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Abstract

Step length asymmetry (SLA) is common in most stroke survivors. Several studies have shown 

that factors such as paretic propulsion can explain between-subjects differences in SLA. However, 

whether the factors that account for between-subjects variance in SLA are consistent with those 

that account for within-subjects, stride-by-stride variance in SLA has not been determined. SLA 

direction is heterogeneous, and different impairments likely contribute to differences in SLA 

direction. Here, we identified common predictors between-subjects that explain within-subjects 

variance in SLA using sparse partial least squares regression (sPLSR). We determined whether the 

SLA predictors differ based on SLA direction and whether predictors obtained from within-

subjects analyses were the same as those obtained from between-subjects analyses. We found that 

for participants who walked with longer paretic steps paretic double support time, braking 

impulse, peak vertical ground reaction force, and peak plantarflexion moment explained 59% of 

the within-subjects variance in SLA. However the within-subjects variance accounted for by each 

individual predictor was less than 10%. Peak paretic plantarflexion moment accounted for 4% of 

the within-subjects variance and 42% of the between-subjects variance in SLA. In participants 

who walked with shorter paretic steps, paretic and non-paretic braking impulse explained 18% of 

the within-subjects variance in SLA. Conversely, paretic braking impulse explained 68% of the 

between-subjects variance in SLA, but the association between SLA and paretic braking impulse 

was in the opposite direction for within-subjects vs. between-subjects analyses. Thus, the 
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relationships that explain between-subjects variance might not account for within-subjects stride-

by-stride variance in SLA.
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I. INTRODUCTION

GAIT impairment is common in the majority of survivors of stroke. A common measure of 

gait impairment post-stroke is step length asymmetry (SLA). SLA is associated with 

increased cost of transport [1]–[3] and decreased balance [4], [5], making SLA reduction a 

common goal of clinical interventions [6], [7]. Studies assessing factors associated with SLA 

post-stroke rely on average measures obtained over multiple strides for each participant, and 

use techniques such as univariate correlation [8]–[10], analysis of variance [9], [11], [12], or 

linear regression [8], [13], [14] to understand factors that explain between-subjects 

differences in SLA. These studies have identified factors related to forward propulsion, such 

as paretic propulsion [10], [15], [16], plantarflexion moments [9], and trailing limb 

extension [17], as primary correlates of SLA. However, whether these between-subjects 

relationships hold at a within-subjects level remains to be determined.

SLA is highly heterogeneous. Some people walk with asymmetries characterized by longer 

paretic steps, others walk with asymmetries characterized by shorter paretic steps, and other 

individuals walk with nearly symmetric steps [1], [16]. Asymmetries characterized by longer 

paretic steps are thought to be related to decreased propulsion and limb extension when the 

paretic limb is trailing [8]–[11]. In contrast, asymmetries characterized by shorter paretic 

steps are thought to be related to deficits in paretic limb advancement [1]. However, no study 

has systematically identified the factors contributing to each type of step length asymmetry.

Laboratory-based gait analysis can return tens of variables, which can be difficult to 

synthesize to understand the contributors to gait asymmetry. For example, one can quantify 

spatiotemporal variables such as stance and swing times and step lengths. Additionally, 

researchers can measure ground reaction forces and joint-level kinematics to obtain joint 

level kinetics, which are measured continuously throughout the gait cycle [18], [19]. These 

continuous measures can be used to extract features for each step using peak values, ranges, 

or impulses. All of these variables are then typically averaged over several gait cycles, 

eliminating stride-by-stride variance. Researchers will then select a subset of variables to try 

and explain between-subjects differences in SLA [8], [9], [13]. Therefore, traditional 

approaches reduce available information when attempting to identify the factors that 

contribute to SLA by eliminating within-subjects variance using average metrics and 

reducing the number of variables included in the analyses [20].

Many gait variables are correlated due to the inherent coordination found in the gait pattern. 

In multivariate linear regression, predictors need to be independent of each other to avoid 

multicollinearity. Multicollinearity occurs when a predictor is highly correlated with the 

linear combination of the other predictors. Therefore, the predictor variables’ individual 
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effects on the response cannot be separated [21], making variable selection necessary when 

defining predictor variables. Variable selection [22] can be based on experimental 

hypotheses, which, while well-intentioned, can introduce biases because potentially 

meaningful predictors may be over-looked. Other techniques can reduce researcher bias in 

variable selection, using criteria such as the variance inflation factor (VIF) [23] or methods 

that shrink the estimated regression coefficients for a number of variables such as Ridge [24] 

or Lasso [25]. However, the resulting models obtained from these methods provide no 

insight into relationships between predictor variables. A combination of dimensionality 

reduction, to provide insights into relationships between variables, with linear regression to 

identify SLA predictors might inform on several correlated variables, which could be 

equally targeted in an intervention aimed to reduce SLA.

