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Abstract: Background: Adenomyosis is a common gynecological disorder traditionally viewed as
“elusive”. Several excellent review papers have been published fairly recently on its pathogenesis, and
several theories have been proposed. However, the falsifiability, explanatory power, and predictivity
of these theories are often overlooked. Since adenomyosis can occur spontaneously in rodents and
many other species, the animal models may help us unveil the pathogenesis of adenomyosis. This
review critically tallies experimentally induced models published so far, with a particular focus
on their relevance to epidemiological findings, their possible mechanisms of action, and their ex-
planatory and predictive power. Methods: PubMed was exhaustively searched using the phrase
“adenomyosis and animal model”, “adenomyosis and experimental model”, “adenomyosis and
mouse”, and “adenomyosis and rat”, and the resultant papers were retrieved, carefully read, and the
resultant information distilled. All the retrieved papers were then reviewed in a narrative manner.
Results: Among all published animal models of adenomyosis, the mouse model of adenomyosis
induced by endometrial–myometrial interface disruption (EMID) seems to satisfy the requirements
of falsifiability and has the predictive capability and also Hill’s causality criteria. Other theories only
partially satisfy Hill’s criteria of causality. In particular, animal models of adenomyosis induced
by hyperestrogenism, hyperprolactinemia, or long-term exposure to progestogens without much
epidemiological documentation and adenomyosis is usually not the exclusive uterine pathology con-
sequent to those induction procedures. Regardless, uterine disruption appears to be a necessary but
not sufficient condition for causing adenomyosis. Conclusions: EMID is, however, unlikely the sole
cause for adenomyosis. Future studies, including animal studies, are warranted to understand how
and why in utero and/or prenatal exposure to elevated levels of estrogen or estrogenic compounds
increases the risk of developing adenomyosis in adulthood, to elucidate whether prolactin plays any
role in its pathogenesis, and to identify sufficient condition(s) that cause adenomyosis.

Keywords: adenomyosis; animal models; endometrial–myometrial interface disruption; falsifiability;
pathogenesis; predictivity

1. Introduction

Adenomyosis, defined as the invasion of the endometrium into the myometrium [1],
has been traditionally labeled an “elusive” disease [1,2] because, until the advent of imaging
technology, a diagnosis could only be made on a hysterectomy sample, thereby eluding
clinical scrutiny, since only advanced stages of the condition were investigated. Even today,
it is still viewed as “a riddle, wrapped in mystery, inside an enigma” [3].

“Elusive” also meant a lack of information on the incidence of its occurrence: in the
1990s, its frequency was estimated at between 10% and 80% of women of reproductive age
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undergoing hysterectomy [4]. Such a wide variation could not be explained by differences
in factors known to correlate with the incidence of adenomyosis; rather, it suggested that
adenomyosis was often over-diagnosed in surgical specimens and over-represented in
older parous or perimenopausal women.

This unsatisfactory situation changed dramatically when imaging technology, such as
ultrasonography and magnetic resonance, was applied to the study of the disease, allowing
a non-invasive diagnosis [5,6]. As a consequence of this development, work was intensified
on clinical aspects, showing that approximately one-third of women with adenomyosis
are asymptomatic [7]. In addition, it was found that in symptomatic patients, the disease
manifests itself with abnormal uterine bleeding, pelvic pain, infertility, and progressive
dysmenorrhea [8], impacting negatively on the quality of life of the afflicted woman [9].
Adenomyosis is also associated with pregnancy complications, such as increased risk of
spontaneous abortions, preterm delivery, and the need for cesarean sections [10,11]. Overall,
despite its apparent high prevalence, currently, its clinical management is still a challenge,
largely due to its poorly understood pathogenesis and pathophysiology [12].

The epidemiology of adenomyosis has also been investigated, and a few excellent
review articles have been published [13,14]. While several risk factors have been identified,
it seems that there are always conflicting results, due likely to the various biases in ade-
nomyosis epidemiological studies [14]. These risk factors include earlier age at menarche,
spontaneous abortion, induced abortion, evacuation, dilatation and curettage (D&C), and
other uterine surgeries [14].

In spite of promising advances, adenomyosis is, overall, an under-researched disease.
This can be seen from the number of PubMed-indexed papers on this disease, which is
approximately 3100, just a paltry one-tenth of those on endometriosis as of now (Figure 1A)
and less than 1% of those on breast cancer.

Despite this pathetical number of publications, there has been a steady and substantial
growth in PubMed-indexed papers on adenomyosis (Figure 1B). In fact, several excellent re-
view papers have been published fairly recently on the pathogenesis of the disease [15–22].

In this respect, to improve our understanding of the pathogenesis of adenomyosis,
over the years, many animal models have been reported. While adenomyosis can and do
occur spontaneously in rodents, such as CD-1 mice [23], SHN and SLN strains [24], GR/A
strain [24], C3H/He strain [24], and SMXA recombinant inbred mice [25], it also occurs
spontaneously in other species such as rhesus monkeys (Macaca mulatta) [26], cats [27],
dogs [28], baboons [29], and chimpanzees [30]. It also can be successfully induced in an ar-
ray of murine models via various procedures. These experimentally induced adenomyosis
models offer a consistent, reproducible, and controlled alternative to the spontaneous
models and, in many cases, are also much less time-consuming and more economical.
There are several excellent reviews on this topic [23,31,32].

In the present review, we first discuss what is known about the pathogenesis of adeno-
myosis; we then critically tally experimentally induced models that have been published
so far, with a particular focus on whether they meet the requirements of falsifiability and
predictive capability. After all, a good theory in biomedicine needs to satisfy at least
three requirements: falsifiability, explanatory power (i.e., it can explain most, if not all,
existing data), and predictive capability. Indeed, if a theory cannot be proven or refuted by
experimentation, it is akin to religion, and it would be in need of more theories. In addition,
it is not of much utility if it cannot make any useful predictions or serve as a guide for new
discoveries or devising novel therapeutics or preventive measures.

Since adenomyosis can also occur spontaneously in many animal species as in humans,
it is fair to assume that the mechanism of action in inducing adenomyosis in animals could
provide us with a much-needed insight into the pathogenesis of the disease. As such, the
resultant hypotheses/theories should be scrutinized by Hill’s criteria that were originally
used to gauge the credibility or strength of a causal relationship between disease and a
putative risk factor [33]. We also discuss the pros and cons of these models in the light of
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our current knowledge on pathogenesis and pathophysiology and, finally, identify existing
knowledge gaps in the pathogenesis of adenomyosis.
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Figure 1. (A) A comparison of the number of PubMed-indexed publications on breast cancer, prostate
cancer, ovarian cancer, cervical cancer, endometrial cancer, endometriosis, and adenomyosis (accessed
on 9 October 2021). The numbers listed on each bar are the exact numbers of publications. (B) The
numbers of PubMed-indexed publications on endometriosis and adenomyosis in the last 70 years
(1950–2020). The dashed curves are the fitted regression curves.

