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Abstract

The genus Rotavirus comprises eight species, designated A to H, and two recently identified

tentative species I in dogs and J in bats. Species Rotavirus A, B, C and H (RVA, RVB, RVC

and RVH) have been detected in humans and animals. While human and animal RVA are

well characterized and defined, complete porcine genome sequences in the GenBank are

limited compared to human strains. Here, we used a metagenomic approach to sequence

the 11 segments of RVA, RVC and RVH strains from piglets in the United States (US) and

explore the evolutionary relations of these RV species. Metagenomics identified Astroviri-

dae, Picornaviridae, Caliciviridae, Coronoviridae in samples MN9.65 and OK5.68 while

Picobirnaviridae and Arteriviridae were only identified in sample OK5.68. Whole genome

sequencing and phylogenetic analyses identified multiple genotypes with the RVA of strain

MN9.65 and OK5.68, with the genome constellation of G5/G9-P[7]/P[13]-I5/I5- R1/R1-C1-

M1-A8-N1-T7-E1/E1-H1 and G5/G9-P[6]/P[7]-I5-R1/R1-C1-M1-A8-N1-T1/T7-E1/E1-H1,

respectively. The RVA strains had a complex evolutionary relationship with other mamma-

lian strains. The RVC strain OK5.68 had a genome constellation of G9-P[6]-I1-R1-C5-M6-

A5-N1-T1-E1-H1, and shared an evolutionary relationship with porcine strains from the US.

The RVH strains MN9.65 and OK5.68 had the genome constellation of G5-P1-I1-R1-C1-

M1-A5-N1-T1-E4-H1 and G5-P1-I1-R1-C1-M1-A5-N1-T1-E1-H1, indicating multiple RVH

genome constellations are circulating in the US. These findings allow us to understand the

complexity of the enteric virome, develop improved screening methods for RVC and RVH

strains, facilitate expanded rotavirus surveillance in pigs, and increase our understanding of

the origin and evolution of rotavirus species.
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Introduction

Newborn piglets are susceptible to infections caused by numerous enteric microorganisms [1,

2]. Porcine rotavirus, discovered in 1970 [3], is a known enteropathogenic viruses associated

with clinical diarrhea in a variety of animals, including humans. Belonging to the Reoviridae
family, rotaviruses (RVs) have an approximate 18.5kb segmented, double-stranded RNA

(dsRNA) genome in a non-enveloped, triple-layered icosahedral capsids [4]. The 11 dsRNA

segments of the genome are distinguished by electrophoresis migration patterns in polyacryl-

amide gel electrophoresis (PAGE) and silver nitrate staining [5]. The viral genome encodes six

structural (VP1-VP4, VP6 and VP7) and five or six nonstructural (NSP1-NSP5, and some-

times NSP6) proteins [4]. RVs are classified into eight species (A–H) based on antigenic

properties and sequence based classification of the inner viral capsid protein VP6 [6]. A ninth

group, RV group I in canine, in Hungary [7] and a tenth, RV group J in bats, in Serbia [8] have

been identified and both proposed as rotavirus species. Reassortment between RV species has

yet to be identified in nature.

Four of the ten RV groups (RVA, RVB, RVC, and RVH) have been detected in humans and

pigs [4, 9], leading to the question of zoonotic transmission. RVA is the most prevalent and

pathogenetic of the RV species. RVA was the leading cause of severe diarrhea among children

until the human vaccines became available (Rotarix1 and RotaTeq1) [10–12]. Porcine RVA

was isolated in 1975 [3] and are well known for their high prevalence and pathogenesis in pigs

worldwide [13]. Reassortments between human and porcine strains have been well docu-

mented, and the Wa-like human backbone constellation shares a common ancestor with por-

cine [14, 15]. Due to the diversity of RVA strains, a binomial classification system is based

upon serotype/genotype specificities and the sequence diversity of the two viral outer proteins,

VP7 (glycosylated, G-genotype) and VP4 (protease-sensitive, P-genotype) [4]. To date, 36 G

and 51 P RVA genotypes have been detected in animals, including humans, (https://rega.

kuleuven.be/cev/viralmetagenomics/virus-classification/newgenotypes). Extension of the orig-

inal VP7 and VP4 genotyping system created genome constellations with the complete

description of Gx-P[x]-Ix-Rx-Cx-Mx-Ax-Nx-Tx-Ex-Hx, representing the genotypes of the

genes VP7-VP4-VP6-VP1-VP2-VP3-NSP1-NSP2-NSP3-NSP4-NSP5/6, respectively, with x

indicating the numbers of corresponding genotypes [16], and provisional whole-genome con-

stellations have been established for RVB, RVC, and RVH [17–19].

