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Abstract: Electroencephalography (EEG) is a non-invasive technique used to record the brain’s
evoked and induced electrical activity from the scalp. Artificial intelligence, particularly machine
learning (ML) and deep learning (DL) algorithms, are increasingly being applied to EEG data for
pattern analysis, group membership classification, and brain-computer interface purposes. This study
aimed to systematically review recent advances in ML and DL supervised models for decoding and
classifying EEG signals. Moreover, this article provides a comprehensive review of the state-of-the-art
techniques used for EEG signal preprocessing and feature extraction. To this end, several academic
databases were searched to explore relevant studies from the year 2000 to the present. Our results
showed that the application of ML and DL in both mental workload and motor imagery tasks has
received substantial attention in recent years. A total of 75% of DL studies applied convolutional
neural networks with various learning algorithms, and 36% of ML studies achieved competitive
accuracy by using a support vector machine algorithm. Wavelet transform was found to be the most
common feature extraction method used for all types of tasks. We further examined the specific
feature extraction methods and end classifier recommendations discovered in this systematic review.

Keywords: brain signals classification; EEG; deep learning; machine learning; review

1. Introduction

The human brain is a complex system containing approximately 100 billion neurons
and trillions of synaptic connections [1,2]. The brain’s electrical activity became a research
focus in the 19th century when Richard Caton recorded brain signals from rabbits [3,4].
Brain recordings were also performed by Hans Berger, the first person to record elec-
troencephalogram (EEG) signals from the human scalp [5]. EEG-based research has since
increased significantly, and EEG is now the most commonly used noninvasive tool to study
dynamic signatures in the human brain [6,7]. EEG signals measure voltage fluctuations at
the scalp and reflect the instantaneous superposition of electric dipoles, primarily from den-
dritic inputs to large pyramidal cells in the neuropil [8]. Signals traveling in white matter
have traditionally been thought to be too fast to superimpose temporally, although recent
cable theoretic models [9] and empirical work [10] suggest that white matter may also
contribute to brain rhythms measured at the scalp. Classically, the three primary forms of
the brain’s activity based on EEG signals are brain waves, event-related potential (ERP),
and steady-state visual evoked potentials (SSVEPs). Among those, brain waves are most
commonly used in EEG signal analysis for different types of tasks. Brain waves have been
categorized in terms of five frequency bands: delta, 0.5–4 Hz; theta, 4–8 Hz; alpha, 8–13 Hz;
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beta, 13–30 Hz; and gamma, 30–150 Hz [11]. Other classifications of brain signals can be
found in previous publications [12,13].

EEG is a low cost, noninvasive neuroimaging technique that provides high temporal
resolution recordings of dynamic signatures in the brain; it has therefore become an
indispensable tool in a variety of applications, including clinical diagnosis of a range
of epileptic seizure types [14,15], brain-computer interface (BCI) systems, sleep analysis,
and decoding behavioral activity [6,16,17]. When interpreted carefully [18], classification
tools can be used not only for prediction but also to gain neuroscientific knowledge.
However, EEG signals are complex, high-dimensional [19] and non-stationary, and have a
low signal-to-noise ratio in the temporal domain. Therefore, careful preprocessing is often
required to remove artifacts [20], particularly when EEG data are collected concurrently
and in the MRI setting [21].

Although EEG has been demonstrated to be a valuable tool for research in various
applications, it has several limitations, such as a low signal-to-noise ratio [22,23], nonlin-
earity and nonstationary properties [24,25], and inter-individual variability [26] which
affect analysis and processing performance. To address these limitations, EEG signal pro-
cessing pipelines are often used. The general EEG classification pipeline includes data
preprocessing, initializing the classification procedure, splitting the data set for the classi-
fier, predicting the class of new data, and evaluating the classification model for the test
data set [27]. As shown in references [28,29], Riemannian geometry-based classifiers and
adaptive classifiers have achieved success in classifying EEG signals. Machine learning
(ML) and deep learning (DL) methods have become rapidly growing areas with appli-
cations in computational neuroscience, owing to higher levels of neural data analysis
efficiency and decoding brain function [30]. In ML and DL, various algorithms are used
simplify processing pipelines and improve the learning process. For instance, supervised
ML algorithms first learn on training data. The model and learned parameters are then
applied to unseen or new data to predict the class label of the new data [27]. Among
different types of classification tasks, binary and multi-label classifications are widely used
in clinical studies, and in studies of cognitive function, motor imagery (MI) processing,
emotion recognition (ER), and brain disorders, including brain injury, attention disorders,
and multiple sclerosis [31–34]. In addition to these recognized areas, various computational
neural models have been considered, such as the medial prefrontal cortex (mPFC) and
anterior cingulate cortex in modeling of learning predictions and monitoring behavior [35].
A recent computational model, the predicted response-outcome model [36] is based on
the hypothesis that mPFC stores predictions of future outcomes. According to this model,
Garofalo et al. [35] have proposed that mediofrontal ERP signals of prediction errors are
modulated by the likelihood of occurrence during a task. Furthermore, reference [37] has
identified a causal role of the ventromedial prefrontal cortex (vmPFC) in the acquisition of
fear conditioning in the definition of stimulus-outcome contingencies.

Because of their outstanding robustness and adaptability, several ML and DL models
for performing EEG signal classification have been reported. The primary purpose of this
study was to review and explore the recent advances over the past two decades in the
deployment of supervised ML algorithms as well as DL models for the classification of
EEG signals. We investigated the overall trends and ML and DL models used in individual
studies and compared classification algorithms based on different tasks. We propose six
different categories of tasks on the basis of the studies reviewed herein. We attempted
to address defined research questions concerning each of these categories. According
to this evaluation, we provide recommendations for choosing a suitable classifier for
use in future applications. The remaining sections of this manuscript are organized as
follows. In Section 2, we describe the method used to identify and select publications
for subsequent inclusion in our synthesis of research studies. In Section 3, we describe
general steps to generate an EEG-based BCI system. We review the typical pipeline used to
construct EEG classifications, including data acquisition, artifact removal, feature extraction,
and classification. In Section 4, we provide a general overview of the literature search,
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study characteristics, validity assessments, and the main findings of each of the articles
reviewed. In Section 5, we discuss applications of ML and DL techniques for different types
of tasks, and provide recommendations regarding the selection of an effective classifier for
each task. Finally, Section 6 highlights future perspectives in this field.

2. Materials and Methods

Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA),
a standard systematic review and meta-analysis guideline [38], was used in this study.
An important component of this systematic review involved the clear definition of research
questions to reduce the effects of research expectations. Furthermore, our research method
followed the Cochrane Collaboration definitions [39] to minimize the risk of bias.

2.1. Research Questions (RQs)

• RQ1: What classification tasks have received the most attention with the introduction
of ML and DL algorithms and the use of EEG brain data?

• RQ2: Which feature extraction methods were used for each task to extract appropriate
inputs for ML and DL classifiers?

• RQ3: What are the most frequently used ML and DL algorithms for EEG data processing?
• RQ4: Which specific ML and DL models are suitable for classifying EEG data involving

different types of tasks?

2.2. Search Strategy

In the exploration phase, we used a search strategy with an organized structure of key
terms used to perform comprehensive literature searches in databases. These keywords
played a key role in identifying relevant studies and helped us focus on specific publi-
cations addressing the research questions. The literature search used multiple academic
databases, including Web of Science, IEEE Xplore, Science Direct, arXiv, and PubMed,
and the following groups of keywords in the article titles, keywords or abstracts: (“Ma-
chine Learning” OR “Deep Learning” OR “Classification” OR “Supervised Learning” OR
“Neural Networks”) AND (“Electroencephalography” OR “EEG”).

2.3. Criteria for Identification of Studies

After searching the databases, we established a protocol based on specific inclusion
and exclusion criteria to identify publications qualified for inclusion in our review. The eligi-
ble publications met the following inclusion criteria: (a) publication in English; (b) inclusion
of EEG data; (c) application to the classification of brain activities in humans; (d) publica-
tion in a peer-reviewed journal; and (e) publication within the past 21 years (2000–2021).
The exclusion criteria used during the screening process included: (a) publication in a
non-peer-reviewed journal; (b) content types of dissertations, published abstracts, or book
chapters; and (c) experimental studies performed in infants. The relevant studies were
selected on the basis of the inclusion and exclusion criteria and several data categories
were collected including task information (i.e., task type, number of subjects, and number
of EEG channels used), databases used, frequency range used for analysis, feature extrac-
tion methods, ML/DL algorithms, and their performance (see Table A1 in Appendix A,
for details).

3. Theoretical Background

Figure 1 illustrates the general pipeline for the construction of a classification model
based on EEG data. Processes including data acquisition, preprocessing, feature extraction,
and ML and DL models can be differentiated from one another. In the following, we review
the existing computational methods for each step.
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Figure 1. Flow chart of the EEG data analysis pipeline along with taxonomy of existing methods for
each step.
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3.1. EEG Data Acquisition

Typically, EEG recordings were obtained by using an international 10–20 or 10–5
electrode placement system introduced by the American EEG Society. In this method,
multiple noninvasive electrodes are placed on the surface of the scalp. Each electrode re-
ceives brain signals, which are then amplified and sent to a computer after being converted
them into line images representing brain waves. Electrodes used in EEG recording can be
categorized as wet electrodes, semi-dry electrodes, and dry electrodes [40]. In wet electrode
recording, conductive gel or paste, which is very uncomfortable for participants, must be
placed between the electrodes and the skin. Semi-dry electrodes require a small amount of
conductive gel, and dry electrodes do not require conductive gel or skin preparation [41,42].
Despite its ease of use and quick setup, EEG recording from dry electrodes yields data with
more artifacts than does gel-based EEG recording, thus affecting EEG analysis. In this case,
identifying the most sensitive biomarkers for the specific task is essential [43]. In addition,
some experimental studies have confirmed that selecting the proper features can improve
the performance of ML/DL methods. For instance, Dehais et al. [44] have analyzed the
performance of gel-free EEG recording with ERP and power spectral density (PSD) features
along with the linear discriminant analysis (LDA) method and found that the performance
of LDA with PSD features is much better than that of LDA with ERP. Thus, ERP appears to
be more sensitive to noise than PSD features.

3.2. Artifacts in EEG Signals and Preprocessing

The preprocessing step facilitates the removal of low-quality data without altering the
clean data. This process also fragments the continuous raw signals without changing the
data [45]. Artifact removal is an essential preprocessing step in the analysis of EEG signals,
because the recordings usually include a significant number of extrinsic artifacts associated
with environmental noise and experimental error, as well as intrinsic biological artifacts as-
sociated with body function (e.g., eye blinking, movement, respiration, and heartbeat) [46].
Various simple methods can be used to eliminate non-biological artifacts from EEG signals.
Because environmental artifacts do not have the same frequency as the EEG signals of inter-
est, they can be eliminated through application of a band filter [46]. Alternatively, standard
operating procedures provide proper operational guidance for the data acquisition step
and decreasing experimental artifacts [47]. However, the main types of biological noise
include ocular artifacts, muscle artifacts, cardiac artifacts, and instrument artifacts, which
require the use of filtering and/or computational methods to be removed from EEG data.
More in-depth descriptions of these types of artifacts can be found in references [46,48]. Ac-
cording to the literature, extensive research has been conducted in the past decades [46,49]
to identify and define efficient methods for both automatic and manual artifact removal.