2. Methods

PubMed was exhaustively searched using the phrase “adenomyosis and animal
model”, “adenomyosis and experimental model”, “adenomyosis and mouse”, and “adeno-
myosis and rat”, and the resultant papers, in English and published from 1 January 1950 to
31 January 2022, were retrieved, carefully read, and the resultant information distilled. All
the retrieved papers were then reviewed in a narrative manner.
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3. Results
3.1. Pathogenetic Hypotheses and Theories

Currently, there are two widely accepted theories on the pathogenesis of adenomyosis,
namely, metaplasia and invagination [18,19,21]. The metaplasia theory postulates that
the endometrial cells in the muscular layer originate from the metaplasia of Müllerian
remnants or stem cells [16,34,35]. In contrast, the invagination theory stipulates that
the direct invasion of the endometrium to the muscle layer results from the process of
tissue injury and repair that leads to the formation of lesions [36–38]. One important
building block within the invagination theory hinges on the tissue injury and repair (TIAR)
hypothesis, proposed by Leyendecker and his associates [36,37]. Unfortunately, so far,
there have been no experimental data to support or refute either of the theories or the
TIAR hypothesis [39].

A somewhat related postulation regarding the pathogenesis of adenomyosis is the
stem cell hypothesis [16,34]. As recently summarized [40], three main types of endogenous
endometrial adult stem cells, namely, stromal, epithelial progenitor, and endothelial, have
been identified in the endometrium in addition to bone-marrow-derived stem cells. This
hypothesis posits that individual progenitor cells or stem cells, possibly bone marrow de-
rived, may disseminate locally or spread through the circulation to establish the initial focus
of adenomyotic lesions if deposited in the myometrium or the endometrial–myometrial
interface (EMI). This deposition may result from local trauma or injury since the injured
tissues are likely to cause aggregation of platelets, which may recruit the stem cells [41]
and induce hypoxia [42], increased estrogen production [43], and hypoxia-induced in-
flammation [44]. However, it is unclear as to why and how this injury—the apparent
primum movens—occurs. It is equally unclear how these recruited stem cells are turned
into endometrial epithelial and stromal cells that respond to hormonal fluctuations and
undergo cyclic bleeding and repair.

Some subtypes of adenomyosis are reported to be closely linked, in terms of both
biological characteristics and pathogenesis, with deep endometriosis [45–50], raising the
prospect that the adenomyotic lesions may originate from the neighboring deep endometri-
otic lesions. However, in the absence of any data delineating the phylogenetic relationship
between the adenomyotic and deep endometriotic lesions, it is equally plausible that the
deep endometriotic lesions may originate from adenomyotic foci near to the serosa or that
they could arise rather independently [51].

One fundamental requirement for any good theory or hypothesis in biomedicine
is falsifiability. For ethical reasons, to prove or disprove any theory on adenomyosis
pathogenesis by human experimentation is likely to be out of the question unless long-
term prospective epidemiological studies can be feasibly carried out. This, in turn, will
depend on agreeing on the criteria for a non-invasive diagnostic method. In other words,
the challenge in pathogenesis research on adenomyosis is to establish a non-invasive yet
definitive diagnosis, especially for early stage of adenomyosis, which so far is lacking.
In this regard, the use of animal experimentation can be of great help. This is especially
true since, unlike endometriosis, adenomyosis can and does occur spontaneously in many
animal species, including, but not limited to, rodents [23,32]. Therefore, animal models of
adenomyosis may provide a practical means to unveil the pathogenesis of adenomyosis.

3.2. The Quest for the Primum Movens

In exploring the pathogenesis of adenomyosis, the issue of its primum movens, or the
first hit, is of vital importance. This is because once the lesion is established, presumably
it would undergo cyclic bleeding just as the eutopic endometrium [52,53] and, as such,
effectively become a wound that undergoes repeated tissue injury and repair (ReTIAR) [54],
progressing to fibrosis through epithelial–mesenchymal transition (EMT), fibroblast-to-
myofibroblast transdifferentiation (FMT), and smooth muscle metaplasia (SMM) [55,56]. In
other words, once the primum movens is effectively applied, everything will set in motion,
more or less on its own, resulting in adenomyosis as we see it.
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Of course, the budding lesion may still be subject to removal by immune cells, and
the successful establishment of an adenomyotic lesion may well be the end result of this
tug of war between constant seeding and elimination. However, once the lesion is well
established, and barring any extraneous factors or behavioral/lifestyle changes that either
boost the immune function or slow down the progression (such as caloric restriction or
eustress [57,58]), the established lesion will progress. Conceivably, the lesional progression
could, in fact, be facilitated by psychogenic stress [59,60], high-fat diet [61], lower dairy
consumption [62], surgery [63,64], and history of adverse early life events [65], and perhaps
other factors yet to be identified.

3.3. Animal Models of Adenomyosis

As mentioned, adenomyosis can occur spontaneously in many animal species but
typically with a low incidence, which can be enhanced through drug manipulation and
surgery. The various existing models are summarized in Figure 2.
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Figure 2. Timelines of all animal adenomyosis models by species, strain, induction method, duration
of induction, and results. Panels (A–F) represented different inducers. (A) Progestogens; (B) Prolactin;
(C) Estrogen; (D) Estrogenic compounds; (E) EMID; and (F) Transgenic models. Identically colored
boxes represent the same class of animal models, with the first-appeared box designating the model
and the later-appeared box being the result of the former, along with the reference citation.
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Some models are the result of serendipitous discoveries in the endeavor to quest
for the result of certain drugs and were found when the object of inquiry was not even
the reproductive system itself. As such, while the end result is indeed adenomyosis, the
way that the condition was induced may not be consistent with its known or postulated
pathogenesis. In other instances, there is no supporting evidence from epidemiological
studies. We list these models in Table 1.

Table 1. Summary of animal adenomyosis models by species, strain, induction method, duration of
induction, and results.

Pathogenesis Species/Strain Induction Method Duration of
Induction Outcome References

Estrogen or
estrogenic

compounds

Estrogen

AB/Jena and
DBA 2/Jena

hybrid mouse

Pregnant F1 animals were
orally given 1 mg/kg of 17β-
phenylaminocarbonyloxyestra-

1,3,5(10)-triene-3-methyl
ether daily on days 12 to 16

post coitus

≥10 months

Adenomyosis was found in 10 out
of 27 virgin female offspring of

estrogen-treated dams from 16 to
33 months of age

[66,67]

Rabbit Stilbestrol (5 mg/mL) was
injected i.m. 2 years Adenomyosis [68]

Rhesus monkeys
(Macaca mulatta)

S.c. implants containing
200 mg estradiol 16 months Adenomyosis [69]

Transgenic mouse Overexpressing human
HSD17B1 5–12 months

Adenomyosis appeared at the age
of 5.5 months and became more

severe at 12 months
[70]

Sheep

Postnatal daily i.m. injections
of estradiol-17β benzoate at a
dose of either 0, 0.01, 0.1, 1, or
10 µg/kg body weight from
PND 14–27 (period one) or

PND 42–55 (period two)

PND 28, PND
56, PND 112

Immediate responses to EB
treatment included dose- and

age-dependent increases in
uterine wet weight, thickness of
the endometrium, myometrium,

and LE, but decreases in
endometrial glands on PND 28

and 56. Transient exposure to EB
decreased gland number and

thickness of the endometrium and
LE on PND 112

[71]

Tamoxifen

CD-1 mouse

Tamoxifen, toremifene,
and raloxifene

dosed orally 2–5 days after
birth consecutively

42–90 days

Uterine adenomyosis
was found in all (14 out of 14)

mice dosed with tamoxifen
and most mice (12 out of 14)

treated with toremifene,
in only one

animal treated with raloxifene

[72,73]