Here, we used sparse partial least square regression (sPLSR) [26]–[28], a technique that 

combines dimensionality reduction and Lasso variable selection, to determine which factors 

from a set of 20 variables collected for each lower extremity during gait analysis, can predict 

within-subjects variance in SLA in a sample of individuals with chronic stroke. Our goal 

was to determine: 1) if the predictors of SLA differ for individuals with asymmetries due to 

taking shorter paretic steps versus longer paretic steps [1], [8], [29], and 2) if the factors that 

predict within-subjects variance in SLA are consistent with those that predict group-level 

variance in SLA [9], [10], [15]–[17]. We hypothesized that for asymmetries characterized by 

longer paretic steps, SLA would be associated with variables that capture paretic support 

deficits such as paretic stance time and paretic vertical ground reaction force [1], [16]. For 

asymmetries characterized by shorter paretic steps, we hypothesized that SLA would be 

associated with kinematic deficits in paretic limb advancement during swing such as peak 

hip, knee, or ankle flexion angles [1], [16]. In agreement with previous literature [3], [9], 

[10], [15]–[17], we hypothesized that measures related to paretic propulsion would predict 

SLA independent of asymmetry direction. Our results will demonstrate how dimensionality 

reduction and regression to determine factors that explain within-subjects variance can 

provide a more complete understanding of within-subjects relationships between SLA and 

other biomechanical variables to inform novel, individualized intervention targets for 

rehabilitation of walking after stroke.

II. METHODS

A. Population

Data used in this study were collected from a convenience sample of individuals post-stroke 

(Table I) as part of a previous study [1]. We recruited individuals with chronic hemiparetic 

stroke from the Registry for Aging and Rehabilitation Evaluation (RARE) database at the 

University of Southern California. Study inclusion criteria were: (1) chronic hemiparesis 

(time since stroke >6 months) caused by a single stroke, (2) ability to walk on the treadmill 

continuously for 5 minutes, (3) ability to walk over ground independently or with use of a 

cane, (4) no concurrent neurological disorders or orthopedic conditions that interfered with 

their ability to walk, and (5) the ability for them or a guardian to provide informed consent. 

Exclusion criteria were inability to walk, clinical history of more than one stroke, or any 

orthopedic or neurological condition that prevented them from walking in the last year. All 
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procedures conformed to the principles set forth in the Declaration of Helsinki and were 

approved by the University of Southern California’s Institutional Review Board.

B. Experimental Protocol, Data Acquisition and Processing

All data collection took place at the Locomotor Control Lab at the University of Southern 

California. After obtaining informed consent, we assessed lower-extremity motor 

impairment using the lower-extremity portion of the Fugl-Meyer (FM) assessment [30]. We 

then assessed walking speed using the 6-minute walk test (6MWT). After clinical 

assessments, participants walked on an instrumented, dual belt treadmill (Fully Instrumented 

Treadmill, Bertec Corporation, OH) for a familiarization trial, where the speed of both belts 

was gradually adjusted using the staircase method [31] until participants achieved their 

comfortable walking speed, which they maintained for 3 minutes. After a break, participants 

completed a 5-minute walking trial on the treadmill, where we measured all gait variables of 

interest. During all treadmill trials, participants wore a harness to prevent falls without 

providing any body weight support. Participants were instructed to lightly touch a handrail 

placed in front of them to aid balance and prevent drift on the treadmill [1].

We recorded the position of reflective markers located bilaterally on the metatarsophalangeal 

joints, lateral malleoli, tibial lateral condyle, greater trochanters, and iliac crests at 100 Hz 

(Figure 1A) using a 10-camera Qualisys Oqus system (Qualisys AB, Goteborg, Sweden). 

We recorded ground reaction forces generated by each leg at 1000 Hz from force plates 

embedded in a dual belt treadmill. Since all participants walked at different speeds, they all 

took a different number of strides. Thus, we selected 50 strides collected during the five-

minute walking trial to provide an equal number of strides for each participant in our 

analysis. Strides were collected from the mid-portion of the trial by identifying the halfway 

stride and collecting the 25 strides prior to and after this mid-point.

We used a fourth-order low-pass digital Butterworth filter to smooth marker data using a 

cutoff frequency of 10 Hz. Step lengths were defined as the fore-aft distance between the 

lateral malleoli markers at the time of the respective limb’s initial contact [32]–[34]. Initial 

contact and lift-off were estimated from peak anterior and posterior excursions of the lateral 

malleoli, respectively [35]. We characterized step length asymmetry as the difference in non-

paretic (NP) minus paretic (P) step lengths (SL) in millimeters:

SLA = SLNP − SLP (1)

