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Abstract: Rat basophilic leukaemia (RBL) cells have been used for decades as a model of high-
affinity Immunoglobulin E (IgE) receptor (FcεRI) signalling. Here, we describe the generation and
use of huNPY-mRFP, a new humanised fluorescent IgE reporter cell line. Fusion of Neuropeptide
Y (NPY) with monomeric red fluorescent protein (mRFP) results in targeting of fluorescence to
the granules and its fast release into the supernatant upon IgE-dependent stimulation. Following
overnight sensitisation with serum, optimal release of fluorescence upon dose-dependent stimulation
with allergen-containing extracts could be measured after 45 min, without cell lysis or addition
of any reagents. Five substitutions (D194A, K212A, K216A, K226A, and K230A) were introduced
into the FcεRIα cDNA used for transfection, which resulted in the removal of known endoplasmic
reticulum retention signals and high surface expression of human FcεRIα* in huNPY-mRFP cells
(where * denotes the penta-substituted variant), comparable to the ~500,000 FcεRIαmolecules per cell
in the RS-ATL8 humanised luciferase reporter, which is a human FcεRIα/FcεRIγ double transfectant.
The huNPY-mRFP reporter was used to demonstrate engagement of specific IgE in sera of Echinococcus
granulosus-infected individuals by E. granulosus elongation factor EgEF-1β and, to a lesser extent, by
EgEF-1δ, which had been previously described as IgE-immunoreactive EgEF-1β/δ.

Keywords: NPY-mRFP; RBL; reporter system; IgE; Echinococcus granulosus; EgEF-1β/δ

1. Introduction

Rat basophilic leukemia (RBL) cells were established in 1973 by Eccleston and co-
workers [1] and have since been modified for a variety of diagnostic or therapeutic
(e.g., drug development) purposes [2], as well as mechanistic studies [3], through sta-
ble or transient transfections. Various adaptations have been generated to allow the RBL
cells to bind Immunoglobulin E (IgE) from other mammalian species, e.g., human [4],
canine [5], or equine [6] IgE.

A new generation of humanised rat basophilic leukaemia (RBL) IgE reporter cell lines
was first introduced with the creation of the EXiLE system, a firefly luciferase-based nuclear
factor of activated T-cell (NFAT) reporter [7]. These reporters are very sensitive, allowing
detection of as little as 15 pg of IgE or 1 fg/mL of egg white protein using appropriate
sera of hen egg white allergic donors [7]. Since then, fluorescent variants of the RS-ATL8
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reporter have been created [8] and improved [9], which enable their use in solid-phase-
based (e.g., allergen array) format [10]. The advantages and disadvantages of RBL-based,
humanised IgE reporters have been discussed in detail before [3,11]. Humanised IgE
reporter systems have been used to elucidate an intriguing ‘outbreak’ of allergy to wheat
hydrolysate containing cosmetic products in Japan [12,13], for the assessment of potential
allergenicity of anti-helminthic vaccine candidates [14], to identify exposure to Ascaris
lumbricoides as a potential cause underlying red meat allergy (Alpha-Gal sensitisation) [15]
or to identify potential new allergens in black tiger shrimps [16], with another group
suggesting that they may be superior to conventional diagnostic allergy tests in the case
of shrimp allergy [17]. Here, we describe the generation and use of a faster, convenient
new humanised fluorescent IgE reporter system, which does not require addition of any
substrate and is, therefore, suitable for use in, e.g., high-throughput screening assays.
The FcεRIα chain, which is needed to enable RBL cells to bind human IgE [18], has been
modified by several amino acid substitutions to increase its surface expression.

The resulting IgE reporter is a humanised IgE reporter with high human FcεRIα
surface expression, which can be used for the detection of specific IgE cross-linking by
cognate allergens in as little as 45 min, without the need for exogenous substrate addition.