Initially named pararotavirus, RVC was first detected in 1980 from a 27-day old piglet with

diarrhea in Ohio [20, 21] and has been identified in cattle [22, 23], dogs [24], ferrets [25], mink

[26], and in humans, mainly seen in children under age 3 years old [27, 28]. Identified as a

major cause of disease in neonatal pigs [29], RVC has been detected in North and South Amer-

ica, Europe, and Asia [30–35]. Recently, the number of porcine RVC genomes have greatly

increased and illustrate a higher genetic diversity of porcine RVCs compared to the other host

species [36]. Generally, the RVC genotypes are host specific (bovine, canine, human, and por-

cine), excluding the VP6 and VP3 in which human and porcine strains share evolutionary rela-

tionship [36–38]. Originally, RVH was identified in humans from China and referred to as

“adult diarrhea rotavirus” [ADRV-N] [39, 40] but later identified as RVH, based on serological

and VP6 sequence analyses [6]. Subsequently, RVH has been detected in bats from Cameroon

[41] and in pigs from Japan [9], Brazil [42], the United States (US) [43], and South Africa [44].

Infections with multiple RV species is common in swine. Studies have shown that infec-

tion with mixed RV species can intensify the severity of diarrhea in piglets [45, 46]. RVs

cause direct economic losses to the pig industry, as neonatal diarrhea increases the morbid-

ity and mortality rate, worldwide [47]. Next generation sequencing (NGS) is commonly

used to generate viral genomes to understand the genotypic, evolutionary, and
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epidemiological relationship of multiple emerging and re-emerging porcine viruses [48–

50]. We recently reported the nearly full-length RVH genome of strain RVH/Pig/wt/USA/

MN9.65/2008/GxP[x] (MN9.65) from a pig in Minnesota, US [51]. In this follow-up study,

we utilized the unbiased nature of viral metagenomics and the brute force of deep sequenc-

ing to examine the enteric virome of MN9.65 and another pig from Oklahoma (OK5.68)

using next generation sequencing and report in-depth genetic relationship of RVA, RVC,

and RVH, due to their recent emergence in swine.

Materials and methods

A previous study identified RVH in 15% of piglet fecal samples [43]. Two positive samples,

one each from Minnesota and Oklahoma (MN9.65 and OK5.68, respectively) were selected for

metagenomics sequencing and sent to the Centers for Disease Control and Prevention (CDC).

A previously described viral metagenomics approach was used to enrich and sequence viral

nucleic acids [52]. Viral nucleic acid was amplified using a previously published sequence-

independent, single-primer amplification (SISPA) protocol [52]. Amplicons were visualized

on a TapeStation (Agilent Technologies, Santa Clara, CA), purified, and used for the NEBNext

Ultra DNA Library Preparation Kit. The library was sequenced using the Illumina HiSeq plat-

form with Rapid SBS Kit V2 (200 cycle).

Reads were analyzed using an in-house bioinformatics pipeline at the Division of Viral Dis-

eases of the CDC [52–54]. After the virome analysis identified the viral taxa, in-depth manual

analysis was performed using Geneious version 9.1.7 (Biomatters, Auckland, NZ) to generate

the 11 RV segments.

Genotype and phylogenetic analysis

Each RV gene segment was classified into genotypes based on previously described classifi-

cations [14, 17, 19]. Genotype specific sequence were downloaded from GenBank. Align-

ments were created using the CLUSTALW method in MEGA7 [55]. Genetic distances were

calculated using the Kimura two-parameter correction at the nucleotide level using MEGA

7 [55]. Genotype specific phylogenetic trees were conducted using the Maximum Likeli-

hood method with the General Time-Reversible nucleotide substitution model with 500

bootstrap replicates. For the RVA phylogenetic trees, preliminary trees were constructed,

and clades lacking evolutionary relationship were removed to construct the final RVA trees

illustrated in the manuscript.

