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Abstract: Epichloë is a genus of filamentous fungal endophytes that has co-evolved with cool-season
grasses with which they form long-term, symbiotic associations. The most agriculturally impor-
tant associations for pasture persistence for grazing livestock are those between asexual vertically
transmitted Epichloë strains and the pasture species, perennial ryegrass, and tall fescue. The fungus
confers additional traits to their host grasses including invertebrate pest deterrence and drought tol-
erance. Selected strains of these mutualistic endophytes have been developed into highly efficacious
biocontrol products and are widely utilized within the Americas, Australia, and New Zealand for
pasture persistence. Less publicized is the antagonism Epichloë endophytes display towards multiple
species of saprophytic and pathogenic microbes. This opinion piece will review the current literature
on antimicrobial properties exhibited by this genus of endophyte and discuss the reasons why this
trait has historically remained a research curiosity rather than a trait of commercial significance.
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1. Introduction

Most multicellular life on Earth lives in symbiosis with microorganisms [1]. Plants, for
example, whether they are growing within natural or managed ecosystems, are constantly
interacting with a myriad of living microorganisms, including archaea, bacteria, fungi, and
protists, throughout their lifecycle [2]. This microbial community (the plant microbiota)
coupled with the surrounding environment (the entire habitat = the microbiome) has
distinct physio-chemical properties and is crucially important for the health and produc-
tivity of the host plant. The interactions between hosts and microbes, or symbiosis, are
complex ranging from mutualism through commensalism to parasitism in a continuous
manner [3,4] and are important ecological determinants of plant biodiversity [5], although
some regard parasitism as an unbalanced status of the symbiosis [6]. Furthermore, mutual-
istic symbioses were likely responsible for early host plant habitat transitions in the late
Precambrian era (ca. 600 Ma) with several microbial species implicated in the evolution
of photosynthesizing organisms [7–10]. This concept forms the basis for the hologenome
theory of evolution [11] and proposes that the holobiont, the plant host plus all of its
symbionts, is a unit of selection [12]. Although the first mutualistic symbioses were likely
to have been associations between simple monerans and protists that led to the Cambrian
explosion [10], present day symbiosis are more diverse. Examples include lichens (associa-
tions between algae or cyanobacteria and several fungal species), those between rhizobia
and legumes, mycorrhiza (those associations between plants and fungi), and associations
between Epichloë fungal endophytes and cool-season grasses.
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2. Epichloë Endophytes

Epichloë (family Clavicipitaceae) is a monophyletic genus of filamentous fungi that
form perpetual symbioses with cool-season grasses (family Poaceae subfamily Pooideae) [13].
These endophytes are regarded as keystone species, being ecologically important con-
stituents of many grassland ecosystems, which cover over 30% of the Earth’s land area
and are, therefore, one of the largest biomes on the planet [14–16]. Epichloë species are
naturally restricted to a host genus or closely related grass genera within a tribe as a
result of co-evolution over many millennia [17–19]. However, this group of grass sym-
bionts may have originally emerged from an animal pathogen via an interkingdom host
jump [20,21]. As with most members of the Ascomycota, the genus Epichloë includes
both anamorphic (asexual) and teleomorphic (sexual) species, with the former previously
classified as Neotyphodium [22]. Over 30 species of Epichloë have been described [22] with
most exhibiting an anamorphic lifecycle.

Obligatory sexual species of Epichloë are largely antagonistic to their host plant as
the epiphytic stroma that is formed on the developing host inflorescence, essential for
horizontal transmission, suppresses plant seed production, thereby impeding the hosts
ability to reproduce [23]. In contrast, the asexual species are symptomless within their
host plants being exclusively vertically transmitted via the host’s seed [24,25]. Many of
the plant’s progeny inherit chromosomes and cytoplasm from their parents but also their
mutualistic symbionts, constituting a form of hereditary endosymbiosis [26]. Epichloë
have been documented to confer a multitude of beneficial attributes to their host grasses.
These attributes differ across the various endophyte–host associations with the most
prominent being protection from mammalian and invertebrate herbivory via the production
of secondary metabolites, most notably alkaloids [27]. The major metabolites involved
in this defensive mutualism include peramine, an insect feeding deterrent; the lolines, a
group of saturated exo-1-amino pyrrolizidines that exhibit a broad spectrum of insecticidal
activity; indole diterpenes and ergot alkaloids that contain classes of compound that exhibit
toxicity towards both vertebrates and invertebrates [28]. Additional attributes include
tolerance against abiotic stresses (i.e., when the plant is exposed to adverse environmental
conditions) such as those caused by drought and/or nutrient deficiencies [29,30].

Epichloë endophytes were initially identified as the cause of a serious agriculture issue
due to some endophyte-grass associations producing alkaloidal neurotoxins that are detri-
mental to many animal species, including livestock (i.e., farmed ruminants) [31]. The most
potent of these compounds include the lolitrems (indole diterpenes) and ergot alkaloids that
result in ryegrass staggers and heat stress/fescue-foot syndromes respectively [32–34]. Re-
search on the Epichloë endophyte associations with Lolium perenne L. (perennial ryegrass) in
New Zealand (NZ) and Lolium arundinaceum (Schreb.) S.J. Darbyshire (= Festuca arundinacea
Schreb.; tall fescue) in the USA, identified asexual Epichloë strains that were less toxic to
livestock whilst conferring advantageous traits to their host grasses. Since this initial
research in the 1980s and 1990s, scientific programmes have been established that center
on bioprospecting pipelines to identify, characterize and select agriculturally beneficial
endophyte strains (those that confer advantageous traits to their host while producing little
or no detrimental effects to grazing livestock) that could be incorporated into elite grass
cultivars with increased pasture persistence and productivity [30,31].