2. Materials and Methods
2.1. Antibodies and Reagents

The following antibodies were used in this study: Direct-Blot™ HRP anti-human
FcεRIαmouse monoclonal antibody, clone AER-37 (CRA-1) from Biolegend. Anti-human
FcεRIα FITC monoclonal antibody, clone AER-37 (CRA-1) from Thermo Fischer Scientific
(#11-5899-42). Mouse Monoclonal anti-6x His-tag antibody (clone GT359) from Merck.
Goat anti-mouse IgG (Fc specific)–HRP polyclonal antibody (Merck, Cat Nr. A0168). Rat
serum was purchased from Biowest (Nuaillé, France) and human IgE from BioPorto
(Hellerup, Denmark).

2.2. Cell Culture

All cell culture work was carried out using sterile techniques, in class II microbiological
safety cabinets as described before [19]. The cells were cultured at 37 ◦C and 5% CO2 in
a humidified incubator using Minimum Essential Medium (Merck) supplemented with
10% v/v heat-inactivated fetal bovine serum, 100 U/mL penicillin, 100 µg/mL strepto-
mycin and 2 mM L-glutamine (RBL Medium). The RBL medium was supplemented with
1 mg/mL G418 (Thermo Fischer Scientific, Waltham, MA, USA) and 0.2 mg/mL of Zeocin
(Invitrogen/Thermo Fischer Scientific) to preserve NPY-mRFP and human FcεRIα trans-
gene expression, respectively. The other reporter cells were cultured with addition of
0.2 mg/mL Hygromycin (Merck, Darmstadt, Germany) for RS-ATL8, 20 µg/mL Blasti-
cidin S (Gibco) for NFAT-DsRed, 20 µg/mL Blasticidin S and 0.6 mg/mL Hygromycin for
NFAT-DsRed FCER1G.

2.3. Construction of the Stably Transfected NPY-mRFP Reporter

The construction of the humanised NPY-mRFP reporter occurred in two steps.
A plasmid with the cDNA encoding a Pre-Pro-Neuropeptide Y (NPY)-mRFP fusion pro-
tein, driven by the Cytomegalovirus (CMV) promoter, was a kind gift from Ronit Sagi-
Eisenberg, Tel Aviv University, Israel. The NPY-mRFP plasmid was stably transfected into
RBL-2H3 cells as follows: 2 µg of plasmid dissolved in ≤5 µL was electroporated into
4 × 106 RBL-2H3 cells in 100 µL cell culture medium using a 4 mm cuvette in a Gene Pulser
Xcell™ (Bio-Rad, Hercules, CA, USA) set to 250 V/250 µF with an exponential decay proto-
col. Transfection of pDsRed-Express-N1 (Clontech) was performed in parallel to estimate
overall transfection efficiency. After electroporation, 20 µL unaggregated cells was pipetted
into each well of clear, flat-bottomed, tissue culture-treated 12-well polystyrene plates
(Corning) containing 1 mL RBL medium, which were placed in a cell culture incubator
overnight. Next, 1 mg/mL Geneticin (Gibco) was used for stable transfectant selection
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and to maintain long-term NPY-mRFP expression. After G418 selection, single, stably
transfected NPY-mRFP RBL-2H3 cells were sorted into each well of a 96-well plate by FACS
using a MoFlo cell sorter (Beckman Coulter, Brea, CA, USA) and a highly fluorescent clone
was expanded for further experiments.

In the second step, the stable NPY-mRFP transfectant was transiently transfected with
a cDNA encoding a modified FcεRIα chain (FcεRIα*). Modifications were introduced to
increase surface expression in the absence of the FcεRIγ chain, as explained in more detail
elsewhere [9]. In brief, five amino acids, which have been shown to result in FcεRIα chain
retention or retrograde transportation in the absence of FcεRIγ (D192, K212, K216, K226
and K230) [20,21], were substituted with alanine. Additionally, the natural signal peptide
was replaced with the cDNA encoding the signal peptide of mouse MHC class I H2-Kb
(MVPCTLLLLLAAALAPTQTRAG), as this has also been shown to increase FcεRIα surface
expression also in the absence of the FcεRIγ chain [22]. The modified FcεRIα* cDNA
was synthesised by GeneArt (Invitrogen/Thermo Fischer Scientific) and subcloned into
pcDNA3.1/Zeo plasmid, which contains a Zeocin resistance gene, using HindIII and EcoRV
(both from New England Biolabs) as directed by the manufacturer. Successful insertion
was verified by DNA sequencing. For transfection, the FcεRIα*-pcDNA3.1/Zeo plasmid
was transfected into RBL-2H3 cells as described before [9].