For each participant, we obtained the 95% confidence interval of their step length 

asymmetry. If this interval spanned zero, we excluded the participant from analyses because 

we would not be able to assign these individuals to either the longer paretic or shorter paretic 

group. If the 95% CI for SLA was less than zero, participants were categorized as walking 

with longer paretic steps. Otherwise, participants were categorized as walking with shorter 

paretic steps. We removed strides in the opposite direction from each participant if needed 

and then used the magnitude of step length asymmetry (|SLA|) in our subsequent analysis.
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To obtain temporal gait variables, we calculated stance, swing and double support times 

from marker data [35]. Swing time corresponds to the time between toe-off, which was 

estimated as the most posterior location of the ankle markers, to heel strike on the same side, 

which was estimated as the most anterior location of the ankle marker. Stance time 

corresponds to the time between initial contact and foot-off on the same side. Finally, double 

support time for a given limb corresponds to the time from contralateral initial contact to 

ipsilateral foot-off. We calculated sagittal plane joint angles using custom code written in 

MATLAB R2019b (Mathworks, Natick, MA). Joint angles and moments were expressed 

using the conventions defined in Winter [18]: the foot was defined as the segment between 

the 5th metatarsophalangeal joint and the lateral malleolus, the shank as the segment 

between the lateral malleolus and the lateral tibial epicondyle, the thigh as the segment 

between the lateral tibial epicondyle and the greater trochanter, and the pelvis as the segment 

between the greater trochanter and iliac crest. Ankle dorsi/plantar flexion angle was 

measured as the angle between the foot and shank. Knee flexion/extension was defined as 

the angle between the thigh and shank segments. Finally, the hip angle was defined as the 

angle between the thigh segment and the pelvis.

We low-pass filtered ground reaction forces at a cutoff frequency of 100 Hz and calculated 

braking and propulsive impulses for each gait cycle as the area under the curve of the 

negative and positive portion of the fore-aft ground reaction force, respectively. We 

estimated flexion/extension joint moments from ground reaction forces and joint kinematics 

using custom inverse dynamics code written in MATLAB and obtained the magnitude of 

peak flexion/extension moments for each stride and for each joint.

C. Statistical Analyses

1) Within-Subjects Analyses: We used sparse partial least squares regression (sPLSR) 

[26]–[28] to identify the factors that best predict within and between-subjects variance in |

SLA| from the 20 gait variables derived for each lower extremity (40 total, Table II). sPLSR 

is a technique commonly used in “omics” data [26], [28], [36], and chemometrics [27] and 

relates one or more response variables with a sparse set of predictors by regressing the 

response variables on a low-dimensional space derived from the full set of correlated 

candidate predictors. Similar to sparse principal component analysis (sPCA) [37], sPLSR 

derives a set of orthogonal latent variables whose elements are a sparse subset of the 

candidate predictors [26]. Unlike sPCA, which is an unsupervised method, the latent 

variables in sPLSR maximize the variance explained in a response variable, which we 

defined as SLA magnitude (|SLA|). Variable selection to obtain the sparse latent variables 

from the full set of candidate predictors is prescribed using a Lasso approach [25], which 

shrinks the regression coefficients of some predictors to zero during the singular value 

decomposition that returns the latent variables. sPLSR can also handle multilevel analysis to 

identify the predictors that best explain within-subjects variance in |SLA| by including a 

random intercept term in the model to account for between-subjects differences not captured 

by the predictor variables, such as walking speed and impairment.

We ran analyses separately in individuals who walked with longer paretic steps and shorter 

paretic steps. All analyses were run in RStudio with R version 3.6.1. sPLSR analyses used 
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the MixOmics package [36] version 3.11. Data for all participants in each group were 

combined into two N × 42 matrices with one column consisting of the response variable |

SLA|, another column consisting of the participant identifier and the remaining 40 columns 

consisting of the predictor variables listed in Table II. The number of rows N in each matrix 

was determined by the number of participants in each group (P) and the number of strides 

for each participant (S), such that N = P × S. Given that predictor variables include temporal, 

kinetic, and kinematic variables, which have different magnitudes, we scaled and centered 

all predictors across participants and expressed them as z-scores. We then used a multilevel 

sPLSR on the stride-by-stride dataset collected for participants who walked with longer 

paretic steps and shorter paretic steps separately to identify common fixed-effects that 

explained within-subjects variance in |SLA|. The response variable |SLA| was not z-scored to 

allow interpretation of regression coefficients, which should have units of millimeters.

sPLSR requires setting two free parameters: the number of latent variables to define the low-

dimensional space and the sparsity, defined as the number of non-zero predictors returned by 

the Lasso approach in each latent variable. We performed an exhaustive search of every 

combination of up to 10 latent variables with up to 10 non-zero predictors in each latent 

variable from the full set of 40 candidate predictors to obtain a low dimensional, sparse 

model that can be easily interpreted [38]. We used leave-one-out cross-validation (LOOCV) 

to identify the minimum mean square prediction error (MSPE) for all possible combinations 

of latent variables and non-zero predictors using custom-written code. We implemented 

LOOCV, leaving out one observation at a time and setting this observation as the test set 

while the remaining N − 1 observations constituted the training set. Then, we identified the 

most sparse model (fewest total predictors) with an MSPE within one standard error of 

model with the minimum MSPE [21]. We ran this analysis separately for each group. Using 

the resulting latent variables and predictors in each latent variable from this analysis, we 

identified the regression coefficients. We identified the variance accounted for (VAF) by 

each latent variable as the proportion of variance explained by each latent variable divided 

by the total variance in data.