GenBank accession numbers

The 11 complete genome segments for RVA, RVC, and RVH strains from OK5.68 and the

RVA from MN9.58 were deposited in GenBank while the previous RVH submission from

MN9.58 was updated (Table 1).

Table 1. Genome constellation and GenBank accession number for each RV strain.

Strain Name VP7 VP4 VP6 VP1 VP2 VP3 NSP1 NSP2 NSP3 NSP4 NSP5 Accession Numbers

RVA/Pig-wt/USA/MN9.65 /2008/G5/G9P[7]/[13] G5/G9 P[7]/P[13] I5/I5 R1/R1 C1 M1 A8 N1 T7 E1/E1 H1 MH267269-MH267284

RVA/Pig-wt/USA/OK5.68 /2008/G5/G9P[6]/[7] G5/G9 P[6]/P[7] I5 R1/R1 C1 M1 A8 N1 T1/T7 E1/E1 H1 MH308715-MH308731

RVC/Pig-wt/USA/OK5.68 /2008/G9P[6] G9 P[6] I1 R1 C5 M6 A5 N1 T1 E1 H1 MH282885-MH282895

RVH/Pig-wt/USA/MN9.65/2008/G5P[1] G5 P1 I1 R1 C1 M1 A5 N1 T1 E4 H1 KU254582-KU254592

RVH/Pig-wt/USA/OK5.68 /2008/G5P[1] G5 P1 I1 R1 C1 M1 A5 N1 T1 E1 H1 MH230116-MH230126

https://doi.org/10.1371/journal.pone.0244498.t001

PLOS ONE Co-infection of Rotavirus A, C, and H in Piglets

PLOS ONE | https://doi.org/10.1371/journal.pone.0244498 December 29, 2020 3 / 13

https://doi.org/10.1371/journal.pone.0244498.t001
https://doi.org/10.1371/journal.pone.0244498


Results

Samples were retrieved from young domesticated piglets with clinical signs of diarrhea, cough-

ing and failure to thrive, during a study carried out by the University of Minnesota Veterinary

Diagnostic Laboratory, US [43, 56]. The intestinal homogenates were sent to the Centers for

Disease Control and Prevention (CDC) in Atlanta to generate the whole RVH genome. Using

NGS, the viromes of the MN9.65 and OK5.68 were obtained, which generated 29,687,276 and

39,061,428 reads for MN9.65 and OK5.68, respectively, following quality trimming and filter-

ing by our NGS analysis pipeline. While 21.76% and 23.05% of the reads from MN9.65 and

OK5.68 were non-viral reads, 78.24% and 76.95% viral reads were generated, respectively. We

also detected non-rotavirus viral pathogens, including Astroviridae (21.54% and 39.33%),

Picornaviridae (4.93% and 33.23%), Caliciviridae (1.17% and 0.43%), Coronoviridae (0.13%

and 1.21%) in MN9.65 and OK5.68, respectively. Additionally, Arteriviridae (0.14%) and Pico-
birnaviridae (0.02%) were observed in sample OK5.68. The in-depth virome analysis con-

firmed dual infection of RVA and RVH in sample MN9.65 and triple mixed infection of RVA,

RVC and RVH in sample OK5.68. A majority of the reads (50.46%) in sample MN9.65 were

Reoviridae and only 2.61% for OK5.68. Of the Reoviridae reads, the minor agent RVH

accounted for 3.69% of the reads from MN9.65 and 21.69% from OK5.68. RVC only accounted

for 12.34% of the Reoviridae reads in OK5.68. The RVA and RVH full genomes were obtained

from MN9.65 and OK5.68 and RVC genome from OK5.68.

During the generation of the RVA gene segments for both samples, multiple sequences for

the VP7, VP4, VP6, VP1, and NSP1 were determined, suggesting coinfection of RVA strains.

The RVA strain MN9.65 contained two gene sequences in the VP7, VP4, VP6, VP1 and NSP4,

yielding a mixed genome constellation of G5/G9-P[7]/P[13]-I5/I5- R1/

R1-C1-M1-A8-N1-T7-E1/E1-H1 (Table 1). Also, the RVA strain OK5.68 contained two gene

sequences in the VP7, VP4, VP1, NSP3 and NSP4, yielding a mixed genome constellation of

G5/G9-P[6]/P[7]-I5-R1/R1-C1-M1-A8-N1-T1/T7-E1/E1-H1.