The structural prediction of FcεRIα* was generated with AlphaFold 2 [23] using
ColabFold [24].

2.4. Flow Cytometry

For staining the surface-expressed human FcεRIα*, cells were seeded in Nunc UpCell
Surface cell culture plates (Merck) and incubated overnight, in the appropriately supple-
mented RBL medium. Cells were then washed once with 1× DPBS w/o Ca2+/Mg2+ and
sensitised with 1 µg/mL human IgE for 16 h at 37 ◦C. The next day, cells were incubated
with 2% rat serum to block the endogenous immunoglobulin receptors for 4 h at 37 ◦C. For
detachment, the cells were kept at room temperature for 30 min, stained using anti-human
FcεRIα FITC antibody (1:100 dilution) for 1 h on ice in the dark and washed three times
with 1x DPBS. FACS analysis was then performed using a BD Accuri C6 Flow cytometer.
Data were analysed with Kaluza Analysis 2.1 software (Beckman Coulter).

2.5. Recombinant Expression and Purification of Echinococcus granulosus
IgE-Immunoreactive Antigens

The Echinococcus granulosus proteins EF1-beta (UniProt U6J0Q2) and EF1-delta (UniProt
W6UWE9) were recombinantly expressed in a HEK293-6E suspension cell culture system.
The coding sequences for both genes were synthesised by GeneArt (Thermo Fisher Sci-
entific) with restriction sites BmtI/BstEII. In addition to the octa-Histidine tag present
in the vector, a c-Myc tag was added in the reverse primer for both genes and cloned
into pTT28 vector (National Research Council Canada). The following primers were
used: EF-1 beta FW: 5′-GATCGCTAGCATGGTTTTCGGCGATCTCAAG-3′; EF-1 beta RV:
5′-GATCGGTGACCCAGATCCTCTTCTGAGATGAGTTTTTGTTC CAATTTGTTAAA-
GGCAGCGATATCA-3′; EF-1 delta FW: 5′-GATCGCTAGCATGGAAAGTACGTTGAGG-
TTTGAT-3′; EF-1 delta RV: 5′-GATCGGTGACCCAGATCCTCTTCTGAGATGAGTTTTTG-
TTC CAGCTTGTTAAAGGAAGCTACAT-3′.

HEK293-6E cells grown in suspension were transfected with a polyethylenimine:DNA
ratio of 3:1, using PEI MAX transfection grade linear 40 kDa polyethyleneimine from
Polysciences (Warrington, PA, USA) as described before [15]. The transfected cells were
grown in serum-free F17 medium at 37 ◦C under constant shaking for 5 days. Cells
were then centrifuged and the supernatant containing the secreted proteins filtered using
0.45 µm sterile filters. Affinity chromatography purification of the E. granulosus recombinant
proteins was performed by using a HisTRAP-HP column using an ÄKTA start protein
purification system (Cytiva, Marlborough, MA, USA). The purity of the eluted fractions was
assessed by stain-free SDS-PAGE gels prepared using 2,2,2 Trichloroethanol (Merck) [25].
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The in-frame expression of the proteins was further confirmed by Western blotting using
a mouse monoclonal anti-His tag antibody (1:1000) as primary antibody, followed by a
polyclonal goat anti-mouse IgG (1:20,000).

2.6. Western Blotting

Cells were lysed by heating at 100 ◦C in Laemmli sample buffer (BioRad) and resolved
by 10% or 12% sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. Proteins
were transferred to nitrocellulose membranes using a Transblot Turbo device (BioRad) and
blocked with Tris-buffered saline containing 0.1% Tween-20 and 5% skimmed milk powder
(blocking buffer). An HRP anti-human FcεRIα was incubated overnight at 4 ◦C in blocking
buffer on a rocking platform. Proteins were detected using Cytiva Amersham™ ECL™
Prime Western Blot detection reagent and ChemiDoc MP imager (BioRad). The signal
bands were quantified using BioRad’s Image Lab software against the total protein content.

