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Abstract 

Traumatic brain injury (TBI) is a major public health problem worldwide which causes high mortality and disability. 
Functioning as microRNA (miRNA) sponges, long non-coding RNA (lncRNA) regulates the expression of protein-
coding genes in a competing endogenous RNA (ceRNA) network. However, the lncRNA-associated ceRNA in TBI 
remains unclear. In this study, we processed the raw SRR files of mice cortex samples of sham injury (n = 3) and TBI 
groups (n = 3) to count files. Then, the expression profiles of lncRNAs and mRNAs were identified, and 86 differen‑
tially expressed (DE) lncRNAs and 1201 DEmRNAs between sham and TBI groups were identified. The DEmRNAs were 
used to perform enrichment analyses. Next, a lncRNA-miRNA-mRNA regulatory ceRNA network was constructed. The 
network consisted of 23 mRNAs, 5 miRNAs and 2 lncRNAs. The expression alternations of the 5 miRNAs were validated 
via qRT-PCR. The subnetwork of hub lncRNA Neat1 was extracted. We identified a potential inflammatory associated 
regulatory axis: Neat1/miR-31-5p/Myd88 axis. The PPI network based on DEmRNA involved in ceRNA network was 
constructed PPI networks to identify the hub genes. Finally, DElncRNAs and DEmRNAs were selected randomly and 
validated by qRT-PCR. In conclusion, with the lncRNA-miRNA-mRNA ceRNA network provided above, we can improve 
our understanding of the regulatory mechanisms and interaction among lncRNAs, miRNAs and mRNAs in TBI process.
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Introduction
Traumatic brain injury (TBI) is a major public health 
problem all over the world. It is estimated that 10 million 
people worldwide suffer from TBI annually [1, 2]. WHO 
estimates that TBI will be the third most common cause 
of death and disability in global terms by 2020 [3]. TBI 
can be divided into initial injury and secondary brain 
injury [4]. Initial injury causes cells to die in the moment 

of mechanical shock. Secondary injury refers to the bio-
chemical and physiological changes which would cause 
the apoptosis and death of neural cells, the formation of 
brain edema, the disruption of the blood–brain barrier, 
and the subsequent neurological disorders [5]. Various 
efforts have been made over the past decades, however, 
TBI remains a disease with high mortality and disability, 
which brings a huge burden on the families and society 
[6]. The complex molecular mechanisms behind brain 
injury need to be further explained.

Long non-coding RNAs (lncRNAs) belong to the non-
coding RNA family with more than 200 nucleotides 
in length [7]. Although lncRNAs do not encode any 
protein products, many studies have proved that they 
could be involved in the regulation of gene expression 
at epigenetic, transcriptional or post-transcriptional 
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levels [8, 9]. Several studies have shown that lncRNAs 
can act as miRNA sponges in the ceRNA regulatory 
network and further regulate protein expression 10. In 
recent years, more and more studies have focused on 
the role of lncRNA-related ceRNA regulatory networks 
in intracranial aneurysm [11], cerebral infarction [12], 
type 2 diabetes [13] and various types of cancer [14, 
15,  16]. Several lncRNAs, such as lncRNA GM12371, 
lncRNA  Evf2  and  lncRNA  Pinky, were reported to be 
involved in regulation of synaptic functions and neu-
rodevelopment [17, 18,  19]. Moreover, some lncRNAs 
were found to be specifically expressed in nervous sys-
tem, such as cerebellar cortex [20, 21]. These findings 
indicated that lncRNAs could serve as a major role in 
the nervous system. However, the potential role of the 
lncRNA-associated ceRNA regulatory network in TBI 
remains unclear.

In this study, we investigated the expression of lncR-
NAs and mRNAs in the injury cortex 24  h after TBI 
in mice via RNA-seq data analyses and further con-
structed a lncRNA-miRNA-mRNA ceRNA regulatory 
network. Firstly, we identified differentially expressed 
lncRNAs (DElncRNA) and mRNAs (DEmRNAs) 
between normal brain cortex and injury cortex. The 
DEmRNAs were used to perform enrichment analy-
ses. Then, we developed a lncRNA-miRNA-mRNA 
ceRNA regulatory network using integrated bioinfor-
matics analysis. The network contained 23 mRNAs, 
5 miRNAs and 2 lncRNAs. The expression alterna-
tions of the 5 miRNAs were validated via qRT-PCR. 
Next, Subnetwork of Neat1 was further analyzed, and 
inflammatory related Neat1/miR-31-5p/Myd88 axis 
was identified. Gene Oncology and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathway enrichment 
analyses were conducted to evaluate the mRNAs in 
the network to identify additional biological functions. 
Furthermore, protein–protein interaction (PPI) net-
work was constructed, and hub genes with key roles in 
the PPI network were identified. Finally, the difference 
in expression of four DElncRNA and four DEmRNA 
was validated via qRT-PCR. The construction of the 
lncRNA-miRNA-mRNA ceRNA network may provide 
insight into the regulatory mechanism of TBI.

Materials and methods
Animals
All animal procedures were performed in accordance 
with the Guidelines for Care and Use of Laboratory Ani-
mals of the Zhejiang University and approved by the Ani-
mal Ethics Committee of the Zhejiang University. Adult 
male C57BL/6 mice were purchased from Shanghai Slac 
Experimental Animal Center.

Controlled cortical impact (CCI) model of TBI
Both sham-injury and TBI mice (12–16  weeks old and 
22–25  g) were anesthetized by intraperitoneal injection 
of 1% pentobarbital sodium solution (0.1  ml/20  g). Six 
mice were divided into sham group (n = 3) and TBI group 
(n = 3) according to the random number table. The mice 
heads were shaved and disinfected by wiping with iodo-
phors. The animals were mounted in a prone position