C57 mouse

Female C57/BL6J pups
(n = 20) were treated with
oral tamoxifen (1 mg/kg)

from age 1 to 5 days

5, 10, 15, and 42
days of age

Causes disruption of myometrial
development but not

adenomyosis
[74]

Diethylstilbestrol

Balb/c or Balb/c
and C3H inbred

mouse

Pregnant mice were fed a diet
containing 0.2 µg/g (of

bodyweight) of DES
continuously on the seventh
day of pregnancy until the
morning after delivery of

the young

18 months of
age

Resembled adenomyosis occurred
in Balb/c mice with the lesser
frequency encountered in the

hybrid strain

[75]

CD-1 mouse

Pregnant outbred mice were
treated s.c. with daily doses
of DES ranging from 0.01 to
100 jug/kg on days 9 to 16

of gestation

12 to 18 months
of age

1/22 adenomyosis in
5 ug/kg group [76]

Diarylpropionitrile
(DPN) ICR mouse

Mice in DPN group were
dosed orally with 5 mg/kg
DPN from day 2 to day 5

after birth

3 months

Neonatal feeding of DPN resulted
in adenomyosis in 50% of the

mice, but the adenomyotic lesions
were located exclusively near

the serosa

[77]

Bisphenol A (BPA) CD-1 mouse

Outbred female CD-1 mice
were treated on days 1–5

with subcutaneous injections
of BPA (10, 100, or 1000
µg/kg/day) dissolved in

corn oil or corn oil
alone (Control)

18 months

Adenomyosis occurred in all
groups with an increasing trend in

the two highest BPA groups
(6% (1/18) Controls, 9% (2/23)

BPA-10, 20% (4/20) BPA-100, and
19% (3/16) BPA-1000)

[78]
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Table 1. Cont.

Pathogenesis Species/Strain Induction Method Duration of
Induction Outcome References

Dioxin C57 mouse

Pregnant mice (F0) were
exposed to dioxin (10 µg/kg)
in corn oil or vehicle alone by

gavage on E15.5 (when
organogenesis is complete)

10–12 weeks

Adenomyosis was identified in
most animals with a history of
direct (F1–F2) or indirect (F3)
dioxin exposure. However,
although 70% (n = 10) of F1

animals exhibited deep
adenomyosis, the incidence of
advanced disease was slightly

lower in F2 mice (63%; n = 11) and
F3 animals (56%; n = 9)

[79]

Ethinyl estradiol
(EE2) ICR mouse

Pregnant mice were exposed
to 0.01 mg ethinyl estradiol
(EE2)/kg per day or vehicle

(olive oil) through oral
intubation from day 11 to 17
of gestation. They delivered

their offspring and raised
them. When the

experimental female F1 mice
were at 8 weeks of age, they

were not exposed
to EE2 or to the same dose of

EE2 or to vehicle twice a
week until 20 weeks of age

28 weeks

These findings indicate that
adenomyosis is induced through
either exposure to EE2 prenatally
or after sexual maturity, but the

highest frequency is seen through
the combined exposures

[80]

Progesterone Balb/c mouse S.c. implantation of pellets 12–18 months Present in almost all animals
receiving 665 or 900 µg/day [80,81]

Prolactin

Pituitary grafts

SHN and SLN
mouse

Ectopic (intrauterine and
under the renal capsule)
pituitary transplantation

90 days Incidence: 100% [82,83]

Balb/c mouse Anterior pituitary (AP)
isografting at 8 weeks of age 36 weeks Increased the incidence of

adenomyosis in mice [84]

Wistar rat
Transplantation of a single

anterior pituitary gland into
the uterine lumen

12 months Adenomyosis was induced in
six out of eight Wistar rats [85]

Balb/c mouse,
C3H mouse, or

Balb/c and C3H
F1 hybrids

Transplantation of pituitary
into the mammary tissue 6 months

Lesions of adenomyosis were
frequent in uteri of C3H and F1
hybrids but essentially absent

from Balb/c animals

[86]

Balb/c, C57, C3H
mouse

Pituitary was transplanted
into the uterine cavity 20 weeks

Adenomyosis had formed in the
uteri of 22 (91.7%) mice out of

24 Balb/c mice after the
transplantation of pituitary

glands. Similar findings were
obtained by experiments with

C3H and C57 mice

[87]

Dopamine
antagonists SHN mouse

SHN female mice were
subcutaneously injected with

dopamine antagonists for
30 days or 50 days.

70 or 90 days of
age

The incidences of adenomyosis in
the experimental groups of mice
for 50 days rose up to over 70%

[88]

Fluoxetine Wistar rat 2 mg/kg fluoxetine were
given to rats by gavage 98 days

Histological studies revealed
11 cases of adenomyosis in the

noncastrated group
receiving fluoxetine

[89]

Transgenic mouse

Dopamine D2
receptor

(DRD2)-deficient
mouse

Mice that are deficient in
functional D2 receptors were

generated
One year old

A large proportion of the female
DRD2 deficient mice developed

uterine adenomyosis, most
commonly in mice greater than

one year of age

[90]

Endometrial–myometrial interface
disruption (EMID)

Balb/c and C57
mouse

Mechanically induced EMID
or thermally induced EMID 8–12 weeks

Adenomyosis developed in the
majority of mice in the EMID

groups (83.3% in C57BL/6 mice,
100% in Balb/c mice);

adenomyosis was found in 66.7%
of the

EMID mice 10 weeks later

[91]
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Table 1. Cont.

Pathogenesis Species/Strain Induction Method Duration of
Induction Outcome References

Other
transgenic

models

Dicer Dicer inactivated
mutant mice

Dicer was inactivated in
Müllerian duct

mesenchyme-derived tissues
of the reproductive tract of

the mouse, using an
Amhr2-Cre allele

>4 months of
age

The glands were found within the
myometrium. [92]

FSHR
FSH

receptor-haplo
insufficient mice

The animals of the required
genotype were produced by

breeding 129T2/SV EmsJ
Fshr−/− male

and females of 3–5 months

12 months of
age

Some uteri showed endometrial
glands deeply penetrating the

myometrium
[93]

Foxl2 Foxl2 deleted
mice

Conditional deletion of Foxl2
in the PN uterus using
PR-Cre (Pgrcre/+) mice

PN15, PN25,
adult Myometrial disorder [94]

β-catenin
Conditionally

stabilized
β-catenin mouse

Mice that expressed a
dominant stabilized

β-catenin in the uterus were
used by crossing
PR-Cre mice with

Ctnnb1f(ex3)/+ mice

4 months of
age

The incidence of 40% at 4 months
of age and 80% at 6 months of age [95]

PGD2 PGD2 synthesis
impaired mice

PGD2 is not produced due to
invalidation of both lipocalin
hematopoietic type (L-PGDS

and H-PGDS) genes

6 months of
age

HE staining showed the presence
of focal adenomyosis in 35%

(n = 9 from 28) of knockout mice
[96]

Abbreviations: DES—diethylstilbestrol; i.m.—intramuscular, intramuscularly; s.c.—subcutaneous; PN—postnatal;
PND—postnatal day; PR—progesterone receptor; DPN—diarylpropionitrile.

It can be argued that for any human disease, the availability of animal models that
can faithfully recapitulate the key features of the disease of interest would provide an
indispensable tool in the endeavor to unravel the pathogenesis.

Indeed, if one can generate at will an animal model that can recapitulate the major
features of the disease, a great deal can be learned of its pathogenesis and pathophysiology
from the model. The experimentally induced models offer a consistent, reproducible, and
controlled alternative to the spontaneous models and, in many cases, are also much less
time-consuming and more economical.