2.7. Extracting Pollen Allergen from Holcus lanatus Grass

Holcus lanatus (common velvet) grass was collected in Giessen, Germany and its iden-
tity kindly confirmed by B. Honermeier, Department of Agronomy and Crop Physiology,
Justus Liebig University of Giessen. The inflorescences were snap frozen in liquid nitrogen,
followed by grinding into a fine powder with an autoclaved mortar and pestle. Then, 1.3 g
of powder was mixed with 30 mL Ca2+/Mg2+-free sterile DPBS and stirred in a beaker with
a magnetic stirrer for 30 min at room temperature. The supernatant containing the soluble
grass extract was collected by centrifugation for 5 min at 1500× g, filtered using a 0.22 µm
sterile filter, aliquoted, and stored at −20 ◦C.

2.8. Serum Samples

The sera were heat inactivated at 56 ◦C for 5 min to avoid potential cytotoxicity and
added to the cell suspension at 1:50 dilution. This short heat treatment inactivates serum
complement without affecting the ability of IgE to bind to the FcεRI receptor [26].

2.9. Reporter Assay

Viability was determined by the Trypan blue method using a TC20 automated cell
counter (BioRad). First, 100 µL of cells resuspended in culture medium to a density of
1 × 106 viable cells/mL was added to a cell-culture-treated, flat-bottomed 96-well plate
and incubated at 37 ◦C and 5% CO2 in a humidified incubator. The cells were sensitised
by adding heat-inactivated serum in a 1:50 dilution and incubated for a further 18–20 h.
The next day, medium was removed and the cells washed once with DPBS. Using phenol
red-free medium (Thermo Scientific Fisher), 65 µL of each of the following conditions
was added to the appropriate wells followed by incubation for 45–50 min at 37 ◦C in a
humidified 5% CO2 incubator: (1) negative control (cells unstimulated); (2) three positive
controls 10 µg/mL Concanavalin A (Merck), 1 µg/mL polyclonal goat anti-human IgE
antibody (Merck), E. granulosus cyst fluid (10 µg/mL); (3) the recombinant antigens EgEF-
1β (0.01–1 µg/mL), EgEF-1δ (0.01–1 µg/mL). After 45–50 min, 50 µL of the supernatant
was carefully collected and transferred to 96-well plates (96F nontreated black microwell,
NUNC, Thermo Scientific Fisher) for fluorescence measurement using a CLARIOstar Plus
multimode microplate reader (BMG LabTech, Ortenberg, Germany).

2.10. Statistical Analysis

Fluorescence intensity data are presented as mean ± s.e.m. All data were analysed
using GraphPad Prism 8. Statistical significance was defined as a p-value ≤ 0.05. Ordinary
one-way or two-way ANOVA with multiple comparison tests were used, as detailed in
the corresponding figure legends. The obtained p values are denoted using * for p ≤ 0.05,
** for p ≤ 0.01, *** for p ≤ 0.001 and **** for p ≤ 0.0001.
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3. Results

The creation of the humanised NPY-mRFP IgE reporter occurred in two steps. In the
first step, RBL-2H3 cells were transfected with the linearized plasmid encoding the pre-
pro-NPY-mRFP sequence. The fusion protein is targeted to the granules, resulting in RBL
cells containing preformed mRFP in the granules, together with the other mediators [27].
To obtain a stable transfectant, the cells were kept under selective pressure with 1 mg/mL
G418 for several weeks. Cells were then separated according to their fluorescence by flow
cytometry and a highly fluorescent clone isolated and expanded for further experiments
(Figure 1A,B). The resulting cells showed bright expression of red fluorescent protein
(Figure 1C), which, as expected, was localised to the granules (Figure 1D).
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Figure 1. FACS assessment of NPY-mRFP RBL-2H3. (A) Dot-plot of untransfected RBL-2H3 cells.
(B) Dot-plot of stably transfected NPY-mRFP RBL cells. Highly fluorescent cells were gated for
cloning (see blue square). (C) Fluorescence microscopy showing unstimulated NPY-mRFP cells
with preformed fluorescence in the granules (100× magnification, bar size 400 µm). (D) Confocal
microscopy of NPY-mRFP cells obtained from the clonal, highly fluorescent NPY-mRFP cells after
sorting. Red fluorescence is from the NPYmRFP fusion protein, blue is nuclear DAPI stain. The
bottom line and left side show the Z-stack (magnification 630×, bar size 20 µm).