2) Between-Subjects Analyses: We obtained averages across all strides for |SLA| and 

all predictor variables for each participant, as is traditionally done in gait studies. Using the 

average |SLA|, we split participants into those that walked with longer paretic and those that 

walked with shorter paretic steps. We z-scored all predictor variables and ran sPLSR 

analyses for participants who walked with longer paretic and participants who walked with 

shorter paretic steps separately. We included walking speed as one of the predictors in 

between-subjects analyses. We set the free parameters using the procedure described in 

section A but only allowing up to five latent variables with up to five predictors to avoid 

overfitting the data. We then compared whether the predictors of |SLA| obtained in within-

subjects analyses were consistent with those obtained in between-subjects analyses. We 

assessed model performance as in within-subjects analyses.

3) Validation: Some of the sPLSR models we identified had a single predictor in each 

latent variable. This is equivalent to a multivariate linear mixed model. Therefore, we 

implemented multivariate linear mixed-effects regression to determine whether we obtain 
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the same results as in sPLSR analyses. From the linear model, we can calculate the 

conditional coefficient of determination (R2), which is the variance accounted for by the 

linear combination of fixed and random effects. We also calculated a modified version of the 

marginal R2 which is the variance explained by the linear combination of fixed effects [39]. 

The sPLSR package does not return confidence intervals for the regression coefficients. Due 

to limitations in computational power, we were not able to perform bootstrap analyses of the 

regression coefficients using sPLSR. Therefore, we derived the 95% confidence intervals for 

the estimated regression coefficients from the linear mixed-effects models.

Our joint-level metrics were obtained from custom inverse dynamics code. Thus, we 

validated our results using our custom code to derive inverse dynamics and using data 

analyzed in Visual3D in nine subjects from a previous study [40]. Visual3D validation 

details are presented in the Appendix.

III. RESULTS

The final sample included in our analyses consisted of 19 individuals. Data for two 

participants were excluded as they walked with both positive and negative SLA, and their 

mean SLA did not differ from zero (Figure 1B). Eleven participants in our sample walked 

with SLA characterized by longer paretic steps and shorter non-paretic steps (Figure 1). In 

these 11 individuals, we accumulated a total of 542 strides, and in this sample, the 

distribution of |SLA| was right-skewed, with a median of 84 mm and an IQR of 75 mm.

Eight participants in our sample walked with SLA characterized by shorter paretic steps and 

longer non-paretic steps (Figure 1). In these individuals, we accumulated a total of 371 

strides, and |SLA| was normally distributed with an average magnitude of 71 ± 40 mm 

(mean ± SD).

A. Predictors of Within-Subjects Variance in SLA

1) Predictors of |SLA| for Asymmetries Characterized by Longer Paretic 
Steps: A model with five latent variables with one predictor each and a random effect term 

minimized the MSPE of |SLA| for participants who took longer paretic steps (Figure 2). No 

other models were within one standard error of the model with the minimum MSPE. Using 

the predictors identified in the sPLSR analyses, we ran a linear mixed model and obtained 

the same regression coefficients. From the linear mixed model, we calculated the marginal 

R2, which was 0.59. The variance accounted for both the fixed and random effects was 0.84, 

indicating that 25% of the variance in the model was accounted for by the random intercept. 

From sPLSR, we obtained the VAF by each individual latent variable composed of a single 

predictor: (from latent variable 1 to 5, Figure 2A–E, G and Table III) paretic double support 

time (VAF 7.2%, Figure 2A), paretic braking impulse (VAF 6.9%, Figure 2B), peak paretic 

vertical ground reaction force (VAF 7%, Figure 2C), peak non-paretic dorsiflexion moment 

(VAF 8.8%, Figure 2D), and peak paretic plantarflexion moment (VAF 3.8%, Figure 2E). 

Paretic double support time, peak paretic vertical ground reaction force, peak non-paretic 

dorsiflexion moment, and peak paretic plantarflexion moment were negatively associated 

with |SLA| such that larger values for each variable were associated with less asymmetry. 
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Paretic braking impulse was positively associated with |SLA| such that greater braking 

would be associated with greater asymmetry.

To determine whether the individual-specific differences in |SLA| accounted for by the 

random effect were due to differences in individual-specific walking speed or impairment 

measured via the FM score, we used a linear model with the random intercept as the 

response variable and speed and FM as predictors. The model’s F-statistic was 0.802, p-

value = 0.481.