AgResearch (a NZ government owned research institute that carries out scientific re-
search for the benefit of NZ; https://www.agresearch.co.nz; accessed on 15 September 2021)
developed bioprospecting pipelines that (1) identify Epichloë endophytes from global collec-
tions of germplasm, (2) characterize Epichloë isolates with respect to their genetic diversity,
secondary metabolite profiles and bioactivity, (3) inoculate agriculturally useful strains
with commercial potential into elite grass cultivars, and (4) evaluate populations of novel
grass-endophyte associations through specifically designed agronomic and toxicological
screens [35,36]. Endophyte strains that are devoid of lolitrems and ergot alkaloids while
possessing insect-deterring compounds (e.g., peramine and/or lolines) generally have com-
mercial potential. This opinion piece will review the current literature on the antimicrobial
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properties exhibited by Epichloë fungal endophytes and discuss the reasons why this trait
has historically remained a research curiosity rather than a trait of commercial significance.

3. Interaction of Epichloë spp. with Plant Pathogens

Although a great deal of knowledge regarding the bioactivity of Epichloë-derived
secondary metabolites on invertebrate pests has been gained, little research has been under-
taken on the biological control of fungal phytopathogens by Epichloë-infected grasses [37,38].
To the best of our knowledge, no published research documents the biological control of
bacterial phytopathogens by Epichloë, although certain endophyte strains can influence
the host plant’s bacterial microbiota [39]. Furthermore, no correlation exists between the
antifungal bioactivity expressed by these endophytes and their alkaloid profiles [40,41]
and although several Epichloë-based grass products are marketed across the continents of
Australia, North America and South America for their insect deterrent properties [30,31,42],
none are marketed for their control of plant diseases. However, Epichloë endophytes can
inhibit the growth and reproduction of other microorganisms, including economically
important fungal phytopathogens [43]. A recent meta-analysis has shown that all species
of phytopathogen significantly affected by the presence of Epichloë endophyte regard-
less of their lifestyle (biotrophic vs. necrotrophic), with both laboratory and greenhouse
comparisons showing negative effects of Epichloë spp. on the growth and infection by
phytopathogens [44]. However, many of the published reports describe bioactivity that
has been assessed using crudely designed in vitro dual culture bioassays (Table 1), with
fewer reports on this phenomenon in planta within a field situation (Table 2).

Table 1. In vitro bioactivity exhibited by species of Epichloë towards fungal saprophytes or phytopathogens. Bioassays
reviewed here are generally dual culture assays using viable fungal colonies, or their filtered crude extracts, undertaken
on potato dextrose agar (PDA) or a similar solid agar medium. These in vitro bioassays are restricted to only assessing
antibiosis and cannot assess other mechanisms of action (i.e., induced resistance or competition).

Fungal Species 1 Host Species Fungal Pathogen 2 Division Country Reference/s

Epichloë amarillans Achnatherum sibiricum Cochliobolus lunatus (syn. Curvularia lunata) Ascomycota China [37]
Cladosporium cucumerium Ascomycota China [37]

Fusarium oxysporum Ascomycota China [37]
Phomopsis vexans Ascomycota China [37]
Rhizoctonia solani Basidiomycota China [37]

Agrostis sp. Cryphonectria parasitica Ascomycota USA [45]

Epichloë bromicola Hordeum
brevisubulatum Alternaria sp. Ascomycota China [46]

Epichloë chisosa Achnatherum sibiricum Cochliobolus lunatus (syn. Curvularia lunata) Ascomycota China [37]
Cladosporium cucumerium Ascomycota China [37]

Fusarium oxysporum Ascomycota China [37]
Phomopsis vexans Ascomycota China [37]
Rhizoctonia solani Basidiomycota China [37]

Epichloë coenophialum
(FaTG-1) Lolium arundinaceum Alternaria alternata Ascomycota USA [47]

Ceratobasidium cornigerum
(syn. Rhizoctonia cerealis) Basidiomycota NZ and USA [40,48]

Cladosporium cladosporioides Ascomycota USA [47]
Cochliobolus lunatus (syn. Curvularia lunata) Ascomycota Poland [49]

Cochliobolus sativus
(syn. Bipolaris sorokiniana) Ascomycota China and Poland [49,50]

Cryphonectria parasitica Ascomycota USA [45]
Glomerella graminicola

(syn. Colletotrichum graminicola) Ascomycota NZ and USA [40]

Laetisaria roseipellis
(syn. Limonomyces roseipellis) Basidiomycota NZ and USA [40]

Pyrenophora erythrospila
(syn. Drechslera erythrospila) Ascomycota NZ and USA [41,51]

Gibberella acuminata
(syn. Fusarium acuminatum) Ascomycota China [50]

Rhizoctonia solani Basidiomycota Poland [49]
Waitea circinate (syn. Rhizoctonia zeae) Basidiomycota NZ and USA [40]
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Table 1. Cont.

Fungal Species 1 Host Species Fungal Pathogen 2 Division Country Reference/s

Epichloë FaTG-2 Lolium arundinaceum Pyrenophora erythrospila
(syn. Drechslera erythrospila) Ascomycota NZ [41]

Waitea circinate (syn. Rhizoctonia zeae) Basidiomycota NZ [41]

Epichloë FaTG-3 Lolium arundinaceum Ceratobasidium sp. Basidiomycota Australia [52]
Drechslera sp. Ascomycota Australia [52]

Pyrenophora erythrospila
(syn. Drechslera erythrospila) Ascomycota NZ [41]

Waitea circinate (syn. Rhizoctonia zeae) Basidiomycota NZ [41]

Epichloë festucae Festuca longifolia Ceratobasidium cornigerum
(syn. Rhizoctonia cerealis) Basidiomycota NZ and USA [40]

Glomerella graminicola
(syn. Colletotrichum graminicola) Ascomycota NZ, Japan and USA [40,53]