3.2.1. Regression Methods

A typical approach to artifact removal is the regression method [50], which removes
estimated artifacts by determining the amplitude relation of the reference. Hence, signals
such as those from an electrocardiogram (ECG) or electrooculogram (EOG) are required to
separate artifacts from EEG signals. Although the regression method is based on simple
mathematical intuition and therefore is widely used because of the minimal computation
required, the dependence of this method on reference channels for ECG and EOG removal
is considered a drawback [48].

3.2.2. Blind Source Separation Methods

Blind source separation (BSS) methods are based on the hypothesis that a combination
of several distinct original signals results in the signals observed on a multi-channel record-
ing; thus, neither more reference channels nor prior information is required [51]. Three
typical methods using the BSS algorithm are principal component analysis (PCA), inde-
pendent component analysis (ICA), and canonical correlation analysis (CCA). ICA [52,53]
is a statistical algorithm that is used for solving the BSS problem and considers random
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variables to maximize the independence of the output components via the discovery of a
linear transformation. Furthermore, ICA is a powerful tool that reduces dimensions and ex-
tracts independent components from original signals. This method has good performance
in extracting artifacts such as eye blinks and heartbeats, because they are generated by
independent sources and are not associated with particular frequencies. ICA is efficient
according to the assumption that original signals are statistically independent of each other
and have a non-Gaussian distribution. Moreover, the signal dimension must be greater
than the source signal. PCA [54,55] maximizes the variance of the transformed data and de-
pends only on the second-order statistics of covariance [51]. PCA is a well-known method
to reduce the dimensionality of the features while protecting their statistical information.
The advantage of this method is that it retains the variance of the data set. However, its
disadvantage is that if the potentials of drifts and EEG data are similar, PCA cannot extract
the appropriate interferences. CCA is widely used in SSVEP-based brain BCI to identify the
frequency components of EEG that characterize visual stimulus frequencies [56]. Of note,
a comparison of BSS methods is necessary, but that topic is beyond the scope of this review
article. Reference [57] provides further information about these methods.

3.2.3. Wavelet Transform

Wavelet transform (WT) [58–61] is a spectral estimation method that converts a time-
domain signal into a time and frequency domain signal. After decomposition of wavelet
transformation on EEG signals and during artifact removal, WT localizes the features and
maintains them during the filtering process by defining a threshold for the elimination of
noise signals. Whereas WT has good performance in analyzing the components of non-
stationary signals, it fails to recognize artifacts that overlap with the spectral properties.
Accordingly, new hybrid methods such as wavelet-BSS have been proposed to overcome
this drawback [62].

3.2.4. Filtering Methods

Various filtering approaches that have been used for EEG artifacts and noise-canceling
include frequency filtering, adaptive filtering, and Wiener filtering [63].

Frequency Filtering

Frequency filtering is a simple classical separation technique to eliminate artifacts from
the desired EEG signals. According to Hu and Zhang [45], four types of frequency filters
can be considered: low-pass, high-pass, band-pass, and band-stop filters [45]. However,
this method is not efficient if the spectral distributions of artifacts and the EEG components
overlap. In the case of overlap, alternative artifact removal techniques are necessary [63].

Adaptive Filtering

Adaptive filtering is based on the assumption that the EEG signal of interest and the
artifact are uncorrelated. This filter uses a reference signal and produces an estimated signal
that is correlated with the artifact; the estimate is then subtracted from the primary signals
to yield a noise-free EEG signal [64]. Adaptive filtering uses the least mean squares (LMS)
algorithm, which is linear in convergence, to assess the clean signals by upgrading the
weight parameter. Another optimization algorithm, the recursive least squares algorithm,
is quadratic in convergence and is an extension of LMS [48]. Depending on the type of
recursive least squares algorithm, its convergence may be faster than that of the LMS
algorithm, but its computational cost is greater. A disadvantage of using adaptive filtering
is that providing reference input requires more sensors [64].

Wiener Filtering

Wiener filtering is a statistical technique to minimize the mean square error between
the signals of interest and the estimated signals by generating a linear time invariant
filter [63]. Although Wiener filtering does not require an additional reference, because the
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minimization process is applied to estimate the power spectral densities of the EEG signal
and artifact signal, the computational process can be complicated. In addition to the listed
techniques, many other efficient methods exist, such as CCA, empirical mode decomposi-
tion (EMD), and sparse decomposition methods. Furthermore, hybrid methods combining
these preprocessing algorithms and other methods such as EMD-BSS, wavelet-BSS, and oth-
ers, have been used to maximize the efficiency of the algorithm [65,66]. Further details can
be found in previous publications [46,48].

3.3. Feature Extraction Methods

EEG signals are typically complicated and contain a large amount of information.
Thus, the ability to extract the proper features from EEG signals is a critical component of
any successful ML and DL algorithm. The feature extraction step aims to transform the
data into a low-dimensional space while maintaining the critical information conveyed
by the EEG signals [67]. According to the literature, many feature extraction methods
have been proposed on the basis of the specific tasks, including time domain, frequency
domain, and time-frequency domain as well as spatial information in the signals [68,69].
Among these extraction methods, ICA, PCA, and autoregressive (AR) models are consid-
ered time-domain methods. Statistical measures to evaluate parameters such as the mean,
standard deviation, variance, root mean square, skewness, kurtosis, relative band energy,
and entropy also fall into this category [70]. Fast Fourier transform (FFT) and Welch’s
method [71] are among the frequency-domain methods used to analyze EEG signals. WT
and short time Fourier transform (STFT) are two standard time-frequency domain methods
that extract features based on both time and frequency. Findings from recent studies have
demonstrated the advantages and drawbacks of each feature extraction method, and have
indicated that care must be taken in selecting the appropriate method for a specific type of
task [67]. Here, we present a general overview of the most commonly used methods for
analyzing EEG signals. More details on the feature extraction methods used according to
the specific nature of the task are provided in the sections below.

3.3.1. Principal Component Analysis

PCA is a linear transformation that is widely used to reduce dimensionality. PCA
introduces a vector in a lower-dimensional space to reduce signal complexity over time
and space [72]. Although PCA is used to separate artifacts from original signals, this
transformation can also be used for feature extraction without information loss [70]. PCA
creates a set of linear vectors that are not correlated with one another (i.e., principal compo-
nents) via converting correlated variables from original signals [73]. Although principal
components enhance signal similarity and improve the effectiveness of classification of
data [74], they are not as interpretable as primary features. In addition, PCA does not work
well in analysis of complex data sets [75]. To address these drawbacks, several variation in
PCA have been proposed in EEG data analysis such as kernel PCA [76] or sparse PCA [77].

3.3.2. Autoregressive Model

The AR model is a feature extraction method for frequency domain analysis, which
has been used to analyze non-stationary signals such as EEG data [73]. AR assumes that
real EEG signals can be predicted by the AR process; this prediction can be performed with
the order and parameters of the approximation model. The AR model’s order is a value
from 1 to 12, which effectively indicates the performance of the model. However, selecting
an appropriate value for the order of the AR can be challenging, because improper order
selection causes miscomputed spectrum estimation, which may increase the computational
costs [78].

AR methods such as bilinear AAR, adaptive AR parameters, and multivariate AAR
have been widely used in EEG data analysis, thus allowing the AR model parameters
to adapt to nonstationary EEG signals [79]. These methods help provide successive pa-
rameter estimation and minimize prediction error. For example, AR parameters can be
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evaluated in an adaptive AR model by using the Kalman filter, thus improving classifi-
cation performance up to 83% [74]. Other advantages of the AR model include that it
provides appropriate frequency resolution [75] and can be used estimate the power spectra
of shorter segments of EEG data in various applications [80]. However, AR is vulnerable to
inappropriate order and parameter selection [75].

3.3.3. Fast Fourier Transform

FFT is an effective method for stationary signals. It transforms signals from the time
domain to the frequency domain and implements spectral analysis [67]. In this method,
features are extracted by using mathematical tools to calculate the PSD. The estimation of
PSD for a related band can be computed with FFT, which uses non-parametric methods
such as Welch’s method [67,81]. Although FFT is commonly used in the data analysis
process, and it works effectively for stationary signals, it is not efficient for nonlinearity and
nonstationary data such as EEG signals; moreover, the results obtained through this method
are not reliable. This shortcoming has motivated researchers to develop novel procedures
and methods for the analysis of nonstationary signals, such as the Fourier decomposition
method [82], variational mode decomposition (VMD) method [83], and Hilbert-Huang
transform (HHT) method [84].

3.3.4. Wavelet Transform

WT is a time-frequency transform that considers the features of the EEG signals within
a frequency domain and is perfectly localized within the time domain [70]. This method
has good performance in spectral analysis of irregular and nonstationary signals within
different size windows [85]. One advantage of WT is that it provides accurate frequency
information and time information at low and high frequencies, respectively. That is,
a narrow window is typically used to evaluate high frequencies, and a wide window
is applied to assess low frequencies [68,86]. Thus, WT is suited for transient oscillation
in signals, particularly biosignal data, which consist of low-frequency components with
long-time periods and high-frequency components with short-time periods [74]. However,
WT suffers from Heisenberg uncertainty, which negatively affects its performance [74]. WT
evaluates small wavelets within a specific range for a limited duration. The wavelets have
oscillating motion starting at zero; these oscillations increase and then decrease to zero [87].

3.3.5. Common Spatial Pattern

CSP is a successful feature extraction method in BCI applications, particularly motor
imagery tasks [88], that can be used for spatial filtering by using the whole data trail or by
splitting trails into time segments. CSP is widely used for binary classification tasks [89].
The objective of CSP is to differentiate between classes by minimizing the variance of one
class and maximizing the variance of the other class. This process can be implemented by
introducing spatial filters for each class. With this method, EEG signals are transformed
into a variance matrix representing the discrimination between classes [73].

The main advantage of using CSP is that it is simple and can be executed rapidly [73].
However, this method has some inherent limitations in extracting optimal features from
raw EEG data [88]. To address this issue, several studies have proposed optimal spatial
feature selection methods. For example, Jin et al. [88] have developed a novel feature
selection method based on an improved objective function by using Dempster-Shafer theory,
considering feature distribution. Furthermore, CSP is highly sensitive to artifacts present
in the original data set, and changing the positions of electrodes affects the classification
accuracy [90]. According to reference [91], several parameters such as the frequency band
filter, the time segment, and the subset of CSP filters to be used should be considered to
have an effective CSP algorithm. Thus, the performance of the CSP algorithm depends on
the subject-specific frequency band. Many approaches have been proposed to address the
issue of identifying the optimal frequency band for the CSP algorithms, such as the common
spatio-spectral pattern (CSSP), common sparse spectral-spatial pattern (CSSSP), spectrally



Brain Sci. 2021, 11, 1525 9 of 44

weighted common spatial pattern, sub-band common spatial pattern, and discriminant
filter bank common spatial pattern [92,93]. CSSP uses a simple time delay embedding with
the CSP algorithm, which improves the CSP’s performance by optimizing the frequency
band at each electrode position [94]. However, the non-stationary EEG data decrease
the performance of the CSSP. To overcome this challenge, Cho et al. [95] have included a
noise removal term in the Rayleigh coefficient of CSSP and have designed an invariant
CSSP algorithm that is both consistent and robust to noise. However, the drawback of the
invariant CSSP is that the optimal noise removal value must be determined. The CSSSP [96]
has been proposed to enhance the performance of CSSP.