Next, the NPY-mRFP stable transfectants needed to be transfected with a vector
encoding the human FcεRIα chain. The cDNA encoding the FcεRIα chain was modified to
remove five known retention signals that result in low surface expression in the absence of
FcεRIγ [9]. Furthermore, the natural signal sequence was replaced with the signal peptide
of mouse MHC class I H2-Kb shown to increase FcεRIα surface expression [22]. This
modified FcεRIαwill be designated FcεRIα* henceforth (see Figure 2D).
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Figure 2. Comparison of human FcεRIα transgene expression in humanised NPY-mRFP and RS-ATL8
cell lines. Cell extracts of four different humanised RBL reporters were separated in 4–20% gradients
stain-free SDS-PAGE gels (A). The same extracts were transferred to a nitrocellulose membrane
and probed with an HRP-conjugated human FcεRIα-specific antibody (B). Intensity of bands was
normalised to total protein content using the corresponding lanes in the stain-free gel and expressed
as relative expression units compared to the RS-ATL8 cell line with the highest expression. Statis-
tical analysis was performed using ordinary one-way ANOVA followed by Dunnett comparison
test, with **** indicating p ≤ 0.0001. (C). AlphaFold2-generated structural model of the human
FcεRIα* receptor (D). The transmembrane segment of the alpha-helix is coloured in grey. The five
positions (D194A, K212A, K216A, K226A, K230A) which were mutagenised to remove known reten-
tion/retrograde transportation signals, known to reduce surface expression of the FcεRIα subunit [9],
are highlighted using red spheres. (E) Histograms comparing human FcεRIα levels on RBL-2H3
(dark blue), non-transfected NPY-mRFP (yellow), huFcεRIα-transfected NPY-mRFP cells (red) and
the RS-ATL8 humanised IgE reporter (light green) stained with anti-human FcεRIα FITC.

After transfection, we assessed the cells for the presence of human FcεRIα using
Western blotting. Protein extracts of four humanised RBL cell lines RS-ATL8 [7], NFAT-
DsRed [8], NFAT-DsRed FCER1G [9], and the humanised NPY-mRFP were separated on
4–20% stain-free TGX SDS-PAGE gels. The proteins were then transferred by electroblotting
to a nitrocellulose membrane and incubated with an HRP-conjugated anti-human FcεRIα
antibody and visualised using chemiluminescence.

For normalisation, according to total protein content, we performed stain-free SDS-
PAGE (Figure 2A), which allows in-gel detection of proteins after crosslinking of 2,2,2-
Trichloroethanol (TCE) with tryptophan residues under UV light [28]. Western blotting
demonstrated expression of the human FcεRIα chain in all four tested cell lines (Figure 2B),
with a major band around the expected MW of 50 kDa and a weaker lower band below
37 kDa, which may represent immature and mature FcεRIα receptors, similarly to what
has been described by other groups [29,30], and in line with a range of 45–60 kDa indicated
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by Ravetch [31]. While the calculated MW for FcεRIα*, including the five substitutions,
is 26.77 kDa, human FcεRIα is known to be heavily glycosylated on account of its six
N-glycosylation sites, resulting in a ~40–42% increase in its molecular weight [31].