However, an animal disease model that merely possesses the look and feel of its
human counterpart may not be really useful in unveiling the pathogenesis of the human
condition, even though it may still be helpful in aiding drug research and development.
To gain useful insight into the pathogenesis, perhaps one important requirement for an
animal model is consistency with epidemiological findings. That is essentially the second
requirement for a good theory: that it can explain most, if not all, existing data. In particular,
if a theory postulates the cause of adenomyosis, it has to meet the requirements for causality.
Of importance, it has to pinpoint the primum movens for the documented aberrations that
led to the development of adenomyosis. In this case, while the TIAR theory posits that
hyperperistalsis induces microtrauma in the uterus and then adenomyosis, one practical
question is what caused the hyperperistalsis in the first place.

Yet in medical research, a good theory cannot just talk the talk. More importantly, it
has to walk the walk in order to make an impact on health and disease. To paraphrase Karl
Marx, different theories have only explained why or how adenomyosis occurred; the point
is to prevent it. This amounts to the third basic requirement for a good theory: it can make
useful predictions.

In the following section, we provide a more detailed review of existing models, ar-
ranged by possible inducing agents.

3.3.1. Progestogens

Traditionally, it has been held that adenomyosis is more common in women with a his-
tory of pregnancy [97], especially if the pregnancy has been carried to, or near, the term [98],
suggesting a relationship with exposure to high circulating levels of progesterone. That is,
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during pregnancy—and even more so in the case of multiple pregnancies—prolonged expo-
sure to progesterone may increase the risk of developing adenomyosis. In all fairness, there
are no recent publications on this issue; therefore, its true significance remains to be clari-
fied. Indeed, before or at the time when this review paper was published in the 1980s [97],
adenomyosis was diagnosed mostly by histological evaluation after hysterectomy in mostly
peri-menopausal women complaining of heavy menstrual bleeding [99]. More recently,
thanks to the advances in imaging techniques, early stages of adenomyosis have to be iden-
tified in young women of reproductive age [100], even in adolescent girls [101]. Therefore,
there is naturally a bias towards more multiparous women using the histology diagnosis
criteria. In addition, multiple pregnancies are likely to be associated with an increased risk
of abortions, which, in turn, may increase the risk of EMI disruption (EMID) and hence the
risk of developing adenomyosis. As such, the role of progesterone as a single causative
agent in inducing adenomyosis remains unclear and may be in need of critical reappraisal.

Experimentally, one study, published over a half century ago, found cystic glands
penetrated into the myometrium in female Balb/C mice after 12–18 months of chronic and
prolonged exposure to progesterone. Synthetic progestins had a similar effect in inducing
adenomyosis, although to a less extent than progesterone [81].

A more recent hypothesis of a possible causative role of progesterone involves tro-
phoblast invasion of the inner myometrium during early pregnancy; this may disrupt the
EMI, increasing the risk of adenomyosis [102]. In addition, prolonged exposure to pro-
gestins may elevate the expression of COX-2 and aromatase in the endometrium [103,104],
resulting in an increased local production of estrogens due to the positive-feedback loop
linking inflammation and estrogen biosynthesis [105]. The local hyperestrogenism may
promote EMT in the endometrium, inducing adenomyosis [106]. The overexpression of
COX-2, the gene encoding the rate-limiting enzyme to produce prostaglandin E2 (PGE2)
and PGF2α, could lead to enhanced uterine contractility. Of course, progesterone may act
as an anti-inflammatory molecule in myometrium [107], countering the effect of PGE2.

3.3.2. Prolactin

The polypeptide hormone prolactin (PRL) is mainly produced and secreted by the
pituitary and by the decidua during pregnancy; in addition, an ectopic pituitary graft can
increase local PRL levels [108]. Dopamine plays a major role in regulating the PRL secretion
by binding to dopamine D2 receptor (DRD2) in both in-situ and grafted pituitary [109–111].

In the 1980s, Mori and his colleagues in Japan found that adenomyosis could be
induced in some mouse strains by pituitary grafts, either within the uterus or under the
renal capsule [83]. Moreover, they found that the incidence of adenomyosis can be reduced
by the administration of bromocriptine–mesylate in mice with ectopic pituitary grafts [84].
Bromocriptine is a DRD2 agonist and can suppress the release of PRL [110]. Consistently,
SHN mice treated with dopamine antagonists, which resulted in increased PRL release,
also developed adenomyosis [112]. Treatment of rats for 90–100 days with fluoxetine
hydrochloride, a selective serotonin reuptake inhibitor (SSRI) that can increase the PRL
secretion, induced adenomyosis with high incidence in rats [89,113]. In addition, aged
female mice deficient in DRD2 developed uterine adenomyosis spontaneously in response
to prolonged PRL exposure [90]. Moreover, adenomyotic lesions in mice with induced
adenomyosis demonstrated increased PRL receptor (PRLR) expression [114].

Taken together, these observations suggest that high levels of PRL or hyperprolac-
tinism could lead to the development of adenomyosis. However, ovariectomized mice
receiving pituitary grafts did not develop adenomyosis [83]. Since ovariectomy effectively
removes the major source of estrogens and since estrogen is reported to further increase
PRL release in mice with ectopic pituitary graft [115], this seems to suggest an indispensable
role of estrogens in PRL-induced adenomyosis.

PRL is a pituitary hormone that has pleiotropic actions on a wide range of tissues [116].
In addition to the pituitary glands, PRL can also be produced by the myometrium, en-
dometrium, and inflammatory cells, which can be modulated by steroid hormones [117]
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and cytokines [118,119]. The PRLR is expressed in the myometrium and endometrium,
suggestive of the functional role of PRL in the uterus [120]. Its actions are likely facilitated
by estrogens and progestins [121–123]. In particular, PRL is shown to be a mitogen for
smooth muscle cells in vitro [124–126]. Increased invasiveness of adenomyotic stromal
cells, which can be suppressed by the matrix metalloproteinase (MMP) inhibitor, is found in
adenomyosis induced by ectopic pituitary grafting in mice [127]. PRL also synergizes with
the canonical Wnt/β-catenin signaling pathway via activation of the Notch pathway [128],
likely promoting EMT and resulting in the invasion of endometrial epithelial cells into the
myometrium, leading to the formation of initial adenomyotic lesions [95,129–132].

In humans, patients with adenomyosis frequently exhibit hyperprolactinemia [113,133],
but one less appreciated result is that the elevated levels of PRL can cause increased pain by
promoting nociceptor sensitization through the short isoform of PRLR (RPLR-S) [134–138], the
expression of which is also found to be higher in the bovine uterus with adenomyosis [139] and,
we can speculate, in humans as well. DRD2 agonists have been shown to suppress PRL-induced
adenomyosis and also have therapeutic potential for reducing pain and treating adenomyosis,
likely through the promotion of the long isoform of PRLR (PRLR-L) and the inhibition of
angiogenesis by DRD2 [140–143]. It has been shown that following insertion of a vaginal ring
containing bromocriptine, women with adenomyosis have alleviated pain, reduced menstrual
bleeding, and improved quality of life [144].

Although PRL-induced adenomyosis has been reported in several mouse strains, such
as SHN, SLN, Balb/C, C57, C3H, Balb/C and C3H F1 hybrids, C57, and ICR, and also in
rats [82–85], so far there have been no epidemiological data in support for such a link in
humans. Whether PRL can be considered as a single causal agent in inducing adenomyosis
in humans is unclear.