In contrast to the CSSP, which identifies various spectral patterns for each channel, this
algorithm searches for a common spectral pattern for all channels [93]. Sub-band common
spatial pattern [97] is an other extension of CSP used to filter EEG signals at multiple
sub-bands to extract CSP features from each sub-bands, regardless of the associations
among features from different sub-bands [93]. To overcome this limitation, a discriminant
filter bank common spatial pattern [98] that uses the Fisher ratio of single channel band
power values has also been proposed. Further information regarding the application range
of the CSP can be obtained in reference [93].

3.4. Classification Algorithms

Artificial intelligence includes ML, and DL is a rapidly growing area with applications
in the classification process [99]. The objective of classification is to predict the class label of
the new data points in various tasks [27]. Classification algorithms can be divided into two
categories: conventional classification algorithms and DL algorithms [100]. Conventional
classification algorithms represent a precise effort to build classification models by using
input data, and applying statistical analysis to classify output values. Most conventional
classification algorithms use hand-crafted input features to train the model. This process,
called feature creation, has limitations in handling input in high dimensional data sets [100].
DL algorithms rely on representation learning [101] and can accommodate the limitations of
conventional classification algorithms through learning features automatically at multiple
levels of abstraction [100]. Table 1 presents a brief comparison of conventional classification
and DL algorithms [100].

Table 1. Brief comparison of conventional classification algorithms and deep learning algorithms.

Conventional Classification Algorithms Deep Learning Algorithms

Input features Hand-crafted Automatically based on representation learning
Feature selection process Required Not required

Model architecture Based on statistical concepts Consists of a diverse set of architecture based on
sample data

Computational cost
Computational cost is based on the conventional
classification models but is lower than that of
deep learning algorithms

Computational cost is very high, because hyper
parameters must be tuned

3.4.1. Conventional Classification Algorithms

Among different conventional classification algorithms including supervised learning
and unsupervised learning, supervised algorithms are the most well-known methods used
in EEG data analysis [102]. One of the most commonly used supervised algorithms is
artificial neural networks (ANNs). ANNs are computational models [103] that use multi-
layered networks of neurons with weighted connections between units, typically followed
by a static non-linearity function (e.g., ReLu). During the learning phase, the network
can learn by modifying its weights to enhance the performance outcomes in test data
classification [104]. Similar examples of well-performed and well-known supervised
algorithms include naive Bayes (NB), support vector machine (SVM), k-nearest neighbor
(KNN), logistic regression (LR), random forest (RF), and LDA. Each supervised model
applies a learning algorithm to generate a more accurate model [105].
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NB is a probabilistic classifier that applies Bayes’ theorem to classify data on the
basis of certain features [106]. It is a simple and effective classifier that needs only small
training data sets to estimate the parameters for classification. This advantage makes
NB a robust classifier for EEG signals analysis in several types of tasks such as ER [107],
seizure detection (SD) [108], and MI [109]. However, NB is based on the assumption that
all attributes are independent of one another, and feature vectors have equal effects on the
outcome [106].

SVM has been demonstrated to be a useful supervised model based on a statistical
learning tool with high generalization. The principle underlying SVM is the separation of
two data sets. This separation can be linear or non-linear. In the case of linear separation,
SVM uses a discriminant hyperplane to distinguish classes. However, in the case of non-
linear separation, SVM uses the kernel function to identify decision boundaries. Compared
with that of other supervised algorithms, such as ANNs and KNN, the computational
complexity of SVM is low [110,111]. Although the computational complexity of KNN
decreases by increasing the k-value, its classification performance also decreases [110,112].
Furthermore, with the advent of DL algorithms, SVM has remained widely used in EEG
signal classification, because its computation has a solid mathematical basis. However,
the performance of SVM is affected by the kernel function and penalty coefficient param-
eters; thus, optimizing the parameters introduced into SVM classifiers is essential [113].
Huange et al. [114] have applied a genetic algorithm, and Wang et al. [115] have proposed
particle swarm optimization to optimize SVM parameters. According to our investiga-
tion, SVM has been widely used in EEG signal classification because of its simplicity and
adaptability in solving classification problems such as diagnosis of brain disorders (e.g.,
SD, and Alzheimer’s disease) [116–118].

RF is a tree-based supervised algorithm that constructs an ensemble of decision trees.
Each decision tree is generated during the training phase. RF makes predictions from
each tree and selects the final decision via a voting method or averaging the results [119]
to identify the most commonly used class. The main idea underlying this and related
ensemble methods is that a group of weak classifiers can collectively generate a strong
classifier to create a successful learning algorithm. However, the overfitting and instability
of trees can affect RF model performance, particularly with varying sizes of trees [106].
In contrast to the LR model, which is a probabilistic classification model for both binary
and multi-class classification tasks [120], RF works on both discrete and continuous data,
thus providing models for classification and regression problems. Furthermore, the paral-
lelization structure of RF results in better performance than that of the other supervised
algorithms on large EEG data sets in addressing classification problems [109].

LDA is a linear transformation technique used to identify linear combinations of
the variables that most effectively separate the classes [121,122]. LDA is based on the
assumption that the density for the data is normally distributed, with equal covariance for
both classes. The separating hyperplane is achieved by maximizing the distance between
the two classes, while minimizes the distance points within each class [123]. This technique
is simple to use and has very low computational requirements. Consequently, LDA has
been successfully applied to address classification problems in BCI systems such as MI
based BCI [124], P300 speller [125], and multiclass BCI [126]. However, the main limitation
of this model is its linear nature which prevents competitive results on nonlinear EEG
data [127,128].

3.4.2. Deep Learning Algorithms

DL is a new branch of ML that has received widespread attention in EEG classification
tasks. Although conventional classification algorithms have been very effective in analyzing
massive data sets and understanding the relationship between variables, such algorithms
often lead to poor generalization behavior and low classification performance when highly
dynamic features are encountered [129]. DL algorithms inspired by neuroscience [130]
exploit learning features from raw data without depending completely on preprocess-
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ing [131]. Humans can transfer knowledge and memory throughout their lifespan, whereas
DL algorithms immediately forget the previous learning after being trained on a new
data set [132]. For instance, Borgomaneri et al. [133] have confirmed that fear memory
remains in humans after memory reactivation and affects the future learning process. Such
a life-long learning task is a large challenge in developing neural network algorithms [134].
Furthermore, DL algorithms apply multiple layers of perceptrons that obtain representation
learning [131]. Recent developments in graphics processing unit technology have enabled
the development of DL architectures on large data sets. This advantage has significantly
improved the performance on large data sets with high-dimensional data [20].

A convolutional neural network (CNN) is a type of deep neural network that has
gained attention, particularly in computer vision and neuroimaging [131]. CNN can
identify the image of an object by using convolutions within its architecture; including
convolutional layers that have parameters to create a feature map; pooling layers that
reduce the number of features for computational efficiency; dropout layers that help avoid
overfitting by randomly turning off perceptrons; and a output layer that map the learned
features into the final decision, such as classification [135,136]. The recent emergence of the
CNN algorithm has enabled outstanding performance in several application such as image
processing, natural language processing, and classification of EEG recordings, particularly
for MI tasks [137–140]. However, CNN performance is highly dependent on hyperparam-
eters such as the number of convolution layers, and the size and number of kernels and
pooling windows [137]. Fortunately, CNN architectures have led to automatic optimization
of parameters through several iterations [20]; therefore, CNN is very commonly used for
addressing classification problems involving large data sets.

A recurrent neural network (RNN) is a time series-based DL algorithm that uses
sequential data and learns from training data, similar to feed-forward and CNN meth-
ods. Unlike traditional deep neural networks, which assume independence of the input
and output, RNN takes information from inputs continually. Consequently the output
of RNN depends on the prior outputs and the current inputs within the sequence [137].
Thus, the architecture of this network includes inbuilt memory cells for storing informa-
tion from previous output states [141]. The form of RNN architecture has enabled these
types of networks to effectively analyze time series data for applications such as speech
recognition [142], natural language processing [143], and disease signal identification [144].
The most commonly used RNN variants are long short-term memory (LSTM) [145], LSTM
peephole connections [146], gated recurrent units [147], and multiplicative LSTM [148].
The ability of these variants to preserve and retrieve memories is part of the generic struc-
ture of these networks. However, CNNs have a different architecture and use filters and
pooling layers. According to differences in the internal network structure of CNNs and
RNNs, CNNs are effective for analysis of spatial data, because CNN models consider the
complete trial as an object and can extract features. In contrast, RNN models are suited for
analysis of temporal and sequential data by slicing the trail into several subtrails [137].

4. Results
4.1. Literature Search

Figure 2 is a flow diagram of the study selection process based on the PRISMA
guidelines [38]. As shown in the diagram, we obtained 764 articles from all database
searches after the removal of duplicates. To determine which articles were appropriate to
consider in this study, we reviewed all abstracts to determine whether the findings met our
inclusion criteria. A total of 254 articles remained after this evaluation. The full text of each
of these 254 articles was reviewed, and 128 relevant articles met all the aforementioned
criteria. The selected studies included 78 articles published in journals, 46 conference
and symposium articles, and 4 preprints. To improve understanding of the evolution of
research in this domain, we also considered the temporal distribution of these publications
(Figure 3). Since 2016, the importance of supervised ML and DL classifications and their
role in analyzing EEG data has received increasing attention from the research community;



Brain Sci. 2021, 11, 1525 12 of 44

more than 71% (91 of 128) of the selected studies were published during this period
(i.e., 2016–2021). The remaining studies (29%) were published between 2000 and 2015. We
anticipate that the number of publications in this domain will continue to grow substantially
over the next few years.

Figure 2. Flow diagram based on the PRISMA guidelines [38]. The diagram includes the four stages
of a PRISMA study: identification, screening, eligibility, and inclusion.

Figure 3. Temporal distribution of articles selected for consideration.

4.2. Quality Assessment

To assess the quality of the selected articles, we applied the Cochrane Collaboration
tool [39]. According to this tool, the articles were identified as having an (a) low risk of
bias, (b) high risk of bias, or (c) unclear risk of bias. The overall quality of the articles was
categorized as weak (fewer than three low-risk domains), fair (three low-risk domains),
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or good (more than three low-risk domains). Of the 128 studies considered in this systematic
review, 40 articles were categorized as good, 26 articles were categorized as fair, and
62 articles were categorized as weak (Figure 4).

Figure 4. Assessment of the risk of bias in the 128 studies selected for this review by using the
Cochrane Collaboration tool.

4.3. Study Characteristics

The tasks presented were in studies that were organized into six groups: ER (15%),
mental workload (MWL) (18%), MI (20%), SD (19%), sleep stage scoring (SS) (7%), and diag-
nosis of neurodegenerative diseases (ND), including Alzheimer’s disease (AD), Parkinson’s
disease (PD), and schizophrenia (SZ) (9%). Other studies (12%) focused on ERP [47,149–152],
anxiety and stress [153,154], depression [33,66,155], the detection of alcoholism [156], audi-
tory diseases [157], attention deficit hyperactivity disorder [158], sleep apnea [159], and the
classification of creativity [160]. In recent years, the application of supervised ML and
DL models in MI and ER has gained significant attention, despite decades-long research
studies already in progress in these fields (Figure 5).

Figure 5. Temporal distribution of the number of publications per domain in each year (2004–2021).