Data were normalised using the total protein content for each lane in the stain-free
gel (Figure 2A) and compared to RS-ATL8, which showed the highest expression levels
(Figure 2B,C). However, as Western blotting cannot provide any information about whether
the detected FcεRIα is present on the cytoplasmic membrane or in intracellular compart-
ments, such as the endoplasmic reticulum, our next step was to use flow cytometry. We
assessed surface levels of FcεRIα* in huNPY-mRFP in comparison to FcεRIα expression
on RS-ATL8 (FcεRIα/FcεRIγ double transfectant) and the cell lines RBL-2H3 and (non-
humanised) NPY-mRFP, from which the humanised reporter cell line was sequentially
derived. Figure 2D shows the location of the substitutions; while four substitutions are
lysine to alanine swaps located close to the cytosolic C-terminus of the receptor, the fifth
substitution with alanine replaces an unusual aspartic acid residue, which maps to the
transmembrane helix. Overall, these modifications resulted in very high surface expression
of FcεRIα* (Figure 2E), comparable to the high levels found on RS-ATL8 cells, which we
previously found to express about 500,000 human FcεRIα receptors per cell [9]. Flow
cytometry, however, also revealed the presence of a cell population, which does not appear
to express FcεRIα on the surface, as can be expected from a transient transfection.

Our next aim was to determine the best time point for post-stimulation fluorescence
measurement. For this aim, huNPY-mRFP cells were sensitised overnight with serum of
a grass pollen allergic donor, after which excess serum was removed by washes and the
sensitised cells were stimulated with 1 µg/mL polyclonal goat anti-human IgE or 1 µg/mL
H. lanatus pollen extract. Supernatants were removed at 15, 30, 45, 60, and 120 min after
stimulation and measured in a plate spectrofluorometer. Figure 3 shows a statistically
significant increase in fluorescence already after 15 min, reaching an optimum after 45 min,
then decreasing progressively. Therefore, an incubation time of 45 min was chosen for all
further experiments.
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Figure 3. Time course of huNPY-mRFP sensitised with serum of a grass pollen allergic donor and
stimulated with a polyclonal antibody against human IgE or a H. lanatus pollen extract, both at
1 µg/mL. Supernatants were collected at the indicated time points and the released fluorescence
was measured. Shown is the mean fluorescence ± s.e.m. from three independent experiments, each
performed in triplicate. Statistical analysis was performed using two-way ANOVA followed by Tukey
multiple comparison test. **** indicates p ≤ 0.0001.

Once an optimal incubation time was established, we assessed dose-dependent fluores-
cence release after incubation of overnight serum-sensitised cells stimulated for 45 min with
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a polyclonal anti-human IgE antibody or grass pollen extract. As can be seen from Figure 4,
both the antibody and the allergen extract induced maximum activation at 1 µg/mL, with
statistically significant activation also at 0.1 µg/mL. The activation curve appears bell
shaped, with the highest (supra-optimal) concentrations of stimulant leading to lower
cellular activation, as expected for IgE-dependent stimulation.
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Figure 4. Dose-dependent activation of huNPY-mRFP cells upon 45 min exposure to polyclonal anti-
human IgE antibody or H. lanatus pollen extract after overnight sensitisation with grass pollen allergic
donor serum diluted 1:50. The mean fluorescence ± s.e.m. from three independent experiments, each
performed in triplicate is shown. Statistical analysis was performed using ordinary one-way ANOVA
followed by Dunnett multiple comparison test. The obtained p values are shown using * for p ≤ 0.05
and **** for p ≤ 0.0001.