2) Predictors of |SLA| for Asymmetries Characterized by Shorter Paretic 
Steps: A model with three latent variables and one predictor each was within one standard 

error of the model with the minimum MSPE of |SLA| (Figure 3). The model was also 

equivalent to a mixed effect model, with a marginal R2 of 0.19. The variance accounted for 

by both the fixed and random effects was 0.77, indicating that 58% of the variance in the 

model was accounted for by the random intercept. The predictors that made up each latent 

variable and the VAF derived from sPLSR (from latent variable 1 to 3, Figure 3A–C and 

Table III) were: non-paretic propulsive impulse (VAF 16%, Figure 3A), non-paretic braking 

impulse (VAF 6.5%, Figure 3B), and paretic braking impulse (VAF 5%, Figure 3C). Paretic 

braking impulse had the largest regression coefficient magnitude and was negatively 

associated with |SLA| (Figure 3C). Non-paretic braking impulse was positively associated 

with |SLA|. The regression coefficient for non-paretic propulsive impulse was not 

significantly different from zero.

The linear model to predict the random intercept as a function of speed and FM was not 

significant, with an F-statistic of 0.141, p-value = 0.871.

B. Predictors of Between-Subjects Variance in SLA

1) Predictors of |SLA| for Asymmetries Characterized by Longer Paretic 
Steps: Using a sPLSR model on average data for each participant to explain between-

subjects variance in |SLA|, we identified a model with peak paretic plantarflexion moment as 

a single predictor to be within one standard error of the model with the minimum MSPE. 

This is equivalent to a univariate linear regression model. When regressing | SLA| onto peak 

paretic plantarflexion moment, we obtained a model with an intercept of 97(95% CI[71, 

123], p = 3.09 × 10−5) and slope of −37.8(95% CI[−64.9, −10.7], p = 0.012) (Figure 4A). 

This indicates that participants with larger average peak paretic plantarflexion moments 

walked with less average |SLA|. The linear model had an R2 of 42%, compared to the VAF 

for peak paretic plantarflexion in sPLSR of 3.8% when assessing within-subjects variance 

(Figure 4B).

The sPLSR algorithm did not identify speed as a predictor of |SLA|. These results were 

verified in a linear model, where the estimated regression coefficient for speed did not differ 

from zero (p = 0.850).

2) Predictors of |SLA| for Asymmetries Characterized by Shorter Paretic 
Steps: A model with two latent variables and three predictors each was within one standard 

error of the model with the minimum MSPE for predicting between-subjects differences in |
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SLA| in the eight participants who walked with |SLA| characterized by shorter paretic steps 

(Figure 4C). Latent variable one was composed of paretic braking impulse, non-paretic 

propulsive paretic hip flexion moment, and peak non-paretic knee flexion. sPLSR did not 

identify speed as a predictor of |SLA|.

The sPLSR VAF by all latent variables summed up to 95% and is likely overfitting the data 

as this analysis is done with eight observations. To calculate the confidence intervals of the 

sPLSR model parameters, we created 1,0000 new samples by sampling participants with 

replacement and ran bootstrap analyses. The confidence intervals of all predictors, except for 

paretic braking, spanned zero, further evidencing that this model was over-fitting the data 

(Figure 4C).

To determine whether predictors that account for between-subjects variance in |SLA| 

similarly account for within-subjects variance, we used only paretic braking impulse in 

univariate regression (Figure 4C). When regressing |SLA| onto paretic braking impulse in a 

between-subjects analysis, we obtained a model with an adjusted R2 of 68% and a slope and 

intercept of 32 (95% CI[15, 49], p = 0.004) and 68 (95% CI[53, 85], p = 4.27 × 10−5), 

respectively. However, when regressing within-subjects |SLA| onto paretic braking impulse, 

we obtained a model with a slope and intercept of −9 (95% CI[−14, −5], p = 2.05 × 10−5) 

and 69 (95% CI[50, 88], p = 7.08 × 10−12), respectively. Since the slopes of the relationships 

between |SLA| and paretic braking impulse have opposite signs, this supports our conclusion 

that between-subjects associations might not hold for within-subjects analysis (Figure 4 C–

D).

IV. DISCUSSION

Step length asymmetry is a common, simple measure of gait impairment post-stroke [41], 

[42]. Researchers have consistently identified measures related to paretic propulsion [9], 

[10], [15]–[17] as a primary factor explaining between-subjects differences in |SLA|. Here, 

we used sPLSR to identify common factors across participants that account for within-

subjects variance in |SLA| from a set of 40 variables collected during gait analysis. We found 

that the factors that account for within-subjects variance in |SLA| depend on the direction of 

asymmetry. In individuals who walked with asymmetries characterized by longer paretic 

steps, variance in |SLA| was explained by paretic double support time, paretic braking 

impulse, peak vertical component of the paretic ground reaction force, peak paretic 

plantarflexion moment, and peak non-paretic dorsiflexion moment. In participants who 

walked with asymmetries characterized by shorter paretic steps, the resultant predictors of |

SLA| were paretic and non-paretic braking impulses. Therefore, the direction of SLA is a 

factor to consider in the design of rehabilitation interventions aimed at reducing interlimb 

asymmetry, given the influence of differing biomechanical impairments across asymmetry 

directions.