Laetisaria roseipellis
(syn. Limonomyces roseipellis) Basidiomycota NZ and USA [40]

Pyrenophora erythrospila
(syn. Drechslera erythrospila) Ascomycota NZ [41]

Waitea circinate (syn. Rhizoctonia zeae) Basidiomycota NZ [41]
Festuca pulchella Botrytis cinerea Ascomycota Japan [54]

Cochliobolus sativus
(syn. Bipolaris sorokiniana) Ascomycota Japan [53]

Drechslera dictyoides Ascomycota Japan [53]
Drechslera siccans Ascomycota Japan [53]

Glomerella graminicola
(syn. Colletotrichum graminicola) Ascomycota Japan [53]

Pyrenophora erythrospila
(syn. Drechslera erythrospila) Ascomycota Japan [53–55]

Phytophthora infestans Oomycota Japan [54]

Festuca rubra 3 Clarireedia homoeocarpa
(syn. Sclerotinia homoeocarpa) Ascomycota USA [56]

Cochliobolus sativus
(syn. Bipolaris sorokiniana) Ascomycota Poland [57]

Ceratobasidium cornigerum
(syn. Rhizoctonia cerealis) Basidiomycota NZ and USA [40]

Cryphonectria parasitica Ascomycota USA [45]
Drechslera dictyoides Ascomycota Poland [57]

Glomerella graminicola
(syn. Colletotrichum graminicola) Ascomycota NZ, Japan and USA [40,53]

Laetisaria roseipellis
(syn. Limonomyces roseipellis) Basidiomycota USA [40]

Pyrenophora erythrospila
(syn. Drechslera erythrospila) Ascomycota NZ [41]

Waitea circinate (syn. Rhizoctonia zeae) Basidiomycota NZ [41]
Festuca trachyphylla Botrytis cinerea Ascomycota Japan [54]

Pyrenophora erythrospila Ascomycota Japan [54]
Phytophthora infestans Oomycota Japan [54]

Lolium pratense Glomerella graminicola
(syn. Colletotrichum graminicola) Ascomycota Japan [53]

Epichloë festucae var.
lolii (=LpTG-1) Lolium perenne Ceratobasidium cornigerum

(syn. Rhizoctonia cerealis) Basidiomycota NZ and USA [40,47,48]

Glomerella graminicola
(syn. Colletotrichum graminicola) Ascomycota NZ and USA [40,58]

Ceratobasidium sp. Basidiomycota Australia [52]
Cryphonectria parasitica Ascomycota USA [45]

Drechslera andersenii Ascomycota Germany [59]
Drechslera poae Ascomycota Germany [59]

Drechslera siccans Ascomycota Germany [59]
Drechslera sp. Ascomycota Australia [52]

Drechslera teres Ascomycota Germany [59]
Fusarium sp. Ascomycota Australia [52]

Gibberella acuminata
(Fusarium acuminatum) Ascomycota China [50]

Pyrenophora erythrospila
(syn. Drechslera erythrospila) Ascomycota NZ [41]

Waitea circinate (syn. Rhizoctonia zeae) Basidiomycota NZ and USA [40,41]
Laetisaria roseipellis

(syn. Limonomyces roseipellis) Basidiomycota NZ and USA [40]
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Table 1. Cont.

Fungal Species 1 Host Species Fungal Pathogen 2 Division Country Reference/s

Epichloë gansuensis Achnatherum inebrians Alternaria alternata Ascomycota China [50]
Cochliobolus lunatus

(syn. Curvularia lunata) Ascomycota China [50]

Cochliobolus sativus
(syn. Bipolaris sorokiniana) Ascomycota China [50]

Gibberella acuminata
(syn. Fusarium acuminatum) Ascomycota China [50]

Epichloë hybrida
(=LpTG-2) Lolium perenne Pyrenophora erythrospila

(syn. Drechslera erythrospila) Ascomycota NZ [41]

Waitea circinate (syn. Rhizoctonia zeae) Basidiomycota NZ [41]

Epichloë LpTG-3 Lolium perenne Ceratobasidium sp. Basidiomycota Australia [52]
Drechslera sp. Ascomycota Australia [52]
Fusarium sp. Ascomycota Australia [52]

Epichloë occultans Lolium multiflorum Gibberella acuminata
(syn. Fusarium acuminatum) Ascomycota Argentina [60] *

Rhizoctonia solani Basidiomycota Argentina [60] *

Unknown Epichloë spp. Festuca simensis Alternaria alternata Ascomycota China [61]
Aspergillus niger Ascomycota China [62]

Cochliobolus sativus
(syn. Bipolaris sorokiniana) Ascomycota China [61,62]

Cochliobolus lunatus
(syn. Curvularia lunata) Ascomycota China [61,62]

Festuca versuta Ceratobasidium cornigerum
(syn. Rhizoctonia cerealis) Basidiomycota USA [48]

Lolium perenne Glomerella graminicola
(syn. Colletotrichum graminicola) Ascomycota NZ [58]

Pyrenophora erythrospila
(syn. Drechslera erythrospila) Ascomycota NZ [58]

Poa ampla Cryphonectria parasitica Ascomycota USA [45]
Poa autumnalis Cryphonectria parasitica Ascomycota USA [45]

Poa interior Cryphonectria parasitica Ascomycota USA [45]
Poa palustris Cryphonectria parasitica Ascomycota USA [45]
Poa rigidifolia Cryphonectria parasitica Ascomycota USA [45]

Poa sp. Cryphonectria parasitica Ascomycota USA [45]
Poa sylvestris Cryphonectria parasitica Ascomycota USA [45]

Neotyphodium starii 4 Festuca arizonica Glomerella graminicola
(syn. Colletotrichum graminicola) Ascomycota NZ [40]

Laetisaria roseipellis
(syn. Limonomyces roseipellis) Basidiomycota NZ and USA [40]

