory molecules, such as ICOS and PD-1, which might be a conse-
quence of missing antigenic interactions in the blood, they dis-
play a resting state, and increased activated cTfh cells can be
detected after infections and vaccinations [59, 72]. Another inter-
esting connection that still needs to be resolved is the appearance
of peripheral Tfh-like (pTfh) cells that have been described in
sero-positive rheumatoid arthritis patients [73] and in breast can-
cer patients [74]. These cells express many characteristics of Tfh
cells, including expression of PD-1 and ICOS and colocalization
with B cells, yet they lack expression of CXCR5. In the context of
Influenza infection, lung-resident memory T cells were described
to promote protective B-cell responses in a Bcl6-dependent fash-
ion in nonlymphoid organs in mice [75, 76]. These T cells are
CXCR5-negative and exhibit mixed features of Tfh cells and res-
ident memory T cells. They were named resident helper T cells
(TRH). It will be important in the future to study the function of
pTfh and TRH cells and their relationship to cTfh and bona fide
Tfh cells.

Tfh cells in SARS-CoV-2 infection and vaccination

Given the importance of humoral immunity for fighting infec-
tious pathogens, such as SARS-CoV-2, the current COVID-19 pan-
demic has sparked great interest in the role of Tfh cells in the
immune response to SARS-CoV-2 infection as well as their func-
tion in newly developed vaccines (Figure 2). Elevated frequen-
cies of activated Tfh cells were detected in the blood of nonsevere
COVID-19 patients [77] and in the LNs of SARS-CoV-2-infected
rhesus macaques [78]. High frequencies of activated cTfh cells
correlated with low disease severity in COVID-19 patients [79].

The Th1-polarizing conditions of a viral infection usually result
in the predominant generation of type-1 cTfh cells, such as in
influenza vaccination [59, 80], following the live-attenuated yel-
low fever vaccine [72], and in Hepatitis C Virus infection [81,
82]. A similar type-1 polarization with increased ICOS expres-
sion levels has also been observed during SARS-CoV-2 infection
in humans [83–87] and in rhesus macaques [78]. Importantly,
functional spike-specific CXCR5-positive memory cTfh cells and
CXCR5-negative T cells persisted for at least 6 months after symp-
tom onset [88, 89]. Even though Tfh cells were not analyzed,
a recent report suggested antigen-persistence in the gut driving
the evolution of anti-SARS-CoV-2 memory B cell and antibody
responses, which might involve Tfh cells as well [90].
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Figure 2. Impact of SARS-CoV-2 infection and vaccination on T follicular helper cell differentiation and function. Upon infection of the host with
SARS-CoV-2, virus antigens are taken up by dendritic cells, which process and present them on MHC-II to naïve CD4+ T cells and induce T follic-
ular helper (Tfh) cell differentiation toward type 1 polarization. Stronger Tfh1 cell polarization inversely correlates with COVID-19 severity. After
encounter of activated B cells at the T/B border, some Tfh cells further increase their expression of Bcl6, CXCR5, and PD-1, and form germinal centers
together with cognate B cells. Absence of GC structures has been reported in symptomatic patients with severe COVID-19 and may be connected
with an increase in cytotoxic Tfh cell frequencies. Importantly, persistence of SARS-CoV-2-specific memory Tfh cells has been demonstrated sev-
eral months after natural infection. mRNA vaccines encoding full-length SARS-CoV-2 spike protein promote efficient Tfh cell differentiation with
robust coproduction of IFN-γ and IL-4, GC formation, and protective humoral responses against SARS-CoV-2.

Single-cell RNA-seq analysis of COVID-19 patients identified
increased frequencies of Tfh cells with cytotoxic features and
decreased frequencies of regulatory T cells among SARS-CoV-2-
reactive CD4+ T cells of hospitalized patients [91]. These cyto-
toxic Tfh cells were particularly increased early on in hospital-
ized versus nonhospitalized patients and their presence inversely
correlated with levels of SARS-CoV-2 spike protein-specific anti-
bodies. Since cytotoxic Tfh cells have been described to directly
kill B cells and their frequency correlated with disease severity
in recurrent group A Streptococcus tonsillitis [92], it is plausible,
that cytotoxic Tfh cells also contribute to lower humoral activity
in severe COVID-19 patients. In this regard, it is interesting to
note that GCs were reported to be largely absent in postmortem
spleen and LNs of acutely infected SARS-CoV-2 patients, with a
block in Bcl6+ Tfh cells and a converse increase in Th1 cells [93].

Furthermore, reduced CXCR5 expression by B and T cells was
observed in moderate and severe COVID-19 patients, further indi-
cating that impaired T/B crosstalk may precipitate dysregulated
humoral immune responses [86, 94].

By comparing a SARS-CoV-2 mRNA vaccine that encoded the
receptor-binding domain (RBD) and the full-length spike pro-
tein of SARS-CoV-2 with a recombinant SARS-CoV-2 RBD (rRBD)
protein that was formulated with the MF59-like AddaVax adju-
vant, it was shown in mice, that the mRNA vaccine induced
more potent Tfh cell and GC responses characterized by stronger
CXCR5 and ICOS levels on Tfh cells. In addition, the mRNA vac-
cine led to robust coproduction of IFN-γ and IL-4, resembling a
combined Th1/Th2 polarization, which, in contrast to the Th2-
polarized Tfh cell response elicited by the rRBD protein vaccine,
translated into higher neutralizing antibody titers [95]. These
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data further support the efficacy of the first SARS-CoV-2 vaccines
in humans that have been authorized by the FDA under emer-
gency use authorization and that are also based on mRNA vac-
cine technology. It is anticipated that more in-depth analyses of
Tfh cells and GCs in COVID-19 patients will provide additional
insights into their critical role in anti-SARS-CoV-2 immunity and
vaccination.

Conclusions

Tfh cells are a critical component of potent humoral immune
responses. Therefore, future studies that aim at further dissect-
ing the identity and function of this unique CD4+ T cell popula-
tion will provide additional opportunities that may be leveraged
for improved vaccine design and for novel strategies in the treat-
ment of various diseases including autoimmunity.
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