Finally, we wanted to explore the applicability of huNPY-mRFP for the assessment of
IgE-mediated allergenicity (defined here as the ability of an antigen to induce activation
of the IgE reporter in a specific IgE-dependent way) of individual molecules, rather than
complex extracts. For this purpose, we cloned and recombinantly expressed two antigens
from the zoonotic parasite Echinococcus granulosus, the causative agent of cystic echinococ-
cosis. E. granulosus cysts are well known to contain highly allergenic substances, with
the potential to induce anaphylaxis upon cyst rupture, for example, during cyst removal
surgery [32]. We chose the following two antigens: E. granulosus elongation factor 1β
(EgEF-1 β; EGR_02060, UniProt U6J0Q2) and EgEF-1δ (EGR_07280, UniProt W6UWE9).
E. granulosus EgEF-1β/δ has previously been shown to be recognised by IgE in cystic
echinococcosis patients [33]. However, since EgEF-1β and EgEF-1δ are encoded by separate
genes and have multiple different cell functions, we wanted to use the huNPY-mRFP re-
porter to assess whether only one or both elongation factors were recognised by specific IgE
in cystic echinococcosis patients. HuNPY-mRFP reporter cells were sensitised overnight
with sera of cystic echinococcosis patients or healthy control sera and stimulated with
three different concentrations of recombinant EgEF-1β and EgEF-1δ, and fluorescence was
measured after 45 min. As shown in Figure 5, EgEF-1β activated the huNPY-mRFP reporter
in 4/4 tested sera, while EgEF-1δ was less strong in inducing activation, with only 2/4
resulting in activation. No activation was found in any cases with healthy donor sera,
except for the ConA-positive control.
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Figure 5. Results of huNPY-mRFP activation after sensitisation with 4 different cystic echinococcosis
sera (Nr. 30, 24, 13, and 32 in (A–D), respectively) and 4 different healthy individuals’ sera (Nr. 52, 42,
48, and 57 in (A–D), respectively). Cells were sensitised overnight with 1:50 dilutions of sera and
left unstimulated (Neg Con), stimulated with the positive control ConA (1 µg/mL), E. granulosus
cyst extract (1 µg/mL), or 3 different concentrations of recombinant EgEF-1β or EgEF-1δ. Statistical
analysis was performed by two-way ANOVA followed by Bonferroni comparison test comparing
control with patient serum for each condition. The obtained p values are denoted using * for p ≤ 0.05,
** for p ≤ 0.01, *** for p ≤ 0.001 and **** for p ≤ 0.0001.

These experiments demonstrate how the huNPY-mRFP system developed in this work
can be used to assess the ability of suspected IgE-immunoreactive antigens to activate cells
by cross-linking FcεRI receptor-bound IgE. Vice versa, by employing known allergens using
the same approach with previously uncharacterized patients’ sera, we can systematically
and individually determine a patient’s allergenic IgE responsiveness in a diagnostic setting,
limited only by the availability of defined IgE-reactive diagnostic proteins. The short
incubation time and the lack of need for expensive substrates also makes this reporter
system a convenient choice for, e.g., high-throughput screening experiments of inhibitors
of this activation pathway.

4. Discussion

RBL-based humanised IgE reporter cell lines offer a series of advantages over the
older, humanised non-reporter RBL cell lines. Earlier protocols for assessment of IgE-
dependent activation were based on the measurement of beta-hexosaminidase activity,
which is preformed in granules and released upon degranulation. The enzymatic method
dates back to the original description by Leaback and Walker in 1961 [34]. Some groups
have attempted to increase sensitivity by using chemicals, such as deuterated water [35] or
N-ethylcarboxamidoadenosine [36], for enhancement of degranulation. We did not find
any additives to be necessary; however, when measuring fluorescence, it is important to use
black plates with low autofluorescence, as we found some products to substantially worsen
the signal-to-noise ratio. Key advantages of the huNPY-mRFP reporter system presented
here are the lack of need for expensive substrates or a lysis step (as with the RS-ATL8)
and the faster incubation time of 45 min. However, there are two possible disadvantages
to using the NPY-mRFP reporter. As fluorescence is released during degranulation, this
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reporter system cannot be used in array format, as it would disconnect the signal from its
location on the array. For use on arrays, we developed another humanised reporter system
called RBL NFAT-DsRed FCER1G, where fluorescence is cytosolic and can be measured
in array format [10]. The second potential issue is inherent to the signal transduction
pathway. Using an anti-IgE antibody for stimulation of basophils via the IgE receptor, the
optimum concentration for NFAT activation (reflecting cytokine induction) is an order of
magnitude lower than for histamine release and degranulation [37]. Thus, it is possible
that degranulation-based humanised RBL IgE reporters are intrinsically less sensitive than
the corresponding NFAT reporters.