Waitea circinate (syn. Rhizoctonia zeae) Basidiomycota NZ [40]
Festuca obtusa Waitea circinate (syn. Rhizoctonia zeae) Basidiomycota NZ [40]

Epichloë tembladerae Festuca argentina Cryphonectria parasitica Ascomycota USA [45]
Poa hueca Cryphonectria parasitica Ascomycota USA [45]

Poa sp. Cryphonectria parasitica Ascomycota USA [45]

Epichloë uncinatum Lolium pratense
(syn. Festuca pratensis)

Cochliobolus sativus
(syn. Bipolaris sorokiniana) Ascomycota Poland [57]

Drechslera dictyoides Ascomycota Poland [57]
Gibberella avenacea

(Fusarium avenaceum) Ascomycota Poland [57]

Fusarium culmorum Ascomycota Germany [59]
Fusarium equiseti Ascomycota Poland [57]

Pyrenophora erythrospila
(syn. Drechslera erythrospila) Ascomycota NZ [41]

Rhizoctonia solani Basidiomycota Poland [57]
Typhula ishikariensis Basidiomycota Finland [63]

Waitea circinate (syn. Rhizoctonia zeae) Basidiomycota NZ [41]
1 Current scientific name. 2 Current scientific name, or most accepted name, followed by the synonym used within the citing manuscript.
3 Including subspecies. 4 Nomen dubium according to [22]. * In vitro experiment with axenic cultures of the pathogen and grass seed infected
with Epichloë.
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Table 2. In planta bioactivity exhibited by species of Epichloë towards fungal saprophytes or phytopathogens. In planta bioassays included all assays that did not work with axenic cultures
of Epichloë spp. and included detached leaf assays, whole plant assays with plants grown in controlled climate rooms, glasshouses, or field trials. IR = induced resistance.

Fungal Species 1 Original Host Species Type of Association Fungal Pathogen 2 Division Disease Suggested Mechanism Country Reference/s

Epichloë bromicola Leymus chinensis original Cochliobolus lunatus
(syn. Curvularia lunata) Ascomycota Curvularia blight IR China [64]

Cochliobolus sativus
(syn. Bipolaris sorokiniana) Ascomycota Spot blotch and root rot IR China [64]

original Waitea circinate
(syn. Rhizoctonia zeae) Basidiomycota Sheath and leaf spot IR Poland [49]

Secale cereale novel Cercosporidium graminis Ascomycota Leaf streak Unknown NZ [65]
novel Puccinia recondita Basidiomycota Leaf rust Unknown NZ [65]

Epichloë coenophialum Lolium arundinaceum original Cochliobolus lunatus
(syn. Curvularia lunata) Ascomycota Curvularia blight Competition

for nutrients China [66]

Epichloë festucae Festuca rubra original Cochliobolus sativus
(syn. Bipolaris sorokiniana) Ascomycota Spot blotch and root rot Antibiosis Poland [57]

original Dreschslera sp. Ascomycota Head blight Antibiosis Poland [57]
original Fusarium poae Ascomycota Head blight Antibiosis Poland [57]

Festuca rubra L.
subsp. rubra novel Laetisaria fuciformis Basidiomycota Red thread Competitive exclusion USA [67]

Lolium perenne novel Pyrenophora erythrospila
(syn. Drechslera erythrospila) Ascomycota Red leaf spot Antibiosis Japan [53]

Epichloë festucae var.
lolii (=LpTG-1) Lolium perenne original Alternaria alternata Ascomycota Leaf spot IR China [38]

original Cochliobolus lunatus
(syn. Curvularia lunata) Ascomycota Curvularia blight IR China [38]

original Cochliobolus sativus
(syn. Bipolaris sorokiniana) Ascomycota Spot blotch and root rot Antibiosis, competition

and/or IR China [38,68,69]

original Fusarium chlamydosporum Ascomycota Wilt IR
original Fusarium oxysporum Ascomycota Fusarium wilt IR China [38]
original Fusarium poae Ascomycota Head blight IR Poland [70]
original Fusarium solani Ascomycota Soft root rot IR China [38]

original Gibberella acuminata
(syn. Fusarium acuminatum) Ascomycota Root rot IR China [38]

original Puccinia coronata Basidiomycota Crown rust Unknown Australia
and China [71,72]

novel Pyrenophora semeniperda Ascomycota Leaf spots Antibiosis Australia [73]
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Table 2. Cont.

Fungal Species 1 Original Host Species Type of Association Fungal Pathogen 2 Division Disease Suggested Mechanism Country Reference/s

Epichloë gansuensis Achnatherum inebrians original Ascochyta leptospora Ascomycota Ascochyta leaf blight Antibiosis China [50]
original Alternaria alternata Ascomycota Leaf spot Antibiosis China [50]
original Blumeria graminis Ascomycota Powdery mildew IR China [74–77]
original Claviceps purpurea Ascomycota Ergot IR China [78]
original Clonostachys rosea Ascomycota Unknown Antibiosis China [50]

original Cochliobolus lunatus
(syn. Curvularia lunata) Ascomycota Curvularia blight Antibiosis China [50,79]

original Fusarium chlamydosporum Ascomycota Wilt Antibiosis China [50]
original Fusarium oxysporum Ascomycota Fusarium wilt Antibiosis China [50]
original Fusarium solani Ascomycota Soft root rot Antibiosis China [50]

original Gibberella acuminata
(syn. Fusarium acuminatum) Ascomycota Root rot Antibiosis China [50]

original Gibberella avenacea
(Fusarium avenaceum) Ascomycota Fusarium head blight Antibiosis China [50]

original Fusarium solani Ascomycota Soft root rot Antibiosis China [50]

Achnatherum sibiricum original Cochliobolus lunatus
(syn. Curvularia lunata) Ascomycota Curvularia blight IR China [79]