Traditionally, researchers will average individual strides to identify between-subjects 

associations among biomechanical variables. We wanted to determine whether these 

between-subjects relationships also hold within-subjects. Using sPLSR, we identified peak 

paretic plantarflexion moment as the single predictor of between-subjects variance in |SLA| 
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for participants who walked with longer paretic steps. Peak paretic plantarflexion moment 

had an R2 = 42%, comparable to previous studies that reported r = −0.785 [10]. In contrast, 

peak paretic plantarflexion moment only accounted for ~4% of the common within-subjects 

variance. This low variance accounted for indicates that the relationship between 

plantarflexion and SLA does not hold at a within-subjects for all participants. Similarly, in 

participants who walked with shorter paretic steps, between-subjects analyses showed that 

paretic braking impulse was positively associated with |SLA| with and R2 = 68%. In 

contrast, in within-subjects analyses, paretic braking impulse was negatively associated with 

|SLA| and accounted for 5% of the within-subjects variance. Therefore, group level, 

between-subjects relationships between |SLA| and biomechanical variables are not 

consistently observed at an individual, within-subjects level. These results support the idea 

that individual characterization of within-subjects variance might aid identify targets for 

walking interventions post-stroke.

We hypothesized that |SLA| would be negatively associated with paretic support and 

propulsion in people with |SLA| characterized by longer paretic steps. Our results partially 

support our experimental hypotheses. Specifically, the third latent variable was composed of 

peak vertical ground reaction force on the paretic extremity, a proxy for paretic support, and 

accounted for 7% of the common within-subjects variance in |SLA| with a negative 

association with |SLA|. This is consistent with the idea that participants take a shorter non-

paretic step due to decreased loading capacity during paretic stance. These results contrast 

previous studies that did not observe a between-subjects correlation between |SLA| and 

vertical ground reaction force asymmetry [29]. Note that in this previous study, the authors 

used a force asymmetry index, which is the ratio of paretic to non-paretic vertical ground 

reaction force. A plausible explanation for this discrepancy might be that the relationship 

between |SLA| and paretic support holds on a within-subjects level but not between-subjects, 

or that using an asymmetry ratio eliminates some of the common variance between |SLA| 

and the paretic ground reaction force.

We hypothesized that |SLA| would be negatively associated with paretic propulsion similar 

to what has been reported in the literature [9], [10], [15], [16]. However, our results indicate 

that paretic plantarflexion moment accounted for only ~4% of the within-subjects variance 

in |SLA|. The question is then, why have previous studies that targeted paretic propulsion 

using fast walking and functional electrical stimulation (FastFES) effectively reduced step 

length asymmetry post-stroke [3], [43]? It might be the case that targeting paretic propulsion 

is an effective strategy to reduce SLA in some individuals, while in others, it might lead to 

secondary effects in other variables that influence |SLA|, such as those identified here. It is 

also worth noting in the FastFES study, only 28/42 individuals reduced |SLA| after FastFES 

[3]. Analyzing within-subjects variance for an intervention of this type could potentially 

help researchers identify individuals who might respond most favorably to this type of 

treatment.

In participants who walked with longer paretic steps, we identified paretic braking impulse 

as a predictor of |SLA|, with a positive association between braking impulse and |SLA|. This 

relationship is consistent with our understanding of gait mechanics: bringing the paretic leg 

further forward results in a longer paretic step and an increase in the posteriorly directed 
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component of the ground reaction force [44], [45]. Braking can also be modulated by 

changing the center of pressure: if the paretic loading and orientation of the paretic limb is 

constant, but initial contact is achieved with the forefoot, the fore-aft component of the 

ground reaction force, and thus, braking would increase [46]. It is evident how stroke might 

lead to increased braking: decreased paretic dorsiflexion leads to initial contact occurring 

with the fore-foot or with a flat foot. Modulating how initial contact is achieved could 

contribute to reducing paretic braking without decreasing paretic step lengths. Excessive 

braking might also imply that in some post-stroke participants, gait is terminated at each 

paretic step [47] and might need to be restarted with each non-paretic step. Reducing paretic 

braking would allow non-paretic propulsion to be used not for gait initiation on each step, 

but to increase forward progression of the non-paretic limb during swing, further reducing 

step length asymmetry.

In participants who walked with longer paretic steps, paretic double support time comprised 

the first latent variable and was negatively associated with |SLA|. Here, we defined paretic 

double support as the period when the paretic extremity is trailing [48]. In people post-

stroke, double support time is longer on the paretic extremity because non-paretic heel strike 

occurs earlier in the gait cycle [48]. Based on the negative association between double 

support time and |SLA|, an increase in double support time would lead to reductions in |

SLA|. Our interpretation of this association is that increased double support time on the 

paretic extremity would result in an increase in paretic trailing limb angle. Thus, on the next 

paretic swing phase, since push-off occurred further behind the body, if the excursion of the 

paretic leg is constant, the paretic leg would land closer to the body, decreasing paretic step 

length and subsequently reducing asymmetry.