We previously showed that different humanised IgE reporters, all derived from RBL-
2H3 cells, have very different levels of IgE receptors on the cell surface [9]. The highest
expression was shown by RS-ATL8 cells, a luciferase reporter obtained from SX-38 RBL cells;
both are double FcεRIα/γ chain transfectants and showed approximately 0.5 × 106 FcεRIα
surface molecules per cell. FcεRIα surface expression levels in NFAT-DsRed reporter cells
were 30-fold lower [9]. This may be explained by the absence of a human FcεRIγ chain
in NFAT-DsRed cells, leading to lower FcεRIα surface expression, due to the presence
of ER-retention signals in the IgE binding chain that are masked when the two different
chains bind to each other [9,20,21,38]. The quantitative Western blotting results shown in
Figure 2C seem to reflect a three-fold difference between RS-ATL8 cells and NFAT-DsRed
cells and an approximately two-fold difference between RS-ATL8 and huNPY-mRFP cells.
This suggests that the overall amount of FcεRIα in the cell is less variable than on the
surface. The fact that a substantial fraction of the huNPY-mRFP cells shows similar surface
FcεRIα levels (in fact, slightly higher) in comparison with the RS-ATL8 cells (Figure 2E),
clearly demonstrates that removal of the five known retention signals (Figure 2D) enables
the FcεRIα receptor chain to reach the cell surface, even in the absence of human FcεRIγ
chain transfection. Interestingly, we obtained only a modest increase in surface expression
by stably transfecting the NFAT-DsRed reporter cell line with the human FcεRIγ chain [9].
This suggests that the association of the two different chains in the ER is only partially able
to rescue surface expression of the IgE binding FcεRIα chain.

While selection for stable transfectants with the modified human FcεRIα*chain is
still ongoing and will include two subsequent rounds of clonal selection, the NPY-mRFP
reporter gene transfection is stable. We did not see any changes in expression of fluorescence
in the granules after several months of culture in the presence of selective pressure. Cells
recover well upon defrosting after prolonged storage in liquid nitrogen.

Our experiments confirmed the ability of EgEF-1β to cause reporter activation with
4/4 sera of infected individuals, while EgEF-1δ only activated the huNPY-mRFP reporter
sensitised with 2/4 tested sera. No activation was seen with any of the tested healthy
donor sera. Optimal concentration differed between individuals, a well-known feature also
found in activation of peripheral blood basophils from different individuals [39]. This also
illustrates the necessity to use a range of concentrations for each tested IgE-immunoreactive
antigen. Finally, it is also apparent from our data that the signal levels obtained with EgEF-
1β and -1δ are weaker than those obtained with the cyst extract. This suggests that the cyst
extract contains more powerful, yet unknown IgE-immunoreactive antigens and/or that the
signal strength is the result of the additive effects of multiple IgE-immunoreactive antigens.
However, any gain in sensitivity obtained by using cyst extract for diagnosis would need
to be weighed against the increased potential for cross-reactivities with related parasite
species, translating into lower specificity. Thus, we believe that the best compromise may
be achieved by carefully choosing a small set of diagnostic antigens with the best signal
strength and the lowest cross-reactivity with other parasitic species.

5. Conclusions

Taken together, we generated a new, fast, humanised IgE reporter cell line, which
is characterised by high-FcεRIα surface expression, probably due to the five amino acid
substitutions introduced mainly in the intracellular region of the protein. The huNPY-mRFP
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reporter only requires a short incubation time of 45 min (which compares favourably with
the >16 h needed for the NFAT-DsRed reporter) and does not require the addition of any
substrates. This makes it a suitable candidate for use in, e.g., high-throughput screening for
degranulation inhibitors, but also for IgE-based diagnostic purposes. It will be interesting
to validate the new reporter with a larger number of sera and compare its suitability for
the diagnosis of allergic sensitisation or parasitic infection, comparing it to, e.g., basophil
activation tests or other tests used in clinical practice.
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