The two G5 strains shared a 93% nucleotide identity and clustered within different

branches of the phylogenetic tree and shared closer evolutionary relationship with porcine

strains from Asia, and North and South America (Fig 1). The two G9 strains shared a higher

nucleotide identity (98%) and clustered together within strains from Canada in the phyloge-

netic tree. Interestingly, the P[6] shared a common ancestor with a human strain from Nica-

ragua. The P[13] lacked evolutionary relationship with porcine strains from the North

America and shared a common ancestor with strains from Taiwan and Belgium. The P[7]

strains shared a 100% nucleotide percent identity and a common ancestor with a porcine

Korean strain. In the trees for the remaining gene segments, the evolutionary relationship is

complicated. For example, the VP6, NSP2, and NSP5 strains share a common ancestor with

porcine and human strains, 3 of the 4 VP1 strains share a common ancestor with simian

strain, and the VP3 and NSP3 strains share evolutionary relationship with bovine, human,

porcine, and simian strains.

Despite a very low percentages of RVC reads, the full-length nucleotide sequences for

each gene was obtained, and mixed genotypes were lacking in the sample maybe due to the

low number of RVC reads. Unlike RVA, in which the same genotype can be found within

multiple host species, the RVC genotypes are host specific, excluding the VP6 and VP3 [17].

Multiple porcine genotypes exist for each RVC gene segment, and OK5.68 had a genome

constellation of G9-P[6]-I1-R1-C5-M6-A5-N1-T1-E1-H1. The phylogenetic trees for each

gene segment illustrated a most recent common ancestor to RVC strains from the US (Fig

2). While seven of OK5.68’s gene segments shared evolutionary relationship with strains

from Oklahoma or Iowa, the VP7 and NSP1 genes was related to strains from Illinois and
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Fig 1. Phylogenetic trees of the RVA strains MN9.65 and OK5.68. The RVA strains from this study are represented

in bold. The strains from Asia, North America, South America, Europe, and Africa are colored in pink, blue, green,

purple, and orange, respectively.

https://doi.org/10.1371/journal.pone.0244498.g001
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Fig 2. Phylogenetic trees of the RVC strain OK5.68. The RVC strain from this study is represented in bold. The strains from

Asia, North America, and South America are colored pink, blue, and green, respectively.

https://doi.org/10.1371/journal.pone.0244498.g002
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Minnesota, respectively. The US strains also shared a close evolutionary relationship with

strains from Japan, and the VP4 gene from OK5.68 shared the closest evolutionary relation-

ship with the Japanese strains.

The provisional RVH genotype system identified host specific genotypes, and the human

and bat strains have their own genotype constellations as expected [17, 41]. The multiple por-

cine genotypes have been identified in all the gene segments, except for the NSP2. The RVH

genome constellation of MN9.65 and OK5.68 shared the same genome constellation of

G5-P1-I1-R1-C1-M1-A5-N1-T1-H1, excluding the NSP4 genotypes (Table 1). The MN9.65

strain had an E4 genotype while OK5.68 had an E1 genotype. Of the eleven phylogenetic trees,

our two RVH strains clustered together, illustrating distant evolution relationship from the

Japanese strains, in the VP7, VP4, VP3, and NSP2 phylogenetic trees (Fig 3). Nevertheless, our

RVH strains had evolutionary relation with the Japanese strain NGS-14 in the VP2, NSP1,

NSP3, NSP4, and NSP5 phylogenetic trees. In the VP1 tree, our RVH strains clustered with

Japanese strain NGS-18. These results indicate a complex evolutionary relationship for porcine

RVH strains from the US and Japan.

Fig 3. Phylogenetic trees of the RVH strains MN9.65 and OK5.68. The RVH strains from this study are represented in bold. The strains from Asia, North

America, South America, and Africa are colored pink, blue, green, and orange respectively.

https://doi.org/10.1371/journal.pone.0244498.g003
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Discussion

Diarrhea is a common cause of mortality in piglets from enteric pathogens and may be due to

a single agent, but concurrent infections are common [2]. Sequencing of the viral species in

the sample was only possible with the use of NGS, which also identified other viruses in the

samples [57]. Diagnostic methods, like polyacrylamide gel electrophoresis (PAGE) and

enzyme-linked immunosorbent assay (ELISA) are known to be less sensitive compared to

PCR and NGS. However, the vast diversity of the RV strains limits the detecting capacity of

PCR. NGS analysis allowed for the positive identification and classification of our RV strains,

in spite of the low viral load and the presence of mixed RV genotypes.