Achnatherum sibiricum original Erysiphales Ascomycota Powdery mildew IR China [79]

Epichloë occultans Lolium multiflorum original Claviceps purpurea Ascomycota Ergot Vector exclusion Argentina [80]

Epichloë sibiricum Achnatherum sibiricum original Cochliobolus lunatus
(syn. Curvularia lunata) Ascomycota Curvularia blight IR China [79]

Achnatherum sibiricum original Erysiphales Ascomycota Powdery mildew IR China [79]
Epichloë sinensis Festuca sinensis original Alternaria alternata Ascomycota Leaf spot Unknown China [81]

Epichloë sp. Bromus auleticus original Ustilago bullata Basidiomycota Head smut Unknown Argentina [82]
Festuca sinensis original Alternaria alternata Ascomycota Leaf spot Antibiosis China [61]

original Gibberella acuminata
(syn. Fusarium acuminatum) Ascomycota Root rot Antibiosis China [61]

original Cochliobolus sativus
(syn. Bipolaris sorokiniana) Ascomycota Spot blotch and root rot Antibiosis China [61]

original Cochliobolus lunatus
(syn. Curvularia lunata) Ascomycota Curvularia blight Antibiosis China [61]

Lolium arundinaceum original wild grass
and cultivar Rhynchosporium sp. Ascomycota Leaf blotch Antibiosis, IR and/or

improved host fitness Finland [83]

Lolium perenne original Drechslera siccans Ascomycota Brown blight IR Poland [84]
original Fusarium spp. Ascomycota Fusarium blight IR Poland [84]
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Table 2. Cont.

Fungal Species 1 Original Host Species Type of Association Fungal Pathogen 2 Division Disease Suggested Mechanism Country Reference/s

Epichloë typhina Phleum pratense original Cladosporium phlei Ascomycota Purple leaf spot Unknown Japan [85,86]

Epichloë uncinatum Lolium pratense
(syn. Festuca pratensis) original Cochliobolus sativus

(syn. Bipolaris sorokiniana) Ascomycota Spot blotch and root rot Antibiosis Poland [57]

original Dreschslera sp. Ascomycota Head blight Antibiosis Poland [57]
original Fusarium poae Ascomycota Head blight Antibiosis Poland [57]
original Puccinia coronata Basidiomycota Crown rust Unknown Poland [87]

1 Current scientific name. 2 Current scientific name, or most accepted name, followed by the synonym used within the citing manuscript.
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Biological control, in its simplest form, can be defined as applied ecology [88] and is
an environmentally sound and effective means of reducing or mitigating viral, microbial,
nematode, insect, mite, weed, and vertebrate pests in agriculture, aquatic, forest, natural
resources, stored products, and urban environments. Many primary screens using artificial
nutrient media are severely criticized as they do not closely resemble the final arena where
biological control ultimately takes place. Subsequently, these primary screens, which can
determine antagonism between an endophyte and a phytopathogen in vitro, are generally
poor at predicting protection within live plant tissues [89,90]. For example, in vitro research
conducted in Finland showed clear antifungal activity expressed by strains of Epichloë
towards the speckled snow mold pathogen, Typhula ishikariensis, when grown on potato
dextrose agar (PDA). However, in the subsequent field experiment, the endophyte-infected
grasses were more susceptible to the pathogen than the endophyte-free control plants [63].

This lack of correlation between in vitro and in planta results may be due to multiple
reasons: (1) some Epichloë-derived secondary metabolites are only produced in planta.
For example, the endophyte-derived alkaloids are metabolites only produced by the grass-
endophyte association with the exception of two loline alkaloids that can be produced
in vitro from axenic endophyte cultures at a relatively low concentration from a defined
minimal media [91], (2) concentrations of Epichloë-derived secondary metabolites depend
on the host plant. These endophytes may not be able to secure the relevant nutrients or
amount of nutrients in planta and the secondary metabolite biosynthetic pathways may be
down regulated as with some biotrophic phytopathogens [92], and (3) the in vitro bioassays
are largely restricted to identifying antibiosis as the sole mechanism of action exhibited by
these fungi while other mechanisms exist. In vitro screens can, therefore, be misleading
by either overestimating or underestimating the potential of endophyte strains to protect
against phytopathogens.

Antibiosis is defined as antagonism mediated by specific or non-specific metabo-
lites of microbial origin, by lytic agents, enzymes, volatile compounds or other toxic
substances [88]. However, there are additional mechanisms of biological control proposed
for Epichloë-plant associations [93], including induced resistance (reduced disease suscep-
tibility of a plant in response to stimulation by a pathogen, insect herbivore, beneficial
microbe, or chemical agent [94]) and competition for limiting factors (e.g., physical space,
carbohydrates and amino acids) (see Table 2 for examples). The fourth main mechanism
of biological control, direct parasitism, exhibited by several fungal antagonists such as
Trichoderma spp. [95], has not been reported to date for Epichloë spp. The endophyte would
have to engage in direct contact with the target phytopathogen, and this seems unlikely
due to the restriction of these endophytes within the intracellular spaces of their grass hosts
and the sometimes-suppressive nature of the regulation that they encounter during their
growth and development [96,97].

As mentioned previously, no correlation exists between the antifungal bioactivity
expressed by these endophytic fungi and their alkaloid profiles [40,41]. However, several
non-alkaloid secondary metabolites have been implicated in the antagonism exhibited
by Epichloë spp. towards phytopathogens (see antibiosis studies listed in Table 2). These
compounds include sesquiterpenes [45,98], phenolic glycerides [99], hydroxyl unsaturated
fatty acids [100], aromatic sterols [101], indole derivatives (indole-3-acetic acid (IAA) and
indole-3-ethanol), diacetamides [45] and other volatile insect-attractant compounds, such
as Chokol K and methyl esters [102]. Chokol K is an interesting compound, hypothesized
to of originated as an antimicrobial agent the compound also has the ability to attract
Botanophila flies, fungal pollinators of the external fruiting structures, the stroma, of sexually
reproducing Epichloë species [103].

Research conducted on the bioactivity of Epichloë endophytes (Card, unpublished)
aligns with previous studies in the literature that show that many Epichloë species ex-
hibit antifungal activity towards a wide range of saprophytic and pathogenic fungal
species, including those with diverse taxonomy (e.g., species from both the Ascomycota
and Basidiomycota) and those with different lifestyles (e.g., biotrophs and necrotrophs)
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(Tables 1 and 2). This could indicate that several antifungal compounds are produced si-
multaneously or that a small number of antifungal compounds have broad antifungal
activity. Further work showed that no antifungal activity was attributed to guttation fluid
collected from perennial ryegrass plants infected with selected Epichloë strains (Lambie and
Christensen, unpublished) similar to that found with peramine against insects [104]. This
may indicate that if antifungal compound/s are solely responsible for biological control
within this system then they may have limited mobilization within the plant.

The Epichloë-mediated induction of the plant’s own defenses has been proposed
as another mechanism of resistance against phytopathogens [43,44]. Plant defenses are
regulated by hormonal signaling pathways, including salicylic acid (SA) and jasmonic
acid (JA) [105]. The dominant model for conceptualizing plant defenses suggests that
the SA and JA signaling pathways protect plants against biotrophic and necrotrophic
pathogens, respectively [106]. Epichloë spp. can activate host plant SA- and JA-signaling
pathways [107]. This Epichloë-based activation of plant defense hormonal signaling path-
ways may explain, at least in part, the increased levels of disease resistance exhibited by
Epichloë-infected plants (see IR studies listed in Table 2). For example, enhanced plant resis-
tance exhibited by endophyte-infected A. inebrians plants against the biotrophic pathogen
B. graminis was related to the activation of SA signaling pathways, increment in SA levels,
and the upregulation in the expression of SA-related genes coding for putative plant en-
zymes with antifungal activities (i.e., β-1,3-glucanase and callose synthase) [77]. Similarly,
the enhanced plant resistance exhibited by A. sibiricum plants against the necrotrophic
pathogen C. lunata by A. sibiricum was correlated to increased levels of JA and plant
phenolics [79].

Further novel mechanisms have been proposed for specific grass-endophyte com-
binations, for example niche exclusion has been proposed for Epichloë associations with
Bromus setifolius, Festuca ovina, F. rubra, and Poa ampla [108]. This mechanism results in
the exclusion of phytopathogens by a superficial network of endophyte mycelium that
develops on the leaf blade surface of grasses. The epiphytic mycelium was hypothesized
to be defensive in function to physically exclude the entry of fungal pathogens into the
leaves [109]. Pérez et al. [44] further proposed that two classes of mechanism exist with
respect to the reduction of plant disease by Epichloë spp., (1) direct pathways mediated by
antibiosis, competition and IR (described above) and (2) indirect pathways associated with
endophyte-generated changes in either the abiotic or the biotic host environment. These
authors describe an indirect pathway for the protection of L. multiflorum by its fungal endo-
phyte E. occultans from the flower-infecting pathogen Claviceps purpurea, the causal agent
of ergot [44]. The incidence and severity of C. purpurea infection was two-fold lower in
endophyte-symbiotic plants than in non-symbiotic ones but when insects were prohibited
from visiting the flowers this difference disappeared, indicating that endophyte-derived
volatile compounds repel insect vectors of C. purpurea and indirectly defend their host
grasses against plant disease [80].

Antagonism between Epichloë spp. and phytopathogens may have evolved many
millions of years ago. A recent article describes an ancient cross-kingdom gene trans-
fer (the transfer of genetic material between organisms) from Epichloë to tall wheatgrass
(Thinopyrum ponticum). The article suggests that Fhb7, a major, semidominant resistance
gene, was transferred to the wild cereal grass around 5 million years ago after the diver-
gence of Thinopyrum from other grasses [110]. Fhb7 encodes a glutathione S-transferase that
detoxifies deoxynivalenol (DON), a mycotoxin that renders grain poisonous to humans
and other mammals. It is speculated that Epichloë may have evolved Fhb7 to compete
with Fusarium spp. for grass colonization [111]. Furthermore, transcriptomic studies
have identified an abundantly expressed fungal gene coding for a small, secreted pro-
tein, similar to antifungal proteins found within species of Penicillium and Aspergillus, in
Epichloë festucae-infected red fescue plants [112]. The antifungal protein gene is not found
within the genomes of many other Epichloë spp. and is hypothesized to be a component
of the unique disease resistance observed with endophyte-infected red fescue plants to
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dollar spot disease caused by the phytopathogen Clarireedia jacksonii [113]. It is suggested
that once the endophyte lifestyle evolved in Epichloë, and the wider Clavicipitaceae endo-
phytes, the alkaloid and other fungal–mediated defensive features adapted from previous
functions to serve as plant host defense functions [114].

Recent theoretical modelling studies suggested that in order to predict biocontrol
outcomes there is a need to understand not only the main biocontrol mechanisms involved
but also the extent of environmental variability, the level of biocontrol activity, and survival
of individual biological control agents in relation to external conditions [115]. Epichloë
fungi, and other mutualistic endophytes, have a distinctive advantage over other biocontrol
microorganisms that are inoculated into the phyllosphere or rhizosphere through drenches
or sprays. By inhabiting the intracellular spaces of their plant hosts for their entire life-
cycle they are buffeted from many cyclic and non-cyclic variables, including potentially
damaging ultraviolet rays, extremes of temperature, humidity, dew, rain and wind as
experienced, for example, on the leaf surface [88]. Endophytic microorganisms are also
protected from faster proliferating, more competitive microorganisms as experienced in
many phyllosphere and rhizosphere environments. Endophyte survival is firmly tied with
that of the plant host and are therefore totally reliant on the plant for substrates (e.g., water,
sugars, and oxygen) and a suitable ecological niche free from competing microorganisms,
along with the absence of inhibitory or toxic substances. While nutrients may become
limiting in the phyllosphere environment, endophytes are supplied with a bountiful array
of organic and inorganic nutrients including sugars, sugar alcohols, nitrates, nitrites, amino
acids, organic acids, calcium, chloride, phosphorus, potassium, sulfur and soluble proteins
[as reviewed by 116] supplied to the apoplasm from the neighboring phloem. Although
the concentration and availability of such compounds within the apoplasm may fluctuate,
it is largely a copiotrophic environment [116]. Substrates are not only in plentiful supply
to support endophyte growth (biomass) but also may support the production of many
secondary metabolites, including many anti-mammalian and insect deterrent alkaloidal
compounds [28] as well as antimicrobial compounds active against phytopathogens.

The inhibition of phytopathogens by Epichloë has, however, largely remained a re-
search curiosity rather than an attribute exploited for commercial disease biocontrol pur-
poses as very few in planta experiments document the control of economically important
phytopathogens in the field. These may be due to several reasons:

(1) Many phytopathogens, particularly foliar fungal pathogens, are notoriously difficult
to control (even by conventional synthetic agrichemicals) as they can produce vast
numbers of wind-disseminated spores that are spread over large distances over
significant periods of time. These phytopathogens can also exhibit a polycyclic nature
that can be completed in just a few days, continuously barraging the plant with
fresh inoculum.

(2) Many plant diseases occur due to underlying abiotic disorders (e.g., nutrient imbal-
ance, and/or water stress) that have weakened or stressed the plant and made it
susceptible to invasion by a phytopathogen. Additionally, disease in the field is gen-
erally brought about by a complex of interacting microorganisms including primary
and secondary pathogens making identification of the causal organism difficult.

(3) Bioprospecting pipelines have to date identified Epichloë strains with deterrent traits
against economically important invertebrate pests and therefore endophyte strains
with high levels of bioactivity towards phytopathogens could have been missed,
overlooked, or not prioritised.

(4) Many in vitro primary screens overestimate the bioactivity of selected endophyte
strains and do not screen enough strains to identify those with high potential for
commercialisation. Great strain variation exists with respect to antifungal activity [53]
and even morphotypes of the same species from the same host grass species can vary
in their antifungal activity [37]. Furthermore, host genotype × endophyte effects can
impact the degree of antifungal activity expressed.
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(5) A lack of understanding concerning the mechanisms of action attributed to selected
Epichloë strains. These mechanisms need to be understood to develop suitable novel
grass-endophyte associations.

(6) Many end users completely ignore the concept of biological control in favour of
agrichemicals while others view it as essentially a compete synthetic chemistry re-
placement. However, biological control products have been generally less reliable
than agrichemicals which has hampered their development, release, and commercial
uptake [117]. For example, Epichloë strains with antifungal activity will generally
only reduce the frequency or size of diseased lesions and, therefore, disease is still
present [53].

4. Interaction of Epichloë Endophytes with Other Taxa

As well as fungal phytopathogens, Epichloë, or their metabolites, can influence the inter-
actions between endophyte-infected plants and other organisms. As discussed, endophyte-
derived alkaloids can influence invertebrates and species such as herbivorous mammals
and this in turn can affect species diversity and fundamental ecological processes like
decomposition, and food web structures [118–122]. In natural ecosystems, Epichloë can
reduce plant diversity, enhance the dominance of certain grass-endophyte associations [5]
and also generate legacy effects which persist after the death of the host [123]. Epichloë
endophytes may also impact the microbiome (the microbiota and its theatre of activity)
of the vegetative host plant effecting microbial community structure in above and below
ground habitats [121]. Studies aimed at investigating the rhizosphere communities of
tall fescue plants show that Epichloë-infected plants showed a higher species richness
over endophyte-free rhizospheres and a greater percentage of Firmicutes [124] while the
presence of Epichloë gansuensis within its host grass Achnatherum inebrians significantly
decreased root-associated fungal diversity [125]. These findings within the rhizosphere
are paralleled within the phyllosphere where some endophyte-infected fescue species
select particular epiphytic bacterial microbiota [39] with loline alkaloids implicated as
a significant carbon source for certain bacterial genera including Burkholderia, Serratia,
Pseudomonas and Stenotrophomonas [124]. In the rhizosphere, strains of these bacterial taxa
have subsequently been shown to outcompete and suppress the growth of non-loline
catabolizing strains [124]. Epichloë endophytes can also impact plant reproduction with
endophyte-infected seed harbouring higher populations of plant-growth promoting bacte-
ria compared to endophyte-free varieties, with these bacteria possibly playing an important
role in the fitness of the subsequent seedlings [126]. Further work is looking at how Epichloë
endophytes may shape entire ecological communities [15,127].

A substantial amount of research has investigated the interaction between Epichloë
species and well-known beneficial microorganisms, such as arbuscular mycorrhizal (AM)
fungi [128]. AM fungi aid the host by supplying mineral nutrients (mostly phosphorus) im-
proving the nutritional status of colonised plants while also increasing the host’s tolerance
to certain abiotic and biotic stresses [4,129]. In planta studies investigating the interaction
between Epichloë endophytes and AM fungi show that the amount by which symbiotic plant
roots are colonised by AM fungi depends on the type of grass-Epichloë association [130].
For example, agronomic, novel grass-Epichloë associations often have lower amounts of my-
corrhizal mycelia in roots of symbiotic plants (i.e., artificial symbioses: L. perenne-E. festucae
var. lolii, Lolium multiflorum-Epichloë occultans, and F. arundinacea-E. coenophiala) while wild
grasses infected with their co-evolved Epichloë endophytes usually display greater abun-
dances of AM fungi in roots of symbiotic plants (i.e., Bromus spp. and Poa spp.) [131–140].
Further complexities also exist with regard to species interactions [141,142]. Epichloë-derived
bioactive compounds, competition for nutrients, and/or changes in the levels of plant
resistance to microorganisms have been proposed as mechanisms to explain the interaction
between Epichloë and AM fungi [137].

Recent research from NZ has also determined that Epichloë strains can associate closely
with specific bacterial species [143] and may work in synergy to antagonise microorganisms
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that threaten the survival and reproduction of the host plant. This has been shown in other
tripartite interactions within multiple fungal species [144] with bacterial endosymbionts
responsible for mycotoxin and phytohormone production including IAA [145,146]. IAA
is the major plant auxin and is also synthesized by certain microorganisms, including
phytopathogens, saprophytes and symbionts [147]. IAA stimulates the production of plant
biomass, enhances growth rate of roots, and is implicated in the promotion of disease
resistance [147,148]. Tripartite associations involving Epichloë endophytes are not restricted
to bacteria with several articles reporting that Epichloë spp. can also be infected with
mycoviruses [149–151]. Although these viruses appear to have no effect on the phenotype
of their fungal hosts, the fungus, or plant infected by the endophytic fungus and the virus,
may obtain selective advantages yet to be discovered.

5. Future Perspectives

Climate change, the most important challenge currently facing mankind [152] is pre-
dicted to have serious implications for many agricultural systems. The interaction between
disease and crops is as old as agriculture itself [153] but with increasing temperatures and
changing precipitation patterns, it is expected that plant disease outbreaks may intensify in
some production areas due to invasions of new phytopathogens and/or due to increases
in the severity of existing phytopathogens [154–156]. Increasing atmospheric CO2 levels
will impact the degree of resistance exhibited by many plant species to pathogen attack
while also altering the availability of photosynthates and defensive compounds produced
by plant-associated microorganisms, including Epichloë [66,157,158]. For example, when
CO2 was artificially elevated, the beneficial effect of Epichloë on its tall fescue host was lost
with respect to plant growth and pathogen resistance towards C. lunata [66]. Other gases
involved in climate change, such as tropospheric ozone, have also been shown to have
detrimental effects on plant host fitness and the concentration of Epichloë -derived defense
compounds [159].

Further challenges include improving and/or changing current agricultural prac-
tices that are not sustainable as they can expend valuable resources while degrading the
environment [160]. Many agrichemicals have negative effects on the environment due to
overuse and inefficient application [161] while the control of plant diseases using synthetic
pesticides raises serious concerns about food safety, environmental quality and pathogen
resistance [162]. Coupled with other pastoral management practices (e.g., tillage), this
has also led to a decrease in soil biodiversity [163] in many regions worldwide. Integrat-
ing knowledge from both agricultural and natural ecosystems, from single plants and
multispecies plant communities, and from below-ground and above-ground multitrophic
interactions holds great promise to further improve the sustainability of crop production,
including the need for alternative disease management practices [164].

While Epichloë endophytes are not naturally found in modern cereal grasses it has been
demonstrated that Epichloë strains from wild cereal grass relatives [165] can be inoculated
into barley (Hordeum vulgare), rye (Secale cereale) and wheat (Triticum aestivum) to create
artificial plant-endophyte associations [166–168]. Field trials with Epichloë-infected rye
have shown reductions in the prevalence of leaf rust (Puccinia recondita) and leaf streak
(Cercosporidium graminis) [65]. The potential for other fungal endophyte taxa to be used
as biological control agents against phytopathogens in rice, wheat and maize has been
proposed as a worthy research aim [169].

6. Concluding Remarks

Microorganisms have been administered as biological control agents for many decades
to manage disease and pest pressures on crop plants. However, they still only make up a
small percentage of all pest control products. As well as their overall bioactivity and efficacy
in the field, many other factors (such as their stability, reliability, storage and application)
must be taken into consideration for the development of commercially successful biological
control agents [170]. Endophytes can overcome many of the difficulties faced by traditional
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biological control agents as they are encapsulated within the host plant and protected from
environmental conditions that disrupt their survival and biocontrol efficacy. Additionally,
for those biocontrol agents that are seed transmitted, such as Epichloë endophytes, there
is an extra advantage for commercialisation as there is no need to develop complicated
formulations and delivery techniques [171]. Biological control of phytopathogens is often
achieved by the artificial introduction of antagonistic microorganisms into a selected
environment. These antagonists may exhibit several mechanisms of action that work in
synergy to suppress any one phytopathogen at any one time and although Epichloë-derived
antibiosis may be overrepresented in many in vitro experiments this mechanism may still
play a pivotal role in the protection of grass hosts from phytopathogens. Although Epichloë
endophyte colonization is generally restricted to the host’s aboveground tissues, their
bioactivity (at least towards invertebrate herbivores, via antibiosis) extends further, as
many endophyte-derived alkaloids are mobilized within the plant’s vascular system and
translocated to plant organs, such as the roots, where fungal colonization is absent [119,172].
Even volatile secondary metabolites derived from Epichloë endophytes have been reported
in the roots of endophyte-infected plants [173,174].

Therefore, primary in vitro bioassays, aimed at assessing endophytes for their antago-
nism towards phytopathogens, must be developed to provide more reliable predictions of
field performance [175]. The results from these improved bioassays, coupled with a greater
understanding of the mechanisms of action attributed to these Epichloë endophytes, will
likely lead to the development of ecologically sound and commercially viable Epichloë-grass
associations with pest and disease control abilities.
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