Finally, in participants who walked with longer paretic steps, a common predictor of within-

subjects variance in |SLA| was non-paretic dorsiflexion. Peak non-paretic dorsiflexor 

moment was negatively associated with |SLA|, and the asymmetry in this group is not only 

due to a longer paretic step but also a shorter non-paretic step. Thus, a short non-paretic step 

results in an initial contact closer to the body such that the tibialis is less stretched and 

cannot generate the eccentric contraction that produces the dorsiflexion moment during 

loading response. The muscle action of the pretibialis muscles contributes to shock 

absorption and the heel rocker responsible for limb progression [19]. Non-paretic 

dorsiflexion might not serve as a direct rehabilitation target, but might instead be a 

mechanical consequence of SLA.

In people with asymmetries characterized by shorter paretic steps, we hypothesized that |

SLA| would be associated with deficits in paretic limb advancement such as paretic ankle, 

knee, and hip flexion. Our results contrast our hypothesis as we identified paretic and non-

paretic braking impulse as the main predictors of |SLA|. Few studies have assessed the role 

of braking during locomotion in people post-stroke [45], and associations between |SLA| and 

paretic braking have not been reported in the literature to the best of our knowledge. Here, 

for participants who walked with shorter paretic steps, paretic braking impulse was 

negatively associated with |SLA|. Since shorter paretic steps are associated with increased |

SLA| in this group, we would expect paretic braking impulse to increase as they take longer 

paretic steps to reduce |SLA|. In contrast, non-paretic braking was positively associated with 
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|SLA|. Thus, a potential approach for reducing |SLA| could be to reduce non-paretic braking 

using strategies such as biofeedback of trunk advancement over the non-paretic leg [45], 

previously shown to be associated with braking.

Overall, each predictor in the sPLSR models accounted for less than 10% of |SLA| variance. 

There are multiple reasons for the low variance explained by individual predictors. First, 

sPLSR identifies common predictors that explain within-subjects variance in SLA, but the 

model cannot account for between-individual differences in the associations between SLA 

and the candidate predictors. A careful review of Fig. 3 highlights this point: for example, 

participant 14 shows little variance in peak paretic plantarflexion moment while spanning 

the entire range of |SLA| values, whereas participant 21 shows a negative association 

between peak paretic plantarflexion moment and |SLA|. This indicates that the relationships 

between SLA and biomechanical variables may differ in a subject specific manner. To 

quantify subject-specific relationships between variables, we would require a model with 

different predictors for each participant. A final reason why our models accounted for less 

variability than previous studies [3], [9], [10], [15]–[17], is that these studies use individual 

averages which remove the noise present in the within-subject data, resulting in between 

subjects analyses with a higher variance explained. Our results suggest that there are 

individual-specific correlates of SLA that are not accounted for in between subject analyses, 

or even in within-subject analyses that combine hierarchical, dimensionality-reduction and 

regression methods as implemented here.

In participants who walked with longer paretic steps, the marginal R2 was 59%, whereas in 

participants who walked with shorter paretic steps the marginal R2 was only 19%. This 

indicates that in individuals who walk with shorter paretic steps, there are additional within-

subjects differences not accounted for by the biomechanical variables included here, and 

could be related to impairments in the underlying neuromuscular control, such as muscle 

weakness or co-contraction. This might explain why in our previous study, individuals who 

took shorter paretic steps had decreased capacity to reduce asymmetry [1]. Further 

biomechanical assessment of these participants could aid in the identification of targets that 

are specific to people who walk with shorter paretic steps.

We explored whether differences in the factors that explained within subject variance in |

SLA| were due to inter-individual differences in walking speed and impairment. We found 

no relationship between the random intercept and walking speed or FM, indicating that |

SLA| differences between participants were not due to individual differences in walking 

speed or impairment measured using the FM score. In the between-subjects analyses, speed 

was not identified as a predictor either by the sPLSR algorithm or during validation via 

linear models. Therefore, while walking speed and the degree of impairment can influence 

the magnitude of the biomechanical variables used as predictors of SLA, we found no 

association between |SLA| and walking speed or impairment. Whether the predictors of |

SLA| would differ when grouping individuals based on walking speed remains to be 

determined.

There are a number of additional considerations that could guide our future work. First, we 

used peak values over the entire gait cycle as the primary features of our joint kinematic and 
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kinetic data. Previous studies have subdivided the gait cycle into distinct functional phases 

[19] and then obtained peak values in these phases [9], [11]. The peak values obtained here 

might have occurred at any point during the gait cycle and might not occur during the gait 

phases where specific kinetics and kinematics are functionally needed to accomplish the 

objectives of each phase of the gait cycle. Thus, the relationship between |SLA| and peak 

values during functional phases remains to be investigated. In some participants such as 

participant 15, 16 and 18, there was little variance in SLA, hindering identification of 

predictors of SLA. Future work could include conditions in which individuals modify their 

SLA or walk at different speeds to increase variance in the predictor and response variables. 