In the selected articles, two types of data sets have been used: (1) experimental data
sets associated with a specific project or research direction and (2) freely available data
sets comprising EEG data associated with various tasks. In the first type of data set, EEG
recordings are obtained from participants by using non-invasive electrodes placed on
the scalp surface. Of the 128 studies included in this systematic review, 66 studies (52%)
generated experimental data sets; the remaining studies used data in publicly maintained
databases. Table 2 includes a list of the public data sets frequently used for various tasks in
the selected studies. The descriptions include the numbers of participants and the target
tasks. Corresponding to the type of data set, the number of participants varied among
studies depending on the type of task involved (Figure 6).
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Table 2. List of public data sets used for the analysis of EEGs associated with different types of tasks.

Source Database Studies Using This Data Set Number of Subjects Target Tasks

Koelstra et al. [161] DEAP [31,119,162–168] 32 Emotion recognition
Blankertz et al.,
Leeb et al. [169,170] BCI Competition [49,61,104,171–177] 30 subjects in 4 different

data sets Motor imagery

Andrzejak et al. [178] BONN [118,179–187] 5 Seizure detection
Moody et al. [188] CHB-MIT [189–192] 22 Seizure detection

Goldberger et al. [193] PhysioNet [116,194–196] 109 Motor imagery/mental
workload

Ihle et al. [197] European Epilepsy [198–200] 300 Seizure detection
Kemp et al. [201] Sleep-EDF [59,202–204] 197 Sleep stage scoring
Ichimaru et al. [205] MIT-BIH [159] 16 Sleep apnea detection
Winterhalder et al. [206] Freiburg [207] 21 Seizure detection

Figure 6. Number of subjects per task in each study reviewed.

4.4. Which Feature Extraction Methods Were Used for Each Task to Extract Appropriate Inputs for
Machine Learning and Deep Learning Classifiers?

When using a feature extraction method, the principal objective is to minimize the loss
of essential characteristics embedded in the EEG signals. In addition, feature extraction
methods provide conditions that promote the optimal selection of features that are impor-
tant to the specific classification task. Among the articles reviewed for this study, various
methods have been used to extract the features from EEG signals associated with different
type of tasks. Figure 7 shows a plot of the feature extraction methods used for each of
the six categories: ER, MWL, MI, SD, SS, and ND tasks. The inner circle represents the
type of task, and the outer circle represents the utilization rate of the method for each task.
The results suggested that EEG signals were commonly analyzed in the time-frequency
domain in the reviewed articles. WT was the most common feature extraction method used
for all tasks. Our investigation revealed that researchers examining MWL, ND, and SS
tasks typically chose FFT; in contrast, PCA was heavily used for feature extraction in
studies focused on ER, MWL, and SD tasks. Furthermore, the CSP model was a commonly
used feature extraction method in EEG-based BCI systems for MI tasks. In some research
studies, the combination of CSP and other methods was used to decode the EEG signals.
For example, Wang et al. [208] have examined the performance of CSP with and without
discriminative canonical pattern matching method and have found that a combination
of CSP and discriminative canonical pattern matching, as compared with the single CSP
method, significantly improved the accuracy of feature extraction in pre-movement EEG
patterns by 10%. Several other efficient feature extraction methods have been used in
studies involving various tasks, such as Higher-Order Spectra (HOS) for the PD detection
task [209], one-dimensional ternary patterns (1D-TP) for the SD task [187], and Kolmogorov
complexity (Kc) and sparse spectrotemporal decomposition (SSD) for the MI task [210].
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Figure 7. Feature extraction methods used in all studies considered in this review. The inner circle
represents the type of task, and the outer circle represents the utilization rate of the method for each
task. Abbreviations: AR, autoregressive; CSP, common spatial pattern; EMD, empirical mode de-
composition; FFT, fast Fourier transform; HHT, Hilbert Huang transform; HOS, higher-order spectra;
ICA, independent component analysis; Kc, Kolmogorov complex; MDADH, maximum difference of
amplitude distribution histogram; MRC, multiple Riemannian covariance; PCA, principal component
analysis; STFT, short-time Fourier transform; SSD, sparse spectrotemporal decomposition; TQWT,
tunable Q wavelet transform; WPD, wavelet packet decomposition; WT, wavelet transform; 1D-TP,
one-dimensional ternary patterns.

4.5. What Are the Most Frequently Used Machine Learning and Deep Learning Algorithms for
EEG Data Processing?

Among the studies performed over the past 21 years that have focused on classifying
EEG signals, SVM was the preferred supervised algorithm for nearly all types of tasks;
more than 40% of studies achieved the highest accuracy by using this ML classifier. Figure 8
indicates the plot of ML and DL classification algorithms used for each of the six types
of tasks: ER, MWL, MI, SD, SS, and ND. The inner circle represents the tasks, and the
outer circle represents the utilization rate of the classification algorithms for each task.
As confirmed in Figure 8, CNN, KNN, and RF were among the most accurate classifiers
after the SVM algorithm.

Assessing the performance of classification models depends on the type of data set
(i.e., size and quality) as well as selected feature extraction method. To obtain more
intuitive information about our findings, we plotted a bubble chart on a 2-dimensional axis
showing the relationships between ML and DL algorithms with feature extraction methods
(Figure 9). The size of each bubble shows the performance of classification models for each
task, as marked with different colors. As Figure 9 demonstrates, the use of SVM resulted
in a wide range of performance in tasks including ER, MWL, and SD, when frequency-
domain and time-frequency domain feature extraction methods, such as FFT and WT were
chosen. RF had competitive performance in tasks that included ER, MWL, MI, SD, and SS,
particularly in references [59,104,119,185,211]. However, in the domain associated with ND
tasks, the RF algorithm did not perform as well as in other tasks. According to two recent
studies [209,212], the best performance in the ND task classification was achieved when
SVM and KNN were applied. More interestingly, none of the MI studies reported high
classification accuracy with the KNN classifier; instead, LDA resulted in high performance
in only the MI and SD tasks. Furthermore, classification algorithms known as AdaBoost
achieved the highest classification accuracy rate for the SS task when the EMD feature
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extraction method was chosen. DL algorithms, particularly CNN, showed promising
performance in the ER, MWL, and MI tasks.

Figure 8. The most efficient machine learning algorithms used for different tasks. The inner circle
represents the type of tasks, and the outer circle represents the utilization rate of the supervised
machine learning and deep learning classification algorithms used for each task across all studies
evaluated. Abbreviations: CNN, convolutional neural network; DNN, deep neural network; DT,
decision tree; ELM, extreme learning machine; KNN, K-nearest neighbor; LDA, linear discriminant
analysis; LR, logistic regression; LSTM, long short-term memory; NB, naïve Bayes; NN, neural
networks; RF, random forest; SVM, support vector machine.

Figure 9. Bubble plot of studies according to classification algorithms and feature extraction methods.
The size of the bubble indicates the performance of classification models for each task as marked
with different colors.

5. Discussion

An important EEG signal is the P300 ERP, which has been used to build the P300
speller, a communication tool through which users can type messages by controlling their
eye-gazing [213]. Although P300 ERPs are collected through signal acquisition methods,
these signals have very low signal-to-noise ratios; thus, the stimuli process must be con-
tinued to ensure the improved signal-to-noise ratios. This repetition has drawbacks, such
as decreasing typing speed and increasing typing error [213]. In the reviewed literature,
several supervised ML and DL algorithms have been applied to classify P300 responses cor-



Brain Sci. 2021, 11, 1525 17 of 44

rectly with a smaller number of repetitions. Among supervised ML algorithms, SVM and
LDA have been applied successfully in P300 classification [125,214]. Furthermore, CNN
with various architectures has been widely used in the P300 classification task [213,215–217].
However, the details on P300 classification using supervised ML and DL algorithms are
beyond the scope of this review. In this section, we provide more comprehensive explana-
tions of the contents of the articles reviewed. These explanations include further discussion
of the applications of ML and DL algorithms and the feature extraction methods provided
to ML classifiers depending on task types. This section also provides recommendations for
selecting a ML and DL classifier according to the selected models in the reviewed articles,
according to their observed performance.

5.1. Emotion Recognition Task

Emotions play essential roles in the evaluation of human behavior. EEG signals pro-
vide a convenient way to analyze an individual’s emotional response to external stimuli.
Research has focused on classifying and predicting emotion dimensions while participants
perform in externally driven activities, including watching video clips, facial pictures,
and sequences of images [65,218,219]. In addition to exposure to these external stimuli,
expression of the basic innate emotions (i.e., fear, anger, surprise, sadness, happiness,
and disgust) causes different behavioral responses in individuals [220,221], Notably, fearful
facial expression is a threatening stimulus resulting in an appropriate organization of defen-
sive responses [222]. Moreover, environmental factors, such as approaching direction [223]
have contributed to clarifying the effects of behavioral responses (i.e., defensive responses).

ER research based on EEG signals has recently become a commonly investigated topic
(Figure 5). Of the 19 selected articles on this topic, 12 studies (63%) were published in
the past 3 years. This field is expected to continue to grow over the next several years.
Most studies used the Database for Emotion Analysis Using Physiologic Signals (DEAP),
the most commonly used data to evaluate ER tasks and classify emotional states in two
dimensions [161]. Table 3 briefly compares the performance of ML and DL algorithms
observed in ER studies. As shown in Table 3, the NB classifier did not perform well
for this task. Chung and Yoon [31] have used a weighted-log-posterior function for the
Bayes classifier and reported an accuracy for valence and arousal classification of 66.6%
and 66.4% for two classes and 53.4% and 51.0% for three classes, respectively. Shukla
and Chaurasiya [167] have classified emotional states by using emotional dimension in
the valence-arousal plane and reported that KNN outperformed other classifiers with an
average accuracy of 87.1%. Three studies have analyzed differences in the performance
of PCA in extracting desired features with different ML and DL classifiers. An earlier
publication [164] has evaluated classification results both with and without a dimensional
reduction technique; the results confirmed that KNN with PCA achieves better classification
accuracy than other algorithms including SVM, LDA, LR, and DT. Bazgir et al. [163] have
performed a similar analysis and decomposed EEG signals into five specific frequency
bands by using discrete wavelet transform (DWT) via the db4 mother wavelet function on
the selected channels. PCA was then applied to extract spectral features, and SVM with
an RBF kernel was used to extract features from ten channels. This classification method
achieved 91.3% and 91.1% accuracy for arousal and valence, respectively. Similarly, the high
accuracy of ANNs has reported been in a previous study [166] using kernel PCA to extract
segment-level features. Two additional studies have reported a high accuracy rate when
using the RF algorithm. In one of these studies [162], the authors examined the level of
fear based on emotional dimensions. They assessed fear in two- and four-level modes and
built classifier models both with and without feature selection. The classification results
confirmed that, use of differential entropy features resulted in the highest accuracy (90.07%)
of RF classifiers in evaluating fear. Ramzan and Dawn [119] have observed similar results
and reported that RF consistently outperformed other algorithms with an accuracy of 98.2%
when its statistical features were used. Moreover, Nawaz et al. [168] have evaluated the
performance of SVM, KNN, and DT classifiers with different types of features and found
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that statistical features performed best in assessing emotional dynamics in the human brain.
Specifically, they achieved 77.62%, 78.96%, and 77.6% accuracy for binary classification
of valence, arousal, and dominance, respectively, when these features were examined by
using the SVM classifier. Qiao et al. [224] have proposed a novel model for multi-subject
emotion classification. High-level features obtained by using the DL model and the CNN
for feature abstraction resulted in a high accuracy of 87.27%. Overall, in studies on the
DEAP data set, CNN can be chosen as a method to achieve competitive performance in
ER tasks.

Table 3. Comparison of studies conducted on emotion recognition tasks by using the DEAP data set.