Morbidity and mortality associated with porcine RV infections varies depending on the

virus strain, pig age, immunity status, and other concurrent enteric viral infections [58]. Por-

cine RV infection causes an increase mortality rate of 3–20% [59]. The use of the RVA vaccine

to control and mitigate disease may have contributed a shift to RVC infections in neonatal pig-

lets [29, 56]. The increased diversity in RVA strains could be due to the use of a porcine RVA

vaccine in swine herds, the only federally approved vaccine incorporating G5 and G9 geno-

types, which were identified in our samples. The continuous use of modified live virus vaccine

in pigs may be directly contributing to the genetic diversity of RVAs via genetic reassortment

between vaccine strains and wild type strain [13]. Such genetic rearrangements could also lead

to the evolution of novel strains such as RVA G9 genotype. RVA G9 is a globally emerging

genotype affecting humans and pigs and likely originating from pigs [60]. The lack of vaccine

selective pressure and herd-immunity against the RVA G9 genotype probably explains its

rapid emergence and spread in the pig population.

Unlikely RVA, the number of whole RVC genome data is limited. However, over the past

few years, there has been an increased interest in human and porcine RVCs, and additional

whole genome sequences have been published, which help elucidate their zoonotic relation-

ship [17, 33, 35, 37, 61–67]. While a clade of VP3 segments of RVC strains from humans

shared a common ancestor with porcine strains, Bayesian analysis illustrated these human and

porcine strains diverged over a hundred years ago [36]. In the present study, only one

sequence was detected in each segment, indicating the simple infection of RVC in sample

OK5.68. In addition, our RVC strains shared the highest evolutionary relationship to US

strains and distant relationship with Japanese strains. The VP6 gene segment shared evolution-

ary relationship with Brazilian strains, indicating our RVC strain is evolving with the Ameri-

can strains rather than the Asian strains. The lack of mixed RVC genotypes in the samples

could either be due to the low RVC reads in the sample or due to the lack of RVC vaccine in

pigs. Unlike RVA, a RVC vaccine is not available because the RVC strains are fastidious to

grow in cell culture. The lack of vaccine selection pressure in RVCs might be the reason for

less genetic diversity in the porcine strains. The limited number of global porcine RVC

genomes hinders our knowledge on the evolutionary relationship of the internal gene seg-

ments. Additional porcine RVC sequences from Brazil and other countries would greatly elu-

cidate the evolutionary relationship of porcine RVC strains.

Even though, the RV species share similar structural characteristics (11 segments of dsRNA

and triple-layered capsid), pathogenesis and ability to cause disease is species specific. After

weaning, co-infections with multiple RV species are common [46, 50], and porcine RVH has

only been detected with RVA, RVB, or RVC, suggesting that porcine RVH is an opportunistic

agent [9, 43, 44]. In this study, piglet diarrheal samples displayed this phenomenon, being co-

infected with other RV species and other enteric viruses. In our phylogenetic analysis, both

RVH strains MN9.65 and OK5.68 belonged to porcine constellations suggesting a lack of zoo-

notic transmission between human and porcine RVH strains. Interestingly, our two RVH

PLOS ONE Co-infection of Rotavirus A, C, and H in Piglets

PLOS ONE | https://doi.org/10.1371/journal.pone.0244498 December 29, 2020 8 / 13

https://doi.org/10.1371/journal.pone.0244498


strains had different genome constellations, indicating multiple porcine RVH constellations

circulating within the US swine industry. However, additional sequencing of RVH strains

from the US is needed to determine the diversity of RVH constellations circulating in the US.

This study provides analysis of the 11 complete segment sequences of the rare porcine RVH

strains, and of RVA and RVC from the US. We fully assessed the viral diversity in both samples

and were able to determine the complexity associated with multiple co-infection, and the pres-

ence of several variants within the two RVA strains. The evolutionary relationship of the RVA

strains is complex while the RVC and RVH strains belong to porcine specific genotypes. The

availability of complete genome sequences will allow for the development of new methods for

RVC and RVH diagnosis and surveillance and determine the disease burden in pigs and

humans in the United States and globally.
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