Finally, we did not include EMG measures as part of data acquisition but this would be 

important to consider in future studies interested in muscle-level contributions to gait 

deviations post-stroke.

V. CONCLUSION

Using combined dimensionality reduction, sparsity and regression, we found that the factors 

that account for within-subjects variance in |SLA| are not consistent with those that account 

for between-subjects variance in SLA and these predictors depend on the direction of 

asymmetry. Overall, these results point to the need for developing approaches that take 

advantage of within-subjects variance, to identify personalized intervention targets for gait 

retraining.
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Fig. 1. 
Characterization of SLA. A) Participants in our study walked with longer steps with their 

paretic extremity (left) or with shorter steps with their paretic extremity (right). Location of 

motion capture markers are indicated in the figure, as well as conventions for measuring 

joint kinematics (q for ankle, knee and hip). P: paretic. NP: non-paretic Arrowheads indicate 

direction of positive rotation. B) Distribution of SLA observed across participants. 

Participants whose 95% CI for SLA included zero were excluded from analyses to ease 

interpretation.
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Fig. 2. 
Predictors of |SLA| for participants who walked with longer steps with their paretic leg. A-

E) Conditional regression plots. These plots illustrate the relationship between the expected 

value for |SLA| when changing the predictor in the x-axis. All other fixed effects are 

maintained constant at their median value. Note that the figures show combined data for all 

participants. F) Random intercept and 95% CI for each participant. G) Estimated regression 

coefficients for each of the five predictors derived from sPLSR analyses and verified using 

linear mixed effects model. Error bars are 95% confidence intervals derived from linear 
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mixed effects models described in the Appendix. LV: latent variable. VAF: variance 

accounted for. DST: double support time.Imp: impulse. Vert: vertical. GRF: ground reaction 

force. DF: dorsiflexion. PF: plantarflexion.
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Fig. 3. 
Predictors of |SLA| for participants who walked with shorter steps with their paretic leg. A-

C) Conditional regression plots as in Figure 2. D) Random intercept and 95% CI for each 

participant. E) Estimated regression coefficients for each of the three predictors derived from 

sPLSR analyses and verified using linear mixed effects model. Error bars are 95% 

confidence intervals. LV: latent variable. VAF: variance accounted for. Prop: propulsion.
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Fig. 4. 
Between-subjects vs. within-subjects relationships between |SLA| and biomechanical 

variables. A) Between-subjects relationship between |SLA| and peak paretic plantarflexion 

moment in individuals who walked with longer steps with their paretic extremity. B) Within-

subjects relationship between |SLA| and peak paretic plantarflexion moment in individuals 

who walked with longer steps with their paretic extremity. |SLA| was adjusted using each 

individual’s random intercept. C) Regression coefficients for the model with two latent 

variables and three predictors that explains between-subjects variance in |SLA|. D) Between-
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subjects relationship between |SLA| and paretic braking impulse in individuals who walked 

with longer steps with their paretic extremity. E) Within-subjects relationship between |SLA| 

and paretic braking impulse in individuals who walked with shorter steps with their paretic 

extremity. |SLA| was adjusted using each individual’s random intercept.
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TABLE II

PREDICTOR VARIABLES

Domain Variable Units

Temporal
Stance

s
Swing

Double support

Peak ankle dorsiflexion

Peak ankle plantarflexion

Kinematic
Peak knee flexion

Degrees
Peak knee extension

Peak hip flexion

Peak hip extension

Peak braking force

Peak propulsive force
N/kg

Ground Kinetics Peak vertical ground reaction force

Braking impulse
N*s/kg

Propulsive impulse

Peak ankle dorsiflexion

Peak ankle plantarflexion

Joint Moments
Peak knee flexion

N*m/kg
Peak knee extension

Peak hip flexion

Peak hip extension

The variables above were used in the sPLSR model as predictor variables. Values were measured for the paretic and non-paretic extremities. Units 
are shown for reference.
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TABLE III

FIXED EFFECTS ESTIMATED COEFFICIENTS

Estimate 95% CI P-Value

Longer Paretic Steps

Intercept 97.218 [66.82, 127.62] 6.95×10−10

Paretic double support time −32.268 [−36.85, −27.69] 1.87×10−37

Vertical ground reaction force −8.277 [−11.65, −4.90] 1.85×10−6

Paretic braking impulse 22.072 [17.46, 26.69] 1.65×10−19

Non-paretic dorsiflexion moment −3.989 [−6.64, −1.33] 0.003

Paretic plantarflexion moment −17.182 [−22.77, −11.59] 2.91×10−9

Shorter Paretic Steps

Intercept 69.469 [47.683, 91.081] 2.23×10−10

Paretic braking impulse −8.429 [−13.272, 3.233] 1.19×10−5

Non-paretic braking impulse 6.395 [3.9601, 10.682] 0.0008

Non-paretic propulsive impulse −1.338 [−3.68, 1.106] 0.263

Fixed effects in the mixed effect model used to predict within-subject |SLA|.
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