Authors Year Feature Extraction Method Classification Performance (%)

Ramzan and Dawn [119] 2019 Statistics RF Accuracy = 98.2

Bazgir et al. [163] 2018 PCA RBF-SVM Accuracy = 91.1 (valence)
Accuracy = 91.3 (arousal)

Balan et al. [162] 2019 Entropy RF Accuracy = 90.07
Qiao et al. [224] 2017 STFT CNN Accuracy = 87.27
Shukla and Chaurasiya [167] 2018 DWT KNN Accuracy = 87.1

Nawaz et al. [168] 2020 Statistics SVM
Accuracy = 77.62 (valence)
Accuracy = 78.96 (arousal)
Accuracy = 77.6 (dominance)

Doma and Pirouz [164] 2020 PCA KNN Accuracy = 74.25

Chung and Yoon [31] 2012 N/A NB Accuracy = 66.6 (valence)
Accuracy = 66.4 (arousal)

Rozgic et al. [166] 2013 PCA ANNs Accuracy > 60

In contrast, the studies that did not use this shared data set [65,218,219,225–230] all
achieved higher classification performance by using SVM, KNN, and ANNs algorithms.
For example, Seo et al. [227] have compared different ML classifiers to classify boredom
and non-boredom in 28 participants on the basis of the historical models of emotion and
found that the KNN outperformed both RF and ANNs. Likewise, nearly identical per-
formance has been reported by Heraz et al. [218] in experiments analyzing EEG signals
from 17 participants. Murugappan [65] has reported a high accuracy performance for KNN
used together with DWT. SVM is also a commonly used ML classifier; Li and Lu [219]
have achieved the highest accuracy rate of 93.5% by using this method. In that study,
participants were provoked with pictures of facial expressions. The authors applied CSP
and linear-SVM and found that the gamma band (approximately 30–100 Hz) was suitable
for classifying EEG-based human emotion. Additionally, in prior studies [27,230], tuned
Q wavelet transform (TQWT) has been implemented to elicit the relevant features from
the sub-bands. In reference [27], the classification of six extracted features and a proba-
bilistic neural network (PNN) resulted in accuracy of 96.16% and 93.88% for classifying
emotions in participants diagnosed with PD and healthy control subjects, respectively.
Similarly, reference [230] has applied a multiclass least-squares support vector machine
and achieved 95.7% accuracy for the classification of four emotions (happiness, fear, sad-
ness, and relaxation). Because the performance of these classifiers differed among these
nine publications, further investigation will be needed to identify the most effective ML
classification algorithm. However, ANNs, KNN, and SVM methods with different kernels
appeared to outperform other algorithms in ER tasks.

5.2. Mental Workload Task

Industrial sectors, including transportation, military, and aviation, require individuals
to perform multiple tasks simultaneously (i.e., multitasking); operators in these settings
must maintain constant vigilance to perform various tasks efficiently and effectively. MWL
involves human factors that determine what resources may be required to perform a specific
task [211]. Moreover, prior studies have accepted the role of human mental activities (i.e.,
human behavior) in human cognitive abilities such as working memory [231–233]. In this
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respect, Garofalo et al. [234] have indicated that individual differences are highly associated
with the human behavior required by the task. Likewise, the influence of action control on
execution and inhibition in motor responses in humans, and emotional stimuli in learned
action have been discussed in references [235,236], respectively.

In the literature, three main approaches have been used to infer MWL levels: subjective
measures, performance-based measures, and physiological measures [32]. Among these,
approaches involving physiological methods that interpret MWL by using invasive, semi-
invasive, and non-invasive physiological techniques perform relatively better than other
measures. EEG data recording is a non-invasive method that provides a superior means to
capture brain signals while participants perform complex tasks such as simulated driving
or arithmetic calculations [32,237,238]. Overall, our review identified 23 publications that
considered the MWL task. Different feature extraction techniques were widely applied
in studies such as FFT, PCA, WT, AR, EMD, and HHT. Our investigation revealed that
FFT, PCA, WT, and AR were the most widely used and effective methods for feature
extraction among the reviewed articles in this domain; these methods were reported as
superior 31%, 19%, 15%, and 15% of the time, respectively. For example, FFT has been
implemented by researchers in several published studies [81,196,211,239–242] to extract
features on the basis of the frequency of the EEG signals; however, another study has
confirmed AR as one of the most reliable methods [243]. We also identified several essential
feature extraction techniques that were less frequently applied in MWL tasks, including
entropy and HHT, which elicited features of both nonlinear and non-stationary signals.
Peng et al. [84] have applied HHT and SVM to evaluate attentiveness levels, and Vanitha
and Krishnan [244] have used the HHT algorithm to extract EEG features to detect student
stress levels. The study in reference [245] used the statistical method known as approximate
entropy; more details on this method are provided in reference [246].

Various classifiers have been applied to identify the patterns in mental tasks to enhance
classification performance. Our review indicated that SVM was the most commonly used
ML algorithm to model MWL tasks. However, other ML methods, including KNN, ANNs,
RF, and XGBoost classifiers have been used by others. For example, Dempster-Shafer theory
and KNN (DSTKNN) classification methods have been applied in reference [243], in which
desired features from EEG signals extracted by using both the AR model and statistical
wavelet decomposition were provided to the DSTKNN classifier. The proposed algorithm
achieved higher accuracy (93%) than did simple KNN. Likewise, Shah and Ghosh [55] have
developed a real-time classification system by using PCA and a simple KNN classification
algorithm. Interestingly, the studies in references [196,241] have proposed using FFT to
evaluate the PSD on the basis of the time domain features incorporated in different ML
models for classification. The results indicated the highest accuracy with KNN, at 99.42%
and 90.5%, respectively. In addition to KNN, the application of ANNs [81], RF [211,240],
and XGBoost classifiers [32] has been reported to identify individual intelligence quotients,
mental work estimation, mental state, and task complexity. DL-based models have been
applied in MWL tasks and have shown competitive performance in classification. For ex-
ample, Jiao et al. [242] have designed a novel CNN architecture with an average result
accuracy of 90% in 15 participants. In reference [247], the MWL has been classified by
using the KNN classifier, the LSTM classifier, and the CNN + LSTM network. The best
performance (61.08%) was achieved for the LSTM classifier. Given the proposed ML and
DL algorithms, the FFT model has been implemented in several studies [81,211,240,242] to
extract frequency domain features from different EEG bands.

Several studies have indicated that SVM classifiers are among the best techniques.
Table 4 illustrates the highest classification accuracy of SVM when used with different types
of feature extraction methods. In each study, the number of participants was six to eight,
except for one previous study [84] that included 20 participants. After extraction, the com-
binations of all features were classified. As shown in Table 4, entropy, FFT, and EMD were
associated with the highest accuracy when used with the SVM algorithm. The classification
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accuracy of entropy used with Immune Feature Weight SVM (IFWSVM), FFT with cubic
SVM, and EMD with SVM were 97.5%, 95%, and 94.3%, respectively.

Table 4. Classification accuracy of the selected feature extraction methods with the SVM classifier for a mental workload task.

Authors Year Feature Extraction Method Classification Performance (%)

Guo et al. [245] 2010 Entropy IFWSVM Accuracy = 97.5
Rashid et al. [239] 2018 FFT Cubic SVM Accuracy = 95
Gupta and Agrawal [248] 2012 EMD SVM Accuracy = 94.3
Vanitha and Krishnan [244] 2016 HHT SVM Accuracy = 89.07
Wei et al. [249] 2011 PCA SVR Accuracy = 85.92
Peng et al. [84] 2020 HHT SVM Accuracy = 84.8
Gupta et al. [250] 2020 WT/EMD Non-linear SVM Accuracy = 80–100
Hosni et al. [251] 2017 AR RBF-SVM Accuracy = 70
Liang et al. [252] 2006 AR SVM Accuracy = 67.57

Seven types of ML and DL classification algorithms were used to study MWL tasks:
CNN, LSTM, SVM, KNN, ANNs, RF, and XGBoost. Two studies [196,241] have used
KNN classifiers with the feature extraction method FFT and compared the performance
of KNN versus other algorithms. Both studies have reported that KNN with FFT results
in the most accurate performance. Moreover, the studies in references [245,251,253] have
reported that IFWSVM and RBF-SVM are more efficient than simple SVM at this task.
Guo et al. [245] have proposed the IFWSVM classifier. The immune algorithm was applied
on the basis of the assumption that each feature contributes differently to the overall result.
Optimal feature weights were extracted with the immune algorithm and used to train the
IFWSVM classifier. A previous study [251] has compared the performance of different
feature extraction algorithms and found that an AR model-based representation performs
better than frequency-based representations. The remaining studies have used a variety
of other feature extraction methods. On the basis of our finding, CNN, SVM (particularly
IFWSVM and cubic SVM) and KNN classifiers have been selected as good candidate
classifiers for tasks associated with the MWL.

5.3. Motor Imagery Task

BCI allows for communication between users and external devices by translating brain
signals into computer commands [68,254]. Recently, BCI technology has made significant
contributions to neuroscience by enabling analysis of brain signals with high temporal
resolution [88,254]. The main EEG paradigms used by BCI systems include ERP [255],
SSVEP [256], and MI. MI is the mental performance of a movement without any evident
muscle activation. However, MI leads to the activation of specific brain areas in a manner
similar to that observed in association with actual muscle movement. In MI tasks, EEG
signals are recorded while participants are asked to imagine certain muscle movements
of their limbs [257]. MI can be used as a component of a treatment plan to promote
recovery in patients with limited motor abilities. Because of the complexity of the brain,
various methods have been used for feature extraction to discriminate between features
of MI tasks. The selected features were provided to classification algorithms that were
asked to differentiate between MI tasks including left- and right-handed movements and
movements of a foot or a limb. Of the 26 publications focused on MI tasks, the best
performance was reported in studies using DL such as CNN, and ML such as SVM, LDA,
LR, RF, and NB classifiers.

As reported earlier [68,176], CSP is the most common feature extraction method
and has been used extensively in BCI tasks, in agreement with our findings. Of the
26 selected studies focusing on MI tasks, ten (38%) applied this method with various
classifiers. For example, Islam Molla et al. [176] have used CSP to extract four sets of
features from each sub-band; the selected features were then provided to the SVM classifier,
thus resulting in nearly 93% accuracy. Similarly, CSP has been applied in the studies
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featured in references [53,171] together with an SVM classifier. Soman et al. [171] have
proposed a robust classifier using Twin-SVM and reported that this method enhanced the
classification performance of left and right limb movements in the BCI Competition data
set by 20%. However, CSP does not always perform perfectly with the SVM algorithm.
Earlier studies [172,175,258] have compared the performance of ANNs and LDA with SVM.
Jia et al. [175] have compared the results obtained by using backpropagation neural network
(BPNN) and SVM algorithms and found that BPNN with CSP consistently outperformed
SVM. The accuracy rates achieved with BPNN and SVM classifiers were 91.6% and 88.8%,
respectively. Aljalal and Djemal [172] have implemented three classifiers using both CSP
and WT. The authors found that LDA was more powerful with the features obtained from
CSP and resulted in an accuracy rate of 84.79%; in contrast, SVM together with the WT
method, achieved only 82.64% accuracy.