It is possible that increased PRL levels, due to either ectopic pituitary grafts, adminis-
tration of SSRI, or DRD2 insufficiency, could cause or exacerbate pain, which subsequently
activates the hypothalamus–pituitary–adrenal (HPA) axis, resulting in increased release of
catecholamines, which, in turn, may activate adrenoreceptors in the endometrium. The
activation of adrenoreceptors in the endometrium may induce EMT or collective cell mi-
gration [145–148], leading to the infiltration of endometrial cells in the myometrium and
thus adenomyosis.

3.4. Estrogens and Estrogenic Compounds

The reduction of symptoms in postmenopausal adenomyosis patients indicates that
adenomyosis is an estrogen-dependent disease [149]. Adenomyosis induced by long-
term exposure to estrogens or estrogenic compounds has been documented in several
animal models.

The duration of induction varies with animal species. Giving estrogens to mice for
more than 10 months can induce adenomyosis, whereas it takes two years for rabbits [66,68].
In ovariectomized adult female rhesus monkeys (Macaca mulatta) that received two subcuta-
neous implants containing 200 mg 17β-estradiol, adenomyosis was found in one out of six
at necropsy 16 months later [69]. Postnatal transient estrogen treatment altered the growth
factor networks in the uterus of sheep, which had an effect on the structural development
of the uterus, including uterine wet weight, thickness of the endometrium, myometrium,
and luminal epithelium, and the number of endometrial glands [71]. Consequently, the
result of prolonged administration of unopposed estrogen is unpredictable and duration
dependent. Long-term exposure to either estrogen or progesterone without the presence of
the opposing other hormone increases the risk of the development of adenomyosis [66,81],
suggesting that hormonal imbalance may influence the occurrence of the condition.

Recently, Heinosalo et al. found adenomyosis-like phenotype present in transgenic
mice overexpressing human 17β-hydroxysteroid dehydrogenase type 1 (HSD17B1); the phe-
notype appeared at the age of 5.5 months and became more pronounced at 12 months [70]
(presented at the 14th World Congress on endometriosis, 6 March 2021). HSD17B1 is highly
expressed in human placental syncytiotrophoblast cells throughout pregnancy and in ovar-
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ian granulosa cells from primary follicle to corpus luteum stage and is lowly expressed in
many other tissues, including endometrium. Therefore, the overexpression of HSD17B1
induces adenomyosis, which is involved in the biosynthesis of estrogens, again highlighting
the important role of hyperestrogenism in the development of adenomyosis.

While tamoxifen (TAM) is generally considered to be an anti-estrogen and is used
to treat estrogen receptor-positive breast cancer in pre- and post-menopausal patients, its
activity actually varies depending on the tissue type [150]. In particular, it exhibits an
estrogenic effect in the endometrium [151], and, as such, it is considered to be a member of
the selective estrogen receptor modulator (SERM) family [152].

The mouse model of adenomyosis induced by neonatal feeding of tamoxifen is an
interesting one [72]; it is strain dependent and also administration route dependent since the
injection, instead of feeding of tamoxifen, would not induce adenomyosis [153]. Tamoxifen
or toremifene (another SERM) was orally given to neonatal CD-1 mice from 2 to 5 days
after birth, and the histogenesis of uterine adenomyosis could be seen on 42–90 days
after dosing [72,73,154].

In addition, post-menopausal women with breast cancer who received tamoxifen
treatment are reported to have an increased risk of adenomyosis [155]. However, most
instances of adenomyosis occur before menopause, and the majority of post-menopausal
women do not take tamoxifen. Additionally, there is a vast difference between neonatal
and post-menopausal exposure to tamoxifen since the neonatal period is highly sensitive
to endocrine-disrupting chemicals [156].

Finally, this animal model also is strain- and even the administration route dependent.
When substituted C57 strain mice for CD-1, disordered arrangement of the myometrium
rather than adenomyosis took place in the uterine horns [74]. That the success rate of the
induction is strain dependent strongly suggests that some particular genetic background
may also play a role. Moreover, daily oral administration of tamoxifen failed to induce
adenomyosis in female adult rats [157]. More remarkably, neonatal administration of the
same dose of tamoxifen to the identical strain of mice via the subcutaneous, rather than the
oral, route produces uterine carcinomas rather than adenomyosis [158]. It is thus puzzling
as to why the difference in delivery route would lead to a different outcome.

In any case, while the model may still have utility in preclinical studies in drug R&D,
such a great variation in outcome according to mouse strains, as well as administration
route, raises the doubt as to whether the model can help shed light on the pathogenesis of
human adenomyosis.

Disrupted organization of the myometrium may contribute to the adenomyosis caused
by tamoxifen, but the exact histological and molecular changes occurring in the neonatal
uterus after tamoxifen treatment remain to be explored. Furthermore, PRL has an effect on
myometrial smooth muscle cells, but ovariectomized pituitary-grafted C57 mice neonatally
fed with tamoxifen do not seem to develop adenomyosis; rather, they show a disordered
arrangement of the myometrium. This suggests that disruption of myometrium may be
just a necessary, but certainly not a sufficient, condition in the development of adenomyosis.
Finally, how this relates to the human condition remains completely unclear.

Diethylstilbestrol (DES), another estrogenic compound, has a structure and function
similar to that of tamoxifen. Its teratogenic and carcinogenic effect on the female reproduc-
tive tract is well-documented, and adenomyosis is also one of the common lesions in the
uterus of mice exposed to DES prenatally [159].

The incidence of DES-induced adenomyosis in mice depends on the dose, administra-
tion route, duration, and mouse strain but is generally low. For example, among from 12-
to 18-month-old offspring of CD-1 mice exposed to 0.01–100 µg/kg DES on days 9–16 of
gestation, only 1 out of 22 (4.5%) in the 5 µg/kg dose group developed adenomyosis [76].

In another experiment, Balb/C and Balb/C-C3H hybrid mice were fed a daily diet
containing 0.2 µg/g bodyweight of DES starting from the 7th day after conception until
delivery. Adenomyosis-like lesions were found in both strains of mice but with lower
incidence in the hybrid strain [75]. It follows that the occurrence of adenomyosis caused by
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prenatal exposure to DES is sporadic and strain dependent. Its specific mechanism may be
related to the effect of DES on the cytogenesis of PRL-producing cells, but unfortunately,
there are no supporting epidemiological data [160]. At any rate, long-term, prenatal, or
neonatal exposure to DES can no longer be a cause of adenomyosis since the use of DES
has been discontinued for decades.

Other estrogenic compounds, such as bisphenol A (BPA), dioxin, and ethinyl estradiol
(EE2), have also been shown to induce adenomyosis in different mice strains. Neonatal
subcutaneous injection of 10, 100, or 1000 µg/kg/day BPA could induce adenomyosis in
CD-1 mice, and the incidence was dose proportional [78]. Adenomyosis developed not
only in F1–F2 generations of C57 mice with a history of dioxin exposure but also in F3
generation of C57 mice with an indirect history of dioxin exposure [79]. Exposure to EE2
either prenatally or after sexual maturity could induce adenomyosis in ICR mice, but the
highest incidence was seen in mice exposed to EE2 both prenatally and in adulthood [80].

3.5. Evidence for More Than One Pathogenesis

It is well-known that the action of estrogen is mediated through estrogen receptors
(ERs), which have two isoforms, ERα and ERβ. Both isoforms are expressed in many
tissues such as the brain, uterus, ovary, breast, prostate, thymus, spleen, bone, liver, lung,
the cardiovascular system, and the gastrointestinal tract [161–165], although the tissue
distribution and expression level of ERα and ERβ within the same tissue can be different
and even discordant. ERβ typically has a wider tissue distribution than ERα [166]. ERα
and ERβ often have incongruent functional characteristics [167–169]. ERα promotes while
ERβ inhibits proliferation [170], and the activity of ERα can be regulated by ERβ [171–173].

TAM can bind with both ERα and ERβ [174] and is used mainly for the treatment of
ER-positive breast cancer [175,176]. However, TAM therapy has different efficacy in breast
cancer with different ERα and ERβ distribution and has a higher efficacy for breast cancer
with higher ERβ expression [177,178]. This seems to suggest that the two receptors have
different binding affinities and responsiveness to TAM.

Estrogen and TAM can also activate ER by non-genomic mechanisms, such as through
the G-protein coupled receptor 30 (GPR30) signaling pathway. TAM exerts its function as
a GPR30 agonist that activates the epidermal growth factor receptor (EGFR) intracellular
signaling, MAPK and PI3K/AKT signaling pathways, leading to TAM resistance in breast
cancer [179–182]. Endometrial abnormalities, such as bleeding or endometrial thickness
induced by TAM therapy, are also associated with TAM binding to GPR30 [183]. TAM and
estrogen can promote cell migration and proliferation by triggering GPR30 activation in
endometrial cancer [184,185].

In light of the above, it is conceivable that TAM induces adenomyosis through different
ERs, either individually or collectively.

To delineate the roles of specific ERs in TAM-induced adenomyosis in CD-1/ICR
mice, we neonatally fed the mice with specific ERα, ERβ, or GPR30 agonists. Specifically,
in a manner identical to the TAM-induction of adenomyosis, we neonatally fed the mice
with propylpyrazoletriol (PPT, an ERα agonist), diarylpropionitrile (DPN, an ERβ ago-
nist), and G-1 (a GPR30 agonist). Remarkably, neonatal feeding of PPT or G-1 did not
result in adenomyosis, but the neonatal feeding of 5 mg/kg DPN yielded adenomyosis
in 50% of ICR mice [77]. Of particular note, all adenomyotic lesions were restricted to
the subserosal layer reminiscent of extrinsic/external adenomyosis in humans [186,187]
and quite different from those induced by TAM. These findings not only demonstrate
that TAM does not induce adenomyosis through a single ER but also suggest that the
pathogenesis of extrinsic/external adenomyosis may be different from other subtypes of
adenomyosis. The somewhat lower incidence of adenomyosis following neonatal feeding
of DPN (50% vs. 100% in TAM-induced adenomyosis) is likely due to the lower blood
concentration resulting from the oral administration. Indeed, the plasma DPN concen-
tration through oral administration is significantly lower than that of intramuscular or
subcutaneous injection [188]; hence, there is room for optimization of this animal model by
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changing the route of administration or increasing the oral dosage to increase the incidence
of adenomyosis induced by DPN.

This experiment, if further validated, is perhaps the best piece of evidence suggesting
that different subtypes of adenomyosis may have different pathogenesis.

3.6. In Utero Exposure to Exogenous Estrogens

From Figure 2C,D, it can be seen that prenatal exposure to estrogens or estrogenic
compounds induces adenomyosis in several animal models. This suggests that exposure
during a very sensitive time period in the development can substantially increase the
risk of developing adenomyosis in later life. This seems to echo the finding that shorter
anogenital distance (AGD), a sign of higher estrogen levels in utero, is associated with
the risk of developing endometriosis [189–193]. Our own data also show that shorter
AGD is associated with a higher risk of developing adenomyosis (Ding et al., unpublished
data). Taken together, these data strongly suggest that in utero exposure to higher levels
of estrogens increases the risk of developing adenomyosis. Indeed, several studies have
reported that prenatal exposure to estrogen or estrogenic agents causes disruption in the
EMI [76,194–196], which may provide a hotbed for the genesis of adenomyotic lesions.

3.7. Endometrial–Myometrial Interface Disruption

While it is generally recognized that adenomyosis is induced by endometrial epithelial
and stromal cells invasion into the myometrium through EMT [106,197], how exactly the
endometrium invades, in a seemingly unimpeded manner, the myometrium wall is a
puzzling conundrum. In addition, why this invasion happens only in a small proportion of
women, but not in their majority, is also completely unclear.

The endometrium, which can be further divided into functionalis and basalis layers, is
directly in contact with the EMI. Conceivably, structurally weakened myometrium because
of repeated trauma to the EMI may facilitate the invagination or the invasion of endometrial
cells into the EMI and then to the myometrium. A large body of epidemiological data
has shown, quite consistently, that iatrogenic uterine procedures, such as dilatation and
curettage (D&C) and induced abortion, increase the risk of developing adenomyosis later
in life [133,198–202].

Leyendecker’s TIAR theory hinges critically on the feed-forward loop linking inflam-
mation and estrogen production [36], which seems the case for ectopic endometrium [203],
but is not necessarily true for eutopic endometrium. For this reason, in light of ample
epidemiological data linking iatrogenic uterine procedures and adenomyosis, we proposed
a new hypothesis on the pathogenesis of adenomyosis, termed EMI disruption (EMID)
due to physical damage or trauma [39]. To test this hypothesis, we induced EMID by
mechanical injury as well as thermal injury [91]. We found that 100% of Balb/C mice
and 83.3% of C57 mice experiencing mechanically induced EMID developed adenomyosis
3 months after the procedure.

It is worth mentioning that adenomyosis induced by pituitary transplantation may
also be caused, at least in part, by injury during the operation. Depending on the severity
of thermally induced EMID, the incidence of adenomyosis was found to range between
30% and 66.7%. More remarkably, perioperative intervention by administration of either a
β-blocker or aprepitant, a neurokinin receptor 1 (NK1R) inhibitor, significantly reduced the
risk of developing adenomyosis [91].

The EMID hypothesis and its supporting experimental data strongly suggest that
iatrogenic uterine procedures increase the risk of developing adenomyosis, and the risk is
proportional to the extent and severity of injury to the EMI or the amount and severity of
EMID. The risk is also dependent on the mode of injury, for example, mechanical or thermal.
These experiments not only provide evidence in support of the EMID hypothesis but also
establish an easy and economical animal model for adenomyosis. More importantly, in
light of the ubiquity of uterine procedures nowadays, the EMID hypothesis suggests an
interventional procedure to mitigate the risk of developing adenomyosis espoused by these
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procedures. Furthermore, the insight to be gained from EMID-induced adenomyosis may
help to unravel its pathogenesis due to other causes.

3.8. Other Models

Adenomyosis has also been found in the uterine horns of some transgenic mice, such
as Dicer inactivated mutant mice, follicular stimulating hormone (FSH) receptor (FSHR)-
haplo-insufficient mice, Foxl2 deleted mice, and mice with impaired prostaglandin D2
(PGD2) synthesis [92–94,204]. Incidentally, the FSHR polymorphism has been reported
to be associated with the risk of developing endometriosis and the fertility status of pa-
tients [205,206]. PGD2 is mainly involved in myometrial contraction [96], and the peristalsis
of myometrium activated by hyperestrogenism may increase the risk of developing adeno-
myosis based on the notion of TIAR. Deregulated Wnt signaling pathways play a crucial
role in the development of adenomyosis in the Foxl2 deleted mice, and constitutive ac-
tivation of β-catenin in the murine uterine horns can also lead to the development of
adenomyosis through promoting EMT in the epithelial cells [95]. However, since so far
there has been no report on the association between adenomyosis and genetic mutations
or polymorphisms on either Dicer, Wnt, β-catenin, or Foxl2, the utility of these models in
elucidating the pathogenesis of adenomyosis appears to be limited.

3.9. The Root Causes for Pathogenesis

Animal models of the disease that are congruent with epidemiological data stand a
good chance to unravel the disease pathogenesis. Using this standard, few existing animal
models of adenomyosis pass the test.

Laboratory mice are the most frequently used experimental animal models to in-
vestigate the pathogenesis of adenomyosis due to their economy, ease of generation and
maintenance, and relatively high success rate of induction. However, as reviewed above,
the diversity of induction methods and the difference in incidence due to different dosages
and mouse strains underscore the complexity and likely multiple pathogeneses of adeno-
myosis (Figure 3). In fact, several possible culprits in the genesis of adenomyotic lesions can
be identified: aberrant production of sex steroid hormones; changes in a uterine microenvi-
ronment chronically exposed to estrogens or estrogen-like compounds, especially during
the critical developmental periods such as pre- or peri-neonatal period; dysfunctional
contractility of the EMI, physical trauma to the EMI, neural involvement, and aberrant
immune response.

As of now, the only animal model that seems to be consistent with epidemiological
evidence is EMID-induced adenomyosis [91]. However, EMID is unlikely to be the only
cause for the condition, simply because many patients who have adenomyosis did not have
any history of uterine procedures.

The search for the pathogenesis of adenomyosis essentially consists in finding the
cause(s) for the disease. As such, animal models that can help us to shed light on the
pathogenesis should, ideally, satisfy the nine criteria for causality proposed by Austin Brad-
ford Hill [33], which are association strength, consistency, biological gradient, specificity,
temporality, biological plausibility, experimental evidence, analogy, and coherence [207]
(Table 2). Using Hill’s criteria as a bar, all animal models of adenomyosis appear to satisfy,
by default, the criteria of experimental evidence and temporality, and some may satisfy
the criterion of biological gradient (Table 3). However, many fail to meet the criteria of
consistency (say, strain- or delivery route dependency) and coherence (inconsistent with
or lack of support by epidemiological data). Some are questionable in the category of
association strength (as manifested by low incidence). The EMID model [91] appears to
satisfy all criteria.
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Figure 3. Schematic illustration of different animal models of adenomyosis, along with their
possible mechanisms. Abbreviations used: SP—substance P; TXA2—thromboxane A2; COX-2—
cyclooxygenase-2; PGE2—prostaglandin E2; PGF2α—prostaglandin F2α; TGF-β1—transforming
growth factor β1; EMID—endometrial–myometrial interface disruption; MMP—matrix metallopro-
tein; NK1R—neurokinin 1 receptor; EMT—epithelial–mesenchymal transition; FMT—fibroblast–
myofibroblast transition; SMM—smooth muscle metaplasia.

Table 2. The Austin Bradford Hill criteria for causality. Adapted from Hill [33], following [207].

Criterion Comment

Strength of association (Sa)
If the relative risk is “strong”, there is less likelihood that

there are other adequate explanations for the
observed association.

Consistency (Cs) Is the association consistent over the various studies?

Biological gradient (Bg) Is there an exposure–response relationship exhibited over
the range of studies?

Specificity (Sp) Is the association limited to a particular outcome?

Temporality (Tm) Does the exposure precede the outcome?

Biological plausibility (Bp) Is the proposed association explained by a biologically
plausible mechanism?

Experimental evidence (Ee) Are there experimental studies that support
the association?

Analogy (An) Is the proposed causal relationship analogous to some
other accepted cause and effect?

Coherence (Ch)
Does the proposed relationship seriously conflict with
generally known facts about the natural history and

biology of the disease?
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Table 3. A summary of epidemiological data in support for animal models of adenomyosis and
which criterion of Austin Bradford Hill’s criteria for establishing causality are satisfied.

Induction Agent Evidence in
Humans? References

Which Hill’s
Criterion or Criteria

Are Satisfied

Estrogen No direct support [149,189–193] Bg, Tm, Bp, Ee, An

Tamoxifen No No As, Bg, Tm, Ee, An

Diethylstilbestrol (DES) No No Tm, Ee, An

Diarylpropionitrile (DPN)
Bisphenol A (BPA)

Dioxin
Ethinyl estradiol (EE2)

No No Tm Ee

Progestins No direct support [97] Sa, Tm, Bp, Ee, An

Prolactin No direct support [133,144] Sa, Cs, Tm, Bp, Ee, An

Fluoxetine No No Sa, Tm, Ee, An

Endometrial–myometrial
interface disruption

(EMID)
Yes [133,198–202] Sa, Cs, Bg, Sp, Tm, Bp,

Ee, An, Ch

Other models No No

Sa, Cs, Sp, Tm, Bp, Ee,
An for the

conditionally
stabilized β-catenin

mouse
Tm, Ee for the others

4. Discussion
4.1. Pathogenesis and Beyond

Just as endometriosis [54,208], adenomyosis also has several subtypes and appears to
be pathogenetically and phenotypically heterogeneous. Our own data show that neonatal
feeding of ERβ-agonist-induced adenomyosis is seemingly different from that induced
with TAM and is similar to the extrinsic/external adenomyosis in humans. This suggests
that, at the very least, the extrinsic/external adenomyosis may be pathogenetically different
from other subtypes of adenomyosis.

In fact, in an MRI classification of adenomyosis, Kishi et al. have noted that patients
with intrinsic/internal adenomyosis, i.e., adenomyotic lesions that are close to the en-
dometrium, are more likely to have a history of curettage as compared with those other
subtypes of adenomyosis (32.2% vs. up to 9.1%) [187]. Consistently, focal adenomyosis of
the outer myometrium or external/extrinsic adenomyosis is found to be closely linked with
deep endometriosis [45,49,50], raising the possibility that some subtypes of adenomyosis
and deep endometriosis may be two forms of the same disease [50].

Recent studies also indicate that different subtypes of adenomyosis have different
symptomology. For example, internal adenomyosis (that is, lesions proximal to the en-
dometrium) is more likely to be associated with heavy menstrual bleeding, while external
adenomyosis (that is distal to the endometrium but proximal to the uterine serosa) is
closely linked with deep endometriosis [47], a finding that has also been mentioned in
Kishi et al. [187]. Indeed, the recent discovery of the three-dimensional histoarchitecture of
the endometrium [209,210] would strongly support the notion that EMID resulting from
iatrogenic uterine procedures, such as curettage, would likely cause intrinsic/internal, but
less likely extrinsic/external, adenomyosis.

The recognition of this heterogeneity may help us better understand the pathogenesis
and pathophysiology of adenomyosis. This also would call for better phenotyping in future
epidemiological studies. Failure to distinguish different subtypes of adenomyosis that are
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likely to be pathogenetically and phenotypically different may diminish the signal-to-noise
ratio, leading to erroneous conclusions. Better phenotyping of adenomyosis may also help
to reconnect the seemingly disconnect between theories of adenomyosis pathogenesis and
epidemiological studies in search of risk factors for adenomyosis.

The EMID hypothesis can be proven experimentally and can explain why iatrogenic
uterine procedures increase the risk of developing adenomyosis. In addition, the hypoth-
esis would predict that the magnitude of the risk of developing iatrogenically induced
adenomyosis may depend not only on the mode but also on the extent and severity of
EMID [91]. This may explain why not all women who underwent iatrogenic uterine pro-
cedures develop adenomyosis since different women may simply experience different
modes or degrees of EMID. If EMID is extensive and severe enough, there should be an
increased risk of developing adenomyosis as opposed to minor or no EMID. More im-
portantly, the EMID, as a tissue trauma, would cause tissue injury, eliciting the release of
substance P [211] and PGE2 [212], and activate the hypothalamic–pituitary–adrenal (HPA)
axis, resulting in increased release of catecholamines such as adrenaline/ noradrenaline,
which, in turn, may suppress cell-mediated immunity [213]. The abundance of adrenergic
nerve fibers in the uterus [214,215] seems to give credence to this view. This would indicate
that perioperative intervention to counter either the action of the receptor for substance P,
neurokinin receptor 1 (NK1R), or to contain the release of PGE2 by inhibiting COX-2, or
the adrenaline receptor would reduce the risk of adenomyosis resulting from EMID [91].
Indeed, perioperative administration of an NK1R inhibitor or a β-blocker plus a COX-2
inhibitor did reduce the risk of developing adenomyosis in mice [91].

4.2. Knowledge Gaps

Although the EMID hypothesis is now supported by experimental evidence, there is
still a vast knowledge gap. For example, what is the exact molecular mechanism underlying
EMID-induced adenomyosis? How does the perioperative intervention reduce the risk
of developing adenomyosis? What is its underlying mechanisms of action? Can the
benefits of a perioperative intervention be translated into a clinical setting? Given the
popularity of iatrogenic uterine procedures nowadays and given the excellent safety profiles
of β-blockers, andrographolide, and NK1R inhibitors such as aprepitant, it seems that
clinical studies or trials are badly needed.

More fundamentally, recent advancement in delineating the three-dimensional his-
toarchitecture of the human endometrium has revealed that the human endometrial glands
have a unique and complex 3-D structure that is drastically different from the traditional
view [209,210]. In essence, the seemingly non-branching, single, vertical functionalis glands
originate from a complex horizontally interconnecting network of basalis glands [209],
which do not detach during menstruation [216] and are believed to harbor endometrial
epithelial stem cells. Since the basalis glands are physically located at the EMI region,
any EMID event is likely to disrupt these glands. Hence, it is likely that the EMID proce-
dure would cause injury to basalis glands, inaugurating a chain of events of tissue repair,
such as platelet aggregation, recruitment of immune cells, release of inflammatory cy-
tokines, hypoxia, and increased local production of estrogen, that collectively lead to the
infiltration of glandular epithelial cells with possible pluripotent capability into the my-
ometrium, establishing the adenomyotic lesion [39]. The finding that adenomyosis lesions
are stereoscopically characterized by an “ant colony-like network” that directly connects
with endometrial glands [210] appears to support this notion. Yet, how the basalis glands
are involved in the formation of initial lesions and whether or not there are other aiders
and abettors would await future investigations. Here, it may be helpful not to be fixated on
a few pre-determined suspecting factors but, rather, to keep an open mind, cast a wider net
whenever possible, and be practical.

In addition, while hyperprolactinemia is common in patients with adenomyosis [113,133],
the exact role of PRL in inducing the condition has not been fully characterized. In particular,
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given the diverse functions of PRLR-S and PRLR-L, it may be time to evaluate their presence,
abundance, and functions in human adenomyosis.

Moreover, given the shorter AGD in women with adenomyosis (Ding et al., un-
published data) similar to those with endometriosis [189–193], it seems that the in-utero
exposure to elevated levels of estrogen may increase the risk of developing adenomyosis.
How and why this is the case would warrant further confirmation and investigation.

The recently documented close link between external/extrinsic adenomyosis and
deep endometriosis [45–50] strongly suggests that the two disease entities may have a
causal relationship. It is possible that the two entities may represent the same disease [50].
Alternatively, one disease entity could be simply caused by the other due to physical prox-
imity and the invasiveness of ectopic endometrium [217]. Very limited mutation frequency
data seem to indicate that deep endometriotic lesions concurrent with adenomyosis had a
higher KRAS mutation frequency than neighboring adenomyotic lesions (Figure 4 in [218]),
and, as such, suggest that external/extrinsic adenomyotic lesions may be secondary to
and colonized by neighboring deep endometriotic lesions. Unfortunately, these data are
too scarce to be conclusive. In principle, for these two disease entities, one can simply
resolve the issues of which one was the first established and of whether the two have any
relationship by constructing a phylogenetic relationship between the two through the use
of the molecular clock. Recent methodological advancements such as the use of the DNA
methylation clock [219] should be able to help determine whether there is any relationship
between the two disease entities as well as which entity existed first.

5. Conclusions

So far, several hypotheses/theories on the pathogenesis of adenomyosis have been
proposed and articulated, and understandably, the focus is often on their novelty, ingenuity,
and explanatory power. However, the aspects of falsifiability and of their predictive power
are frequently overlooked. This is unfortunate since if a theory cannot be falsifiable, then it
is akin to a religion, and if the theory cannot be used to make useful predictions, then its
utility is questionable or perhaps dubious. Arguably, falsifiability and predicting power
are equally important as novelty, ingenuity, and explanatory power to a good theory.

To prove or refute a hypothesis or even a theory on the pathogenesis of adenomyosis,
animal models are arguably indispensable and critical. This is due not only to the logistic
and ethical constraints on human experimentation but also to the fact that in many animal
species, including rodents, adenomyosis can occur spontaneously. Even if a prospective,
longitudinal human study to test a specific hypothesis of adenomyosis pathogenesis can
be launched, animal models would still be needed to tease out the underlying molecular
mechanisms. The ease of manipulating the environment, the economy, and the shorter
timespan that an animal model can offer would also help to generate new hypotheses to be
tested in future epidemiological studies. In this sense, animal models of adenomyosis are
here to stay.

The ultimate goals for establishing animal models of adenomyosis that are consistent
with epidemiological data are to help unveil its pathogenesis, to translate experimental
data into better diagnosis and better management of the disease, and, hopefully, to devise
interventional measures to prevent the disease. The EMID mouse model has helped us to
unveil, at least in part, some possible pathogenetic causes for developing adenomyosis.
However, EMID is not the sole cause for adenomyosis. Future studies, including animal
studies, are warranted to understand how and why in utero and/or prenatal exposure to
elevated levels of estrogens increases the risk of developing adenomyosis in adulthood, to
elucidate whether PRL plays any role in the pathogenesis of adenomyosis, and to identify
sufficient condition(s) that cause adenomyosis.

Finally, there is still a glaring disconnect between theories of pathogenesis and epi-
demiological findings. Part of this disconnect may stem from the lack of appreciation that
there are different subtypes of adenomyosis, which may have different pathogenesis. In
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future investigations, perhaps a clearer definition of adenomyosis subtypes and better
phenotyping may help to reconnect pathogenetic theories and epidemiological findings.
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