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Information flow in finite flocks

J. Brown', T. Bossomaier? & L. Barnett?

We explore information flow in finite active matter flocks by simulating the canonical Vicsek model and
estimating the flow of information as a function of noise (the variability in the extent to which each
animal aligns with its neighbours). We show that the global transfer entropy for finite flocks not only
fails to peak near the phase transition, as demonstrated for the canonical 2D Ising model, but remains
constant from the transition throughout the entire ordered regime to very low noise values. This
provides a foundation for future study regarding information flow in more complex models and real-
world flocking data.

Recent experimental studies of animal flocks, fish"?, birds such as pigeons’ and starlings*, midges® and sheep®
have dramatically increased our understanding of flocking dynamics. A central theoretical issue is how the com-
munication range between flock members leads to global coordination of the flock. We thus measure information
flow within flocks using Transfer Entropy’ and Global Transfer Entropy®, where the former measures flow between
individual agents (stochastic processes) and the latter measures information flow from all agents to a single agent,
averaging over all target agents.

Studies of experimental flocks, such as starlings®!°, sheep®, fish!! and midges® lead to proposals'? that the flock
exists on the boundary between order and disorder—providing the ideal scenario for collective reaction to exter-
nal stimuli, with enough order to form collective behaviour without overwhelming inertia. A principal finding of
this paper is the surprising result that the information flow in the canonical Vicsek flocking model reaches a max-
imum around the time the flock becomes stable and remains high until very low noise, where noise represents the
uncertainty with which an agent aligns with its neighbours.

Real world flocks are active matter—systems far from equilibrium, which do not conserve momentum or
other dynamical quantities'® and there are now realistic models'*. But to make the computation of continuous
global tranfer entropy tractable's, we adopt the Vicsek model. With a huge amount of work existing for this
model, it could be considered the canonical model for flocking dynamics.

To analyse the long-term limit GTE of the minimalist Standard Vicsek Model (SVM)'® of collective motion'”!8
we developed a closed-form dimensional reduction, obtained by exploiting an approximate isometry in the SVM.
This approach has demonstrated continuously broken ergodicity' in the Mutual Information?, which diverges
as noise tends to zero. While not the object of interest in this study, we note—and discuss briefly in Sections 2
and 4—there are various issues surrounding the precise nature of the phase transition in the Vicsek model. In
ongoing work, we are studying the XY spin model, where the spins take continuous values, to which the Vicsek
Model converges at zero noise.

While the final closed-form expression for GTE (Eq. (9)) requires an isometry approximation, two technical
innovations (Egs. (6) and (7)) were needed to reduce computational requirements (without isometry): replacing
the multi-dimensional vector of interacting particles with a consensus vector; and exploiting the independence of
the noise, leading to the surprising result (Eq. (7)) that calculation of global information flow requires no meas-
urement of neighbouring particles.

While the claims of flocks at criticality>'? are related to speed fluctuations, of which the Vicsek model has
none, this study aims to lay a foundation for how GTE behaves in a continuous, active-matter system. Thus this
new behaviour may inform future studies on real-world flocks or other more sophisticated models, noting that
for the SVM maximum information flow occurs not just near the phase transition, but throughout the entire low
noise regime as well.

The Standard Vicsek Model

The SVM comprises a set of finite N point particles (labelledi = 1, ..., N) moving on a plane of linear extent L
with periodic boundary conditions (see Supplementary Material online for full details). Each particle moves with
constant speed v, and interacts only with neighbouring particles within a fixed radius . Positions x,(t) and head-
ings 6,(¢) are updated synchronously at discrete time intervals At = 1according to
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Xt 4+ A = X(1) + V(DAL (1)

Ot + At = ot) + wt) @

respectively, ,(t) is the average heading of all particles within the interaction radius, r;, of particle i (including
particle i itself), and w,(t) is white noise uniform on the interval[ —7/2, n/2] with intensity n € (0, 2x]. The aver-
age heading'®, which constructs the consensus vector, is ¢,(t) = arctan[{ sin(0(t))); ./{ cos(6(t))); ], where
(2);, = %E?’ z;6,(i, j)and 6,(i, j) is 1 if neighbour j is within the interaction radius, , of particle i, and 0 other-
wise; note that §,(i, i) = 1, so that z, is always included in the average. The velocity vector v, (t) is constructed
from the heading 6,(t) with constant speed v. Particle density p = N/L?*is fixed throughout at 0.25.

Considering the SVM as a steady-state statistical ensemble containing a finite number of particles®! with con-
trol parameter 7, we use capitals to indicate quantities sampled from the ensemble; in particular, ©; denotes the
heading of a particle sampled from the ensemble. Specifically, the ensemble is a distribution over the set of all
possible realisations of the steady state SVM, i.e., any particular realisation has an associated probability (of being
sampled), where a realisation here refers to a time series of particle locations and headings, with individual parti-
cles identified by an index i, and time by an index t. ©, is sampled by first sampling a realisation according to its
associated probability, choosing an arbitrary (as we are in the steady state) time stamp, ¢, and then finally sampling
a particle index, I = i uniformly from [1, N). Thus the sampled value o, is the heading of particle i at time ¢ in the
sampled realisation. Corresponding random variables (discussed below, i.e., ©',, efc.) are sampled in relation to ©,,
that is, e/, is the heading of the same particle in the same realisation as 0, but at time step ¢ + 1.

The ensemble comprises multiple realisations (see below), each of which comprises running the model forward
in time from random starting conditions for a fixed number of time steps. Each realisation is initialised in the high
noise (n = 2m) state, with particles distributed uniformly over the simulation plane with uniformly distributed
headings. Realisations are simulated for a number of lead-in time steps to allow the system to settle, before all parti-
cles and their interactions are captured for T time steps and added to the ensemble for noise 7. 7) is then reduced and
the process is repeated. It was found the lead-in time steps could be varied with respect to ), without impact, and so
10° time steps were used forn > 3.0, 5 x 10* time steps forn < 1.0and 2 x 10* time steps otherwise.

The full order parameter for the SVM ensemble is the 2D mean particle velocity vector M with magnitude
M € [0, 1] and heading ® € (0, 2n]. M = 1 iff all particles are aligned, while in the fully-disordered case
(n = 2m) we have M — 0 in the large-system limit N — oo. The ensemble variance

X = [(M?) — (MY]1? 3)

defines the susceptibility; a peak in  as a function of 7 is taken to locate an (approximate) phase transition®!.
Technically, this assumes the fluctuation-dissipation theorem?, which the SVM does not obey; however, the
quantity is widely used in studies of the SVM?!23:4,

The phase transition in the original SVM was thought to be second order, but this was disputed*** and it
transpired that seemingly minor details affect the nature of the transition: type of noise statistics?; forward versus
backward updating (especially at high particle velocities)*’; boundary conditions associated with density bands or
spin waves®®; and the cone of influence on each particle?*’. The issue appeared to be laid to rest, with the SVM
transition decided as second order for low velocities, and first order for high velocities?*!*2. However recent work
has provided a counter-balance, with further evidence for a first-order transition*. Consequently, we employ an
agnostic, pragmatic approach, utilising the original SVM model (backward updating, angular noise, periodic
boundary conditions and low density) over a range of velocities. Observation of the Binder cumulant* for these
regimes (not shown) indeed shows a sharp minimum—representative of a first order transition—only at high
velocity magnitudes (v = 2.00), consistent with?*.

The finite-size SVM exhibits behaviours®® akin to “continuously-broken ergodicity”?®. Over short observation
windows the SVM is confined to a comparatively small volume of phase space, thus breaking symmetry and ergo-
dicity. As the window increases, the SVM explores progressively larger volumes of phase space, until ergodicity is
restored, albeit requiring very long windows at low noise.

Thus the ensemble statistics are observation time-dependent®, giving two regimes—short-term and long-term
statistics. In the short-term regime, we collate statistics (with no ergodic assumptions, and thus only a single
realisation per ensemble) over ranges of observation sizes spanning several orders of magnitude, demonstrating
the effect of observation time. In the long-term limit, since ergodicity is unbroken, the time average of the GTE
will be equal to the ensemble average, and thus statistics can be measured from ensembles constructed of many
independent realisations—each with shorter observation windows—rather than the prohibitively long time spans
required for solitary realisations to traverse the entire phase space.

Global Transfer Entropy
The information flow between two continuous (in state; discrete in time) random processes, from v to X, is given
by the TE":

7—Y~>X = H(X/|X) - H(X/|X’ Y)) (4)

where X, Y are the process histories, and X is the updated state (i.e., a time lag of one). We truncate process histo-
ries to just the most recent state as in®. For a continuous random variable X, H(X) = ff Py (x)logp, (x)dx
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denotes differential entropy, which necessitates a continuous estimator'>**. GTE extends TE to measure informa-
tion flow from all particles to a single particle, and here is defined as the ensemble statistic

Ty =To 6, = H(O'|6)) — H(',|O) (5)

where I is uniform on the set of particle indices in the ensemble, ©', is the updated heading at time ¢t 4 1 of the
particle indicated by ©,, and ® = (0,, ..., 6) is the vector of all N particle headings at time step ¢ in the corre-
sponding realisation.

Since the update of a particle’s heading is mediated purely by the consensus heading, ®,, of its neighbours,
rather than the whole system, the GTE may be reduced to three dimensions, i.e., H(©’;|©) = H(6',|®,), giving:

Ty =Ty, .0, = H(O'|O) — H(O'/|®)), (6)

thus eliminating dimensionality issues surrounding © Specifically, using ® implies N-dimensional coordinates
used in the continuous entropy estimator, which subsequently utilises a max-norm distance metric in its estima-
tion to determine bounds for fixed radius searches. Using all particles increases the likelihood of a fixed radius
search of r = 7, i.e., all particles.

Noting that, for a single time step as used here, ¢, = [, + w;] for any particle i—where][...] denotes modulo
2, confining the result to (— 7, w]—and that noise w; is independent of ; we have just H(©',|®;) = H(Q2) where
Q2 is the noise.

Thus all measurement of particle neighbours is eliminated and Eq. (6) reduces to the two dimensional:

T3 = H(6//|©)) — H(Q). )

Finally, in the long term limit rotational symmetry remains approximately unbroken: that is, for any fixed
angle o, the joint distribution (0, + «, ..., ©y + «) is the same as the joint distribution (6, ..., ©y). Under
this isotropy approximation (see below), Eq. (7) reduces to a one-dimensional form in which only changes in
particle heading #; — 6, and noise 2 appear. Let p(6,, 6,) be the probability density function (pdf) of (©’;, ©)
(See Supplementary Material). Under the assumption of rotational symmetry we have:

1
0., 0,) = —q(6, — 0,),
p(0), 0,) 27Tq( ) — 0) (8)
where g(0) is the pdf of ©; — ©’,. Since the marginal distributions of ©; and ©’; are uniform on the unit circle in
the long-term (ergodic) limit, we obtain H(®',|0,) = H([®'; — ©,]) which reduces Eq. (7) to the novel
closed-form expression

Ty =H(6'; - 6,]) — H(Q), (9)

for the long-term GTE, where([ - - -] denotes the internal angle. Note thatatn = 27, H([©'; — ©,]) = H(Q) = log2~w
and thus 74/ vanishes at maximum noise, as expected. As noise decreases, the particles align more and more
strongly, so that the distributions of both ®’; — ©, and {2 become increasingly sharply peaked. Since these are both
differential entropies, they both diverge to —oo. The exact nature of the divergence—as well as the impact of the
reduction from Egs. (7)-(9) (Fig. 1)—is established in simulations discussed below.

The isotropy approximation arises because the SVM on a 2D plane with periodic boundary conditions— i.e.
a flat torus—is not in fact strictly isotropic. We tested its validity by repeating the long-term simulations while
randomly rotating the SVM frame of reference between each update, thus enforcing isotropy*. Negligible error
was introduced around the phase transition and at very low noise (see Supplementary Fig. SI1).

All entropies above are calculated using the continuous estimator developed in*” and extended to multiple
dimensions in**® as we previously used for calculating MI in*. Conditional entropies of the form H(X|Y) are
calculated using the identity H(X|Y) = H(X, Y) — H(Y), and the expanded estimators.

Results and Discussion
Figure 2 (left) shows the long-term GTE 7 LIT estimated in sample according to Eq. (9) for a range of particle
velocities. For v < 0.5 there is no peak in the GTE and forv > 0.5 peaks occur at or below (i.e., low noise regime)
the phase transition—identified as a peak in x as per Eq. (3) —with all GTE values approaching approximately
0.72 bits as noise tends to zero.

For short observation times, by contrast, 7,; and 72 estimated according to Eqgs. (6) and (7) respectively (and
with no isotropy assumption) do peak at the transition, rather than in the high noise regime as in the Ising
model?; see Figs. 1 and 2 (right).

Figure 1 shows the effect—or lack thereof—of eliminating the consensus vector measurement in Egs. (6) and
(7). The agreement between the two is extremely close, although Eq. (7) gives slightly better results for numerical
reasons.

Some flattening at low noise occurs, particularly for higher velocities. Here GTE does not converge to the
~0.72 bits observed in the 7%. The shorter the observation window, the nearer we are to ergodicity-breaking as
in the Ising Model® and thus GTE — 0 as 7 — 0. This is confirmed in Fig. 3 (left) which shows T%ng for a single
fixed velocity at observation window size varying over two orders of magnitude, along with the long-observation
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Figure 1. Long-term GTE 7 LIT (dotted, left) calculated according to Eq. (9) and short-term GTE T 2D (dark
lines, right) estimated according to Eq. (7) for a range of particle velocities for 0 < 7 < 27. System 51ze

N = 1000 particles, density p = 0.25 and velocities v as indicated. Simulation: Long-term ensembles
constructed from 20 realisations at observation time T' = 500 time steps each, under ergodic assumptions and
the isotropy approximation (see text), while short-term estimated over T = 5000 time steps (that is, with no
ergodic assumption) after relaxation to steady state, using a nearest-neighbour estimator (full simulation details
in Supplementary Material). Error bars at 1 s.e. (smaller than symbols) were constructed by 10 repetitions of the
experiment (i.e., 10 independent ensembles). Lines show susceptibility x (Eq. (3)).
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Figure 2. 7, as measured by the one-dimensional form (Eq. (9), circles), the three-dimensional form (Eq. (6),

crosses) andg the two-dimensional form (Eq. (7), squares) for v = 0.30. Error bars at 1s.e. constructed by 10
repetitions.

time limit 75/ As observation time increases, the GTE peak flattens and constant GTE in the ordered regime
starts to occur, approaching, as predicted, the long-observation time limit.

Finally, Fig. 3 (right) shows the effect of varymg the system size. For > 0.4, 'TZZ increases—converging to
T-I—as Nincreases. Below this however, 72 diverges further as N increases, reﬂectlng the reduced capacity of
the system to explore large volumes of the phase space. To get a deeper understanding of these results it is useful
to consider what is happening in terms of the flock structure. Near the transition, flocks are in flux, breaking apart
and reforming. Given this fluidity, a larger number of particles results in more sub-flocks, which consequently are
able to explore the phase space more efficiently, so that the GTE approaches 7 ;T . At near-zero noise levels, how-
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Figure3. 7 fq,D estimates according to Eq. (6) at fixed velocity v = 0.30 for: left) a range of observation times T
as indicated and right) varying N at T = 5000 time steps, along with the long-term 7~ ng of Eq. (9) as per Fig. 2
(left) in both plots. Other simulation details as for previous figures. Left: Note that the blue right triangle line
(N = 1000, T = 5000) and orange square line (N = 10000, T = 500) lie on top of each other and represent
constant NT. Right: Results for large systems (black lines) at low ) unavailable due to memory limitations in

estimation of GTE.

ever, flock stability predominates, with phase space exploration affected mostly by the flock’s random walk-like
behaviour (although it is still possible for flocks to break apart over time)*. The magnitude of the random walk is
inversely proportional to the number of interacting particles; i.e., as the number of interacting particles increases,
the mean of the consensus heading at ¢ + Ar more closely matches the mean at ¢. Due to the slower random walk,
the system explores less of the phase space—more closely approximating ergodicity-breaking—and hence
diverges from the long term limit 7". We also include significantly larger system sizes here, N = 4.8 x 10", 1.3 x 10%,
demonstrating consistent behaviour with the smaller systems.

Simulation establishes the nature of the aforementioned diverging entropies, showing convergence to ~0.72
bits asp — 0 (Fig. 2 (left)), but it is not immediately clear why this value in particular. Analysis of how particle
headings evolve over time (see Supplementary Material) reveals an approximate Gaussian distribution of heading
differences— i.e., Ao—as well as an approximately Gaussian distribution in the heading of the consensus vector—
relative to the appropriate particle—as noise tends to zero. From the heading update in Eq. (2) —with particular
note of the definition of 7% in Eq. (9) —we have:

0.t + At) e(t) + wlt), (2 revisited)
Ot + At) — 0(t) = o) + wt) — (1), (10)

which allows us to decompose A® into two independent distributions, defined by ¢,(t) — 6,(t) and w,(t). The
relative consensus heading, ;(t) — 6,(t), is approximately Gaussian with support approximately equal to ( — g, g .
By definition, noise wy(t) is uniform with support|— ;l, g . By the Central Limit Theorem®’, summing these two
distributions as per the RHS of Eq. (10), yields a truncated Gaussian with range [ —7, 1] and variance twice that of
the noise; i.e., org = 205. Empirical results match this, with oig = co where ¢ — 27 as ) — 0 (See

Supplementary Table S5).
Thus, closed form entropies for Gaussian and uniform distributions can be substituted into Eq. (9):

T{‘;ZT = %logZZWeaﬁe — logz,HZU(ZZ,

1 2mecold
= —log, 29’

2 1207
— Lo e

2 5 (11)

which tends to 0.7546~ bits asc — 27, in reasonable agreement—given the approximations involved—with the
value of 0.72 bits in simulation results given at the beginning of Section 4. shown in Fig. 2 (left) asn — 0.
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Figure 4. Snapshots from a single simulation demonstrating random walk of heading of high density bands ofa
flock w1th N= 1000 partlcles at high veloc1ty (v = 2.0). Snapshots taken at, from left to right, t = 23 x 10°,

24 x 10%,28 x 107,40 x 10%,47 x 10%,49 x 10°. Top row shows the state of the flock, while the bottom row
shows the two- dlmenswnal order parameter M—that is, mean particle velocity—for the previous 1000 time
steps going from blue (t — 1000) to red (). Distance from the center of the circle corresponds to the order
parameter magnitude M = |M|. Note that, as witnessed by the first two snapshots, the change in heading can be
rapid, with only 1000 time steps required for the band to precess 7/4 radians. Reprinted from?.

Above the phase transition however, the distribution of ®’; — ©, is no longer approximately Gaussian in
nature. As ) — 2m, A© becomes increasingly convolved with a uniform distribution before reaching uniformity
atn = 2m, leading to the steady decrease seen in 7 (Fig. 2) overn < n < 2.

Observation of the flocks at hlgher velocities show the appearance of dense travelling bands?’ as shown in
Fig. 4. Finite-size scaling analyses®! —showing good agreement with theory for susceptibility divergence at the
phase transition—also includes this phenomenon. While this could imply symmetry breaking—and therefore no
ergodicity, continuously broken or otherwise— Fig. 4 reveals that the high-density band orientation, as well as ®,
performs a random walk through angle space, thus not truly breaking ergodicity. Notwithstanding, the behaviour
of the GTE around the phase transition (i.e.,1.5 < 1 < 2.5) at higher velocities is indeed different to lower veloc-
ities (Fig. 2): higher velocities exhibit a peak in both the long- and short-term limits. The appearance of the trav-
elling bands shown in Fig. 4 coincides exactly with this noise/velocity regime, indicating that these bands could
be a source of information flow in the flock.

The flat GTE exhibited in the low noise regime is a result of the approximately Gaussian heading of particles
relative to their consensus vectors with variance proportional to noise. Although the continuous nature of the
SVM cannot be ruled out at this stage, it seems likely that a “discretised” SVM would display similar behaviour
with respect to consensus vectors and noise magnitude. In the case of the behaviour of the GTE for the contin-
uous equilibrium case, we note that the obvious contender for comparison—the classical XY model—features a
Berezinskii-Kosterlitz- Thouless (BKT) phase transition (at least in the 2D case)*!, which would seem to be of an
entirely different nature to the transition observed in the 2D SVM model.

Bialek et al.!® develop a spin-wave approximation for 3-dimensional flocks of starlings, parametrised from
real data to explore criticality in flocks. Using this spin-wave model, along with analysis in’, Bialek ef al. discuss
long-range order of the velocity (orientation) and speed fluctuations of the flock. At low noise, there is a sponta-
neous symmetry breaking of the continuous velocity fluctuations, leaving behind a Goldstone mode*?, wherein
there is no energy cost for birds to perform certain changes in flight, which manifests as infinite correlation
length'. Bialek et al. state, however, that there is no spontaneous symmetry breaking in relation to speed fluctu-
ations, therefore no related Goldstone mode; and hence that long-range order of the (speed fluctuations in the)
flock must be a consequence of criticality.

Since there are no speed fluctuations in the SVM, we cannot draw any direct conclusions here regarding criti-
cality in real-world flocks. However, our work provides a foundation for further comparative studies of informa-
tion flow as measured by the GTE in alternative models that do feature speed fluctuations, of particular interest is
whether of not these other models, such as the spin-wave model of Bialek et al. or the Inertial Spin Model (ISM)
of Cavagna et al.%, experience maximal GTE below the transition as seen here.

Information theoretic measures such as GTE can be considered measures of statistical dependency.
Specifically, GTE is a measure of the dependence on the previous state of the system, with 7 ; = 0iff X, condi-
tioned on its own past, is independent of Y. The behaviour shown here is that while 7 ; — 0 in the high noise
regime—as expected—it in fact remains constant to very low noise: a particle in a low noise flock is just as
dependent on its neighbours” headings as a particle in a flock near the transition. This could be interpreted as
another manifestation of continuously-broken ergodicity and the aforementioned Goldstone mode relating to the
orientation fluctuations: a particle is still dependent on its neighbours to follow the flock fluctuations about the
unit circle, noting that flock fluctuation magnitude is also dependent on observation window size.

Such an interpretation also addresses the differing behaviour to the low temperature Ising model which has no
such Goldstone mode. In the equilibrium Ising system below the transition temperature, ergodicity has truly
broken with vanishing likelihood of escaping the stable state as temperature decreases, and thus spins become
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increasingly independent of their neighbours (i.e., 7,; — 0). Furthermore, we have shown that unlike the Ising
model, the GTE of the SVM does not peak above the transition temperature.

The Ising model is both a discrete state and equilibrium model whereas the SVM has continuous self-propelled
particle velocities and is far-from-equilibrium. Thus it is difficult to determine which of these factors causes the
different GTE. Future studies, such as our aforementioned study of the XY model (a continuous system at equi-
librium), will address the cause of these differences. The present paper is concerned solely with flocking systems.

While the significant finding in behaviour of the GTE, maximal information flow from the transition through
to very low noise, has been demonstrated here for the SVM—which is far from the only flocking model, and in
fact lacks the speed fluctuations of more realistic models—it seems likely that varying behaviour in the ordered
regime will extend to many finite systems which exhibit continuously-broken ergodicity. For these systems, GTE
may vary dramatically, although the precise nature of the low noise behaviour is likely dependent on the specific
dynamics employed.
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