Two additional studies [34,124] have examined the performance of CSP and LDA for
feature extraction and classification, respectively. In reference [124], the results indicated an
89.84% classification accuracy with the BCI-Competition IV data set. Similarly, a previous
report [34] has indicated a 74.69% classification accuracy with EEG brain signals recorded
from eight pianists. In addition to CSP, WT is a powerful tool that can be used to extract
desired features in MI tasks. Sreeja et al. [61] have assessed the performance of the NB
algorithm with WT and found a much higher classification accuracy than those obtained
with either LDA or SVM classifiers. Ines et al. [174] and Maswanganyi et al. [52] have
performed similar experiments and analyzed performance differences in ML classifiers by
using the BCI Competition data set. Both studies have reported high accuracy when using
WT with SVM and WT with NB, respectively.

One group of researchers has implemented three classifiers (SVM, LR, and KNN) to
distinguish real from imagined movements by using EEG signals [195]. In this case, the LR
algorithm outperformed both SVM and KNN, with overall accuracy rates ranging from
37% to 90%. Behri et al. [104] have compared several algorithms that might be used to
differentiate EEG signals from the right foot and the right hand in five study participants.
WPD was used to extract the features, and the RF classifier and WPD achieved a maximum
accuracy of 98.45% in all participants. Similarly, Attallah et al. [259] have applied four levels
of WPD to decompose EEG signals. Four different features were extracted, which were then
introduced into the ML algorithm. With the SVM classifier, the highest accuracy of 93.46%
and 86% was achieved for the BCI Competition III-IVa data set and the autocalibration
and recurrent adaptation data set, respectively. Furthermore, a multi-class Adaboost-ELM
algorithm based on features extracted by Kc has been used to classify three states (i.e.,
left-hand movement, right-hand movement, and resting-state) in ten participants [210].
Moreover, the performance of SVM was compared with that of Fisher linear discriminant,
BPNN, and radial basis function neural network (RBF-NN) to achieve optimal performance
of classification [260]. Yang et al. [261] have proposed a new framework based on multiple
Riemannian covariances and MLP for feature extraction and classification, respectively.
Use of this framework to classify MI EEG signals achieved a mean accuracy of 76%.

Several reviewed studies have used convolutional layers for EEG-based MI tasks.
Sun et al. [262] have proposed the sparse spectrotemporal decomposition (SSD) algorithm
for feature extraction and the CNN classifier with a 1-D convolution layer. Experimental
results on BCI Competition IV and Tianjin University (TJU) data sets have achieved 79.3%
and 85.7% accuracy, respectively. In reference [263], Liu et al. have considered the original
EEG signals and their wavelet power spectrum as model input and reported that a deep
CNN architecture based on space-time features and time-frequency features significantly
improved the average accuracy performance of four-class MI classification. Dai et al. [264]
have designed a hybrid architecture in which a convolutional layer CNN was used to
learn network parameters, and the extracted features were then fed into the variational
autoencoder (VAE) network.

Overall, we found no comprehensive comparisons of methods used as classifiers for
MI tasks. Nevertheless, CNN, SVM, and NB outperformed other ML and DL classifiers
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in the articles reviewed in this study. On the basis of the findings, we suggest that CNN,
SVM, and NB classifiers together with either CSP or WT extraction methods might be used
for MI tasks.

5.4. Seizure Detection Task

Epilepsy is a neurological disorder whose diagnosis with automated SD has recently
received significant attention [189], because the features extracted from the EEG signals
are advantageous. In this task, EEG signals were recorded occasionally from healthy par-
ticipants and patients with epileptic symptoms [20]. Seven ML and DL algorithms were
used in SD studies: CNN [265,266], SVM [116,118,179,180,182,184,191,192,198,200,207,267],
KNN [189,268,269], ANNs [183,199], RF [185,187,190], LDA [186], and ELM [181]. How-
ever, among the 24 studies focused on seizures, 12 applied the SVM algorithm with
various kernels. Murugappan and Ramakrishnan [118] have used a hierarchical multi-
class SVM (H-MSVM) with an ELM kernel to classify SD. Likewise, linear, and Gaussian
kernels have been applied for high-dimensional spaces, respectively [198,267]. The RBF
kernel is a common function used in the SVM algorithm applied to different tasks, as de-
scribed by Hamed et al. [179] and Jaiswal and Banka [180]. Furthermore, the most
common feature extraction methods reported in the publications selected for our study
were WT [118,179,183,184,198,199,267], EMD [116,182,192], PCA [180,189,190,207], and
FFT [268,269]. Similarly, the statistical feature extraction method 1D-TP used widely for
image processing [270] has been applied [187] to generate the lower and upper features of
each signal. Maximum difference of amplitude distribution histogram (MDADH) is a su-
pervised feature selection method based on amplitude distribution histograms generated in
both preictal and non-preictal trials. This method has been used by Bandarabadi et al. [200]
to select and extract the desired EEG signal features. Further details on amplitude dis-
tribution histograms have been provided in previous publications [271,272]. The use of
VMD, an extension of EMD, has been proposed by Chakraborty and Mitra [185]. The ob-
jective of VMD is to decompose input signals into sub-signals called modes. Because of
the difficulties involved in selecting the appropriate number of modes and the associated
penalty coefficient, the authors have proposed a kurtosis-based method that can be used to
select the optimal number of modes and the penalty coefficient. More details on the VMD
method can be found in reference [83].

As documented in Table 5, three shared SD databases have been used in the studies
featured in this review: the BONN database, the CHB-MIT database, and the European
epilepsy database. Some studies using the BONN database achieved near-perfect classifi-
cation accuracy, reaching 100% with an SVM classifier [179,180,184] or RF classifier [185],
and 97.7% accuracy with CNN [265,266]. In recent studies, residual CNN models using
raw EEG signals as input [265,266] have also achieved competitive performance. In ref-
erence [180], feature extraction has been performed by using both sub-pattern-based
PCA (SpPCA) and cross-sub-pattern correlation-based PCA (SubXPCA) methods; the
extracted features were then sent to an SVM with an RBF kernel for further analysis.
The feature extraction methods DWT and WPD have been used in references [179,181],
respectively. In studies using the CHB-MIT database [190,191], the classification perfor-
mance has reached 97.12% sensitivity with RF with PCA as a feature extraction method
and 96% sensitivity with SVM. In addition, the use of SVM and ANNs classifiers resulted
in nearly identical performance in studies using the publicly available European epilepsy
database [199,200], in which an average sensitivity value of 73.5% was achieved.

Because we observed only trivial performance differences when comparing studies
performed on data from each of the shared databases, we concluded that further research
is needed to identify the most effective ML and DL algorithms for seizure detection.
Nevertheless, as shown in Table 5, both CNN and SVM are robust algorithms that can
be used to detect abnormalities from biomedical signals, and RF and ANNs are the most
commonly used classifiers used in the studies included herein that focused on SD tasks.
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Thus, we recommend CNN, SVM, ANNs, and RF as good candidate ML and DL classifiers
for this type of task.

Table 5. Comparison of studies conducted for the seizure detection task by using shared data sets.

Database Authors Year Feature Extraction Method Classification Performance (%)

BONN

Hamed et al. [179] 2018 DWT RBF-SVM Accuracy = 100
Savadkoohi et al. [184] 2020 FFT / WT SVM Accuracy = 100
Jaiswal and Banka [180] 2018 PCA RBF-SVM Accuracy = 100

Riaz et al. [182] 2015 EMD SVM
High performance in the
detection of seizures in
case 1 and 2

Ullah et al. [266] 2018 - 1D-CNN Accuracy = 99.1
Lu and Triesch [265] 2019 - Residual CNN Accuracy = 99
Chakraborty and
Mitra [185] 2021 VMD RF Accuracy = 98.7–100

Ech-Choudany et al. [186] 2021 Dissimilarity-based TFD LDA Accuracy = 98
Mardini et al. [183] 2020 DWT ANNs Accuracy = 97.8
Liu et al. [181] 2017 WPD ELM Accuracy = 97.7
Murugappan and
Ramakrishnan [118] 2016 WT H-MSVM Accuracy = 94

Kaya and Ertugrul [187] 2018 1D-TP RF Accuracy > 94

CHB-MIT

Pinto-Orellana and
Cerqueira [190] 2016 PCA RF Sensitivity = 97.1

Specificity = 99.2
Shoeb et al. [191] 2011 - SVM Sensitivity = 96

Fergus et al. [189] 2015 PCA KNN Sensitivity = 93
Specificity = 94

Usman et al. [192] 2017 EMD SVM Sensitivity = 92.2
Specificity = 93.4

European Epilepsy

Teixeira et al. [199] 2014 WT ANNs Sensitivity = 73.1

Direito et al. [198] 2017 DWT Linear-SVM High performance in a small
subset of participants

Bandarabadi et al. [200] 2015 MDADH SVM Sensitivity = 73.98

5.5. Sleep Stage Scoring Task

A sleep stage is a period of time in which the sleep process remains constant. Sleep
researchers focus on two main stages of sleep: rapid eye movement (REM) and non-rapid
eye movement (NREM) [273]. NREM is divided into four stages (stages 1–4), each of which
has specific characteristics. EEG signals are recorded during sleep and scored by experts
that can classify them into REM or one of the four NREM sleep stages by using various
detection methods.

Several ML techniques for automated SS tasks have been applied in the articles in-
cluded in this review (Table 6). Ebrahimi et al. [274] have identified four sleep stages,
extracted features based on WT coefficients, and applied MLP with eight neurons in one
hidden layer, achieving 93% accuracy. Similarly, Zoubek et al. [275] have compared the
performance between FFT and WT with two different classifiers: KNN and MLP. High
accuracy was achieved with MLP with six neurons in one hidden layer when FFT was used
as the feature extraction method. In another study [276], the researchers obtained time- and
frequency-domain features from polysomnography signals by using dendrogram-based
SVM as the classifier. The specificity, sensitivity, and accuracy of the classification of five
sleep stages reached 94%, 82%, and 92%, respectively. Correspondingly, dendrogram-based
multi-class SVM and WT have been used in one study [202] to classify three sleep states
(light sleep and REM, deep sleep, and the awake) with an accuracy of 91.4%. Kuo and
Liang [277] have proposed multiscale permutation entropy analysis for sleep scoring tasks
along with the AR model and LDA, and have achieved a sensitivity of 89.1% for ten
participants. Similarly, Santaji and Desai [59] have compared the performance of three clas-
sifiers: RF, SVM, and DT. The RF algorithm, when trained with extracted statistical features
outperformed the other two algorithms in classification, with high specificity, sensitivity,
and accuracy of 96.35%, 96.12%, and 97.8%, respectively. Delimayanti et al. [204] have ap-
plied FFT to elicit high-dimensional features and enhanced the classification performance
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of SS tasks by using the SVM algorithm with RBF kernel, and have achieved an average
accuracy of 87.84%. Moreover, the performance of the AdaBoost classifier has been ana-
lyzed in reference [203,278]. Hassan and Bhuiyan [203] extracted time-frequency features
by using the EMD method and compared the performance of different ML classifiers for SS
task on the basis of a single channel EEG signal. AdaBoost significantly outperformed the
other algorithms, with an accuracy of 92.24%.

Table 6. Comparison of studies for the sleep stage scoring task, including sleep stages, feature extraction method, machine
learning algorithm, and overall performance.

Authors Year Sleep Stages Feature Extraction Method Classification Performance (%)

Santaji and Desai [59] 2020 S1, S2, REM Entropy RF Accuracy = 97.8
Ebrahimi et al. [279] 2008 Awake, S1 and REM, S2, SWS WT MLP Accuracy = 93
Hassan and
Bhuiyan [203] 2016 Awake, S1, S2, S3, S4, REM EMD AdaBoost Accuracy = 92.2

Lajnef et al. [276] 2015 Awake, S1, S2, SWS, REM Entropy Dendrogram-SVM Accuracy = 92
Ravan [202] 2019 Awake, LS and REM, DS WT Dendrogram-SVM Accuracy = 91.4
Kuo and Liang [277] 2011 Awake, S1, S2, SWS, REM Entropy/AR LDA Sensitivity = 89.1
Delimayanti et al. [204] 2020 Awake, S1, S2, S3, S4, REM FFT RBF-SVM Accuracy = 87.8
Zoubek et al. [275] 2007 Awake, NREM1, NREM2, SWS, PS FFT MLP Accuracy = 71.6

5.6. Neurodegenerative Disease Task

Chronic pain is a brain disease that often occurs in older people [280] with a diagnosis
of ND, such as AD, PD, and SZ [281]. According to reference [280], chronic pain in
older patients may reduce memory extinction and increase the resilience of pain memory,
as discussed by Battaglia et al. [282], who have demonstrated that older individuals have
reduced extinction of fear memories.Analysis of EEG is a well-established method that can
be used to detect brain abnormalities associated with these diseases. To perform this task,
EEG data were recorded for several hours from both healthy participants and patients with
these disorders to create a large data set. Analysis of brain signals to diagnose ND has been
proposed in only a small number of selected studies. However, ML and DL applications
offer new and potentially highly accurate approaches that might be used to diagnose brain
abnormalities during early stages of the disease.

In the eight articles on AD selected for this review, the number of participants per
study varied between 35 and 189, and the samples of patients with AD, patients with Mild
Cognitive Impairment (MCI), and Healthy Controls (HCs) were well balanced. Four of
these studies [117,283–285] explored the differences between patients with AD and HCs,
whereas the other publications [58,102,274,286] considered all three groups. EEG band-pass
filtering is a common strategy used to improve the spectral components of EEG signals;
five of the eight publications have reported an EEG bandwidth at or below 40 Hz. The pub-
lications included in this review used three EEG feature extraction methods—spectral
entropy, FFT, and WT—for the characterization of AD. As reported by Kulkarni [283,284],
the combination of spectral entropy and an SVM classifier, compared with that of KNN
classifier, resulted in outstanding performance achieving an accuracy of 96%. Two groups
have used FFT to extract the EEG features [117,286]. Fiscon et al. [286] have applied FFT to
the EEG signals and compared the outcomes associated with various classifiers, including
SVM, DT, and rule-based classifiers. The results revealed that the use of DT to classify
MCI versus HCs, AD versus MCI, and AD versus HCs was superior to the use of other
classifiers, and achieved an accuracy of 90%, 80%, and 73%, respectively. Likewise, FFT
has been used in one study [117] together with SVM to differentiate patients with AD
from HCs, with an accuracy of 87%. WT has been developed into discrete and continuous
WT feature extraction methods. The combination of DWT with DT has been examined
in reference [102]. In addition, in reference [58], continuous wavelet transform (CWT)
with MLP achieved the best accuracy, at 95.76% and 86.84% for AD versus HCs and AD
versus MCI, respectively. Oltu et al. [274] have proposed an algorithm including three
main steps that can be used to elicit the relevant features: DWT to extract EEG sub-bands,
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Burg’s method to measure the PSD of each sub-band, and a means for determining the
amplitude summation of the coherence values for sub-bands. In this study, Bagged Trees
outperformed the other classifiers, with a classification accuracy of 96.5%. CNN archi-
tecture, used by Morabito et al. [285] with two hidden convolutional layers to extract
features of multi-channel EEG signals, has been reported to achieve an 82% accuracy for
three-class classification.

Two PD-related articles were considered in the ND category. These studies were
performed on experimental data sets with 20 or 18 participants, in references [209,287],
respectively. According to the study published in reference [287], FFT was used as a feature
extraction method together with a KNN classifier to differentiate between PD patients and
HCs, with 88% accuracy. HOS, a powerful method to extract the nonlinear EEG signal
features [288], was introduced by Yuvaraj et al. [209]. In that study, the use of RBF-SVM
resulted in an accuracy of 99.62%.

Only a very small fraction of the publications included in this review were SZ-related
studies. In one study [212], wavelet-based features were elicited from a single channel
and classified with the KNN algorithm. Classification accuracy values of 99.21% and
97.2% were obtained with 10-fold and leave-one-subject-out cross-validation methods,
respectively. Other researchers have designed RF classifiers by using features extracted
based on ERP [289]. With 10-fold cross-validation, the best classification accuracy of 81.10%
was achieved.

6. Future Directions

Several promising future directions exist in the implementation of EEG signal classifi-
cation. Most recent research has focused on using DL algorithms that require increasing the
amount of data and changing the structure of the model [290]. Although DL models can ef-
fectively solve the EEG signal classification tasks, transfer learning strategy from one model
to another accelerates training time and yields the best performance results [291]. Another
exciting prospect is applying a graph neural network (GNN) framework to consider the
brain connectivity network by identifying Regions of Interests [292]. DL models cannot
directly work on graph-structured input data because they consider the brain network
features as a vector of one dimension [293]. The human brain connectivity represents the
brain as a graph with interacting nodes in non-Euclidean space, and existing DL methods
generally disregard the interaction and association of brain connectivity networks [294].
GNNs aim to learn graph representations by using a neural network and to pass informa-
tion via a message-passing algorithm [295,296]. Unlike neural networks, GNNs update the
representations of nodes while maintaining the graph topology.

7. Conclusions

On the basis of our review of 128 published articles, various supervised machine
learning and deep learning algorithms have been widely applied in various tasks, including
ER, MWL, MI, SD, SS, and diagnosis of ND. Several metrics can affect the performance of
classifiers, including different data sets, preprocessing techniques, and feature extraction
methods. We presented an overview of feature extraction methods as part of our findings
addressing RQ2. We also introduced the publicly available databases that have frequently
been used for each task, and we directly analyzed the classification performance reported
in relevant studies. Many of the reviewed studies have compared the performance of
different classifiers; CNN, SVM, and KNN were the most frequently used classifiers across
all articles reviewed. Although model performance can be attributed to a variety of
factors, our findings suggested that SVM and KNN outperformed the other supervised ML
classifiers. We also found that CNN and NB had impressive performance in studies focused
on MI tasks when either CSP or WT was used as a feature extraction methods. Similarly,
the performance of RF was superior to that of the other classifiers in studies focused on
ER tasks with the DEAP database. This systematic review provided recommendations
for applying supervised machine learning and deep learning algorithms for the neural
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decoding of EEG signals in various tasks and experimental protocols. Although each
classification algorithm has its own strengths and limitations, these recommendations
provide insight into the issues associated with the classification of EEG signals, which might
be addressed in future research efforts in this field. Further in-depth studies combining the
selection of feature extraction methods and types of classifiers are highly recommended.
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Appendix A

Table A1 summarizes the relevant information from the selected articles, including the
task information, database, frequency range, feature extraction method, ML/DL algorithm,
and performance.

Table A1. Summary of the ML/DL Algorithm-related studies included in this systematic review.

Article Year TaskInformation Database Feature Extraction Method ML/DL Algorithm Performance

[245] 2010
MWL
7 subj.
6 channels

Own database Entropy IFWSVM Accuracy = 97.5

[176] 2020 MI
30 channels BCI Competition III and IV CSP SVM Accuracy = 92.2

[239] 2018
MWL
8 subj.
1 channel

Own database FFT
Cubic SVM
KNN
LDA

Accuracy = 95

[81] 2014 MWL
50 subj. Own database FFT ANNs Accuracy = 88.9

[284] 2019
AD
100 subj.
24 channels

Own database Entropy SVM
KNN Accuracy = 96

[244] 2016 MWL
6 subj. Own database HHT

SVM
LDA
QDA
KNN

Accuracy = 89.07

[253] 2010
MWL
13 subj.
20 channels

Own database PCA RBF-SVM -

[195] 2019
MI
11 subj.
3 channels

PhysioNet database N/A
LR
SVM
KNN

Accuracy = 90

[118] 2016
SD
22 subj.
128 channels

BONN database WT H-MSVM Accuracy = 94
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Table A1. Cont.

Article Year TaskInformation Database Feature Extraction Method ML/DL Algorithm Performance

[192] 2017
SD
24 subj.
23 channels

CHB-MIT database EMD SVM Sensitivity = 92.2

[191] 2011 SD
22 subj. CHB-MIT database N/A SVM Sensitivity = 96

[102] 2018
AD
109 subj.
19 channels

Own database DWT/FFT DT J48 Accuracy = 91.7

[243] 2009
MWL
4 subj.
6 channels

Own database AR/DWT DSTKNN Accuracy = 93.04

[279] 2008 SS
7 subj. Sleep-EDF database WT MLP Accuracy = 93

[248] 2012
MWL
6 subj.
6 channels

Own database EMD

SVM
LDC
QDC
KNN

Accuracy = 94.3

[104] 2018 MI
5 subj. BCI Competition III WPD

RF
KNN
SVM

Accuracy = 98.45

[225] 2020
ER
40 subj.
14 channels

Own database TQWT

PNN
ELM
KNN
RF
DT

Accuracy = 96.16

[179] 2018
SD
25 subj.
100 channels

BONN database DWT
RBF-SVM
KNN
NB

Accuracy = 100

[275] 2007
SS
41 subj.
1 channel

Own database FFT MLP
KNN Accuracy = 71.56

[32] 2019
MWL
8 subj.
14 channels

Own database N/A

XGBoost
MLP
KNN
SVM
DT
NB

Accuracy = 88

[183] 2020 SD BONN database DWT

ANNs
SVM
KNN
NB

Accuracy = 97.82

[194] 2013
MI
6 subj.
8 channels

PhysioNet database ICA SVM
ANNs Accuracy = 97.1

[54] 2008
MWL
15 subj.
60 channels

Own database PCA SVM Accuracy = 71.7

[251] 2007
MWL
7 subj.
6 channels

Own database AR RBF-SVM Accuracy = 70

[229] 2020
ER
28 subj.
64 channels

Own database DWT/EMD
ANNs
KNN
SVM

Accuracy = 94.3

[297] 2016
ERP
52 subj.
64 channels

Own database WT SVM Accuracy = 87

[151] 2014
ERP
7 subj.
49 channels

Own database ICA SVM Accuracy = 87
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Table A1. Cont.

Article Year TaskInformation Database Feature Extraction Method ML/DL Algorithm Performance

[228] 2004
ER
12 subj.
3 channels

Own database Statistics SVM Accuracy = 66.7

[249] 2011
MWL
6 subj.
32 channels

Own database PCA
SVR
RBF-NN
LR

Accuracy = 86.92

[252] 2006 MWL
7 subj. Own database AR SVM

ELM Accuracy = 67.57

[274] 2021
AD
32 subj.
19 channels

Own database DWT

Bagging
DT
KNN
SVM

Accuracy = 96.5

[286] 2014
AD
100 subj.
19 channels

Own database FFT DT J48
SVM Accuracy = 90

[189] 2015 SD
22 subj. CHB-MIT database PCA KNN Sensitivity = 93

[218] 2007 ER
17 subj. Own database N/A KNN Accuracy = 82.27

[61] 2017
MI
5 subj.
30 channels

BCI Competition III DWT/AR
NB
LDA
SVM

Accuracy = 95.47

[174] 2013 MI
3 channels BCI Competition II WT

SVM
LDA
MLP

Accuracy = 90

[84] 2020 MWL
20 subj. Own database HHT SVM Accuracy = 84.8

[289] 2019
SZ
81 subj.
9 channels

Own database N/A RF Accuracy = 81.1

[298] 2019
MI
12 subj.
8 channels

Own database N/A ANNs Accuracy = 90

[212] 2021
SZ
28 subj.
19 channels

Own database RMSFMS filter

KNN
SVM
Bagged trees
Boosted trees

Accuracy = 99.21

[199] 2014
SD
224 subj.
6 channels

European Epilepsy database WT ANNs
SVM Sensitivity = 73.08

[149] 2017 ERP
108 subj. Own database TFHA SVM-RFE Accuracy = 99

[207] 2012
SD
19 subj.
6 channels

Freiburg database PCA SVM Sensitivity = 85.5

[276] 2015
SS
15 subj.
21 channels

Own database Entropy Dendrogram-
SVM Accuracy = 92

[55] 2018
MWL
8 subj.
14 channels

Own database PCA

KNN
SVM
LR
DT

Accuracy = 70.6

[167] 2018
ER
32 subj.
32 channels

DEAP database DWT KNN Accuracy = 87.1

[261] 2020
MI
9 subj.
22 channels

BCI Competition IV MRC MLP Accuracy = 76
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Table A1. Cont.

Article Year TaskInformation Database Feature Extraction Method ML/DL Algorithm Performance

[277] 2011
SS
20 subj.
6 channels

Own database Entropy/AR LDA Sensitivity = 89.1

[202] 2019
SS
67 subj.
2 channels

Sleep-EDF database WT Dendrogram-
SVM Accuracy = 91.4

[31] 2012
ER
32 subj.
32 channels

DEAP database N/A NB Accuracy = 66.5

[299] 2016
MWL
15 subj.
3 channels

Own database N/A
SVM
KNN
ANNs

Accuracy = 95.21

[33] 2018
Depression
23 subj.
19 channels

Own database HFD/Entropy

MLP
LR
SVM
DT
RF
NB

Accuracy = 97.56

[58] 2019
AD
189 subj.
19 channels

Own database CWT
MLP
LR
SVM

Accuracy = 95.76

[164] 2020
ER
32 subj.
7 channels

DEAP database PCA

KNN
LR
DT
SVM
LDA

Accuracy = 74.25

[124] 2021 MI
23 channels BCI Competition IV CSP LDA Accuracy = 89.84

[163] 2018
ER
32 subj.
10 channels

DEAP database PCA
RBF-SVM
KNN
ANNs

Accuracy = 91.2

[52] 2018
MI
9 subj.
2 channels

BCI Competition IV DWT
NB
KNN
LDA

Accuracy = 73

[300] 2010 MI
6 channels N/A Statistics

LDA
BPNN
SVM

Accuracy = 88.6

[162] 2019
ER
32 subj.
32 channels

DEAP database Entropy

RF
RBF-SVM
LDA
KNN

Accuracy = 90

[301] 2016
MWL
20 subj.
63 channels

Own database Statistics SVM Accuracy = 70

[168] 2020
ER
32 subj.
14 channels

DEAP database Statistics
SVM
KNN
DT

Accuracy =
77.6–78.9

[153] 2019
Anxiety
28 subj.
4 channels

Own database N/A
RF
LR
MLP

Accuracy = 78.5

[66] 2016
Depression
27 subj.
30 channels

Own database WT/Statistics RBF-SVM Accuracy > 80

[152] 2012
ERP
3 subj.
14 channels

Own database Statistics ANNs Accuracy = 80
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Table A1. Cont.

Article Year TaskInformation Database Feature Extraction Method ML/DL Algorithm Performance

[203] 2016 SS Sleep-EDF database EMD

AdaBoost
NB
LDA
ANNs
SVM
KNN

Accuracy = 92.24

[53] 2019
MI
6 subj.
14 channels

Own database CSP SVM -

[182] 2015
SD
22 subj.
100 channels

BONN database EMD SVM -

[34] 2020
MI
8 subj.
8 channels

Own database CSP LDA Accuracy = 74.69

[159] 2019 Sleep Apnea
16 subj. MIT-BIH database HHT

SVM
KNN
ANNs

Accuracy = 99

[209] 2018
PD
20 subj.
14 channels

Own database HOS

SVM
DT
KNN
NB
PNN

Accuracy = 99.6

[219] 2009
ER
10 subj.
62 channels

Own database CSP SVM Accuracy = 93.5

[226] 2008 ER
10 subj. Own database Statistics

SVM
ANNs
NB

Accuracy = 80

[59] 2020 SS
125 subj. Sleep-EDF database Entropy

RF
SVM
DT

Accuracy = 97.8

[180] 2018
SD
25 subj.
100 channels

BONN database PCA RBF-SVM Accuracy = 100

[185] 2021 SD BONN database VMD RF Accuracy =
98.7–100

[204] 2020 SS
2 channels Sleep-EDF database FFT RBF-SVM Accuracy = 87.8

[196] 2020
MWL
36 subj.
19 channels

PhysioBank database FFT KNN
SVM Accuracy = 99.4

[154] 2020
Stress
33 subj.
5 channels

Own database FFT

SVM
LR
NB
KNN
DT

Accuracy = 85.2

[165] 2020 ER
32 subj. DEAP database STFT

SVM
KNN
DT

-

[210] 2016
MI
10 subj.
64 channels

Own database Kolmogorov complexity
(Kc) AdaBoost-ELM Accuracy = 79.5

[260] 2005
MI
4 subj.
62 channels

Own database ICA/PCA SVM
ANNs Accuracy = 77.3

[171] 2015 MI BCI Competition III and IV CSP Twin-SVM Accuracy = 100
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[150] 2017
ERP
69 subj.
4 channels

Own database FFT
GB
RF
RBF-SVM

Accuracy = 74

[287] 2019
PD
18 subj.
128 channels

Own database FFT KNN
SVM Accuracy = 88

[258] 2020
MI
5 subj.
64 channels

Own database CSP

LDA
SVM
LR
NB

Accuracy = 81

[259] 2020 MI

BCI Competition III
database (1)
Autocalibration and
Recurrent Adaptation
database (2)

WPD
SVM
LDA
KNN

Accuracy = 93.46 (1)
Accuracy = 86 (2)

[157] 2016
Tinnitus
22 subj.
129 channels

Own database FFT SVM Accuracy = 90.9

[278] 2016 SS
5 subj. Own database FFT/DWT AdaBoost -

[198] 2017
SD
216 subj.
6 channels

European Epilepsy database DWT SVM -

[156] 2020

Alcoholism
detection
2 subj.
64 channels

UCI database EWD SVM
NB KNN Accuracy = 98.75

[155] 2013
Depression
90 subj.
19 channels

Own database FFT
LR
LDA
KNN

Accuracy = 90

[267] 2020 SD Own database DWT

RBF-SVM
KNN
DT
LR

Accuracy = 100

[119] 2019
ER
6 subj.
32 channels

DEAP database Statistics

RF
RBF-SVM
KNN
NB
ANNs
DT

Accuracy = 98.2

[117] 2011 AD
32 subj. Own database FFT SVM Accuracy = 86.97

[116] 2020
SD
24 subj.
22 channels

N/A EMD SVM Accuracy > 90

[191] 2016 SD
22 subj. CHB-MIT database PCA RF Accuracy = 98.3

[166] 2013
ER
32 subj.
32 channels

DEAP database PCA ANNs
RBF-SVM Accuracy > 60

[211] 2018
MWL
10 subj.
14 channels

Own database FFT/WT
RF
SVM
MLP

Accuracy = 85–99

[200] 2015
SD
24 subj.
6 channels

European Epilepsy database MDADH SVM -

[230] 2020
ER
20 subj.
24 channels

Own database TQWT MC-LSVM Accuracy = 95.7



Brain Sci. 2021, 11, 1525 32 of 44

Table A1. Cont.

Article Year TaskInformation Database Feature Extraction Method ML/DL Algorithm Performance

[175] 2019
MI
4 subj.
59 channels

BCI Competition 2008 CSP BPNN
SVM Accuracy = 91.6

[186] 2021 SD BONN database Dissimilarity-based TFD
LDA
ANNs
SVM

Accuracy = 98

[240] 2018 MWL OneR database FFT/Entropy RF
SVM Accuracy = 87.2

[65] 2011
ER
20 subj.
62 channels

Own database DWT KNN Accuracy = 82.87

[241] 2017 MWL Own database FFT
KNN
SVM
ANNs

Accuracy = 90.5

[173] 2014
MI
7 subj.
22 channels

BCI Competition 2008 EMD RBF-SVM Accuracy = 100

[181] 2017 SD
10 subj. BONN database WPD ELM Accuracy = 97.7

[268] 2017 SD
23 subj. Own database FFT KNN Sensitivity = 80.9

[187] 2018 SD BONN database 1D-TP
RF
SVM
ANNs

Accuracy > 94

[227] 2019
ER
28 subj.
2 channels

Own database N/A
KNN
MLP
RF

Accuracy = 86.7

[172] 2017 MI
5 subj. BCI Competition III CSP/DWT

LDA
SVM
ANNs

Accuracy = 84.8

[269] 2020 SD
10 subj. Own database DFT WBCKNN Accuracy = 99

[160] 2020
Creativity
20 subj.
32 channels

Own database CSP QDA
SVM Accuracy = 82

[250] 2020
MWL
7 subj.
6 channels

Keirn and Aunon database WT/EMD SVM
KNN Accuracy = 80–100

[184] 2020 SD
10 subj. BONN database FT/WT SVM

KNN Accuracy = 100

[158] 2020
ADHD
97 subj.
19 channels

Own database PSR
NDC
EPNN
SVM

Accuracy = 100

[177] 2020 MI
5 subj. BCI Competition III PCA H-KELM Accuracy = 96.5

[224] 2017
ER
32 subj.
8 channels

DEAP database STFT

CNN
ReLU and
Softmax (FC) as
activation
functions

Accuracy = 87.3

[285] 2016 AD Own database WT
MC-DCNN
Sigmoid and
Softmax (FC)

Accuracy = 82

[302] 2020 MI BCI Competition IV CSP DNN Accuracy = 83.98
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[262] 2020 MI BCI Competition IV (1)
TJU database (2) SSD

CNN
ReLU as
activation
functions

Accuracy = 79.3 (1)
Accuracy = 85.7 (2)

[265] 2019 SD BONN database (1)
Bern-Barcelon database (2) N/A

Residual-CNN
ReLU and
Softmax (FC) as
activation
functions

Accuracy = 99 (1)
Accuracy = 92 (2)

[247] 2020 MWL
48 subj. STEW database N/A LSTM

CNN + LSTM Accuracy = 61.08

[263] 2021 MI BCI Competition IV (1)
HGD (2) N/A CNN Accuracy = 81.6 (1)

Accuracy = 95.5 (2)

[266] 2018 SD
5 subj. BONN database N/A

P-1D-CNN
ReLU and
Softmax (FC) as
activation
functions

Accuracy = 99.1

[242] 2018 MWL
15 subj. Own database FFT

CNN
ReLU and
Softmax (FC) as
activation
functions

Accuracy = 90

[264] 2019 MI BCI Competition IV (1)
Own database (2) STFT CNN-VAE Kappa = 0.564 (1)

Kappa = 0.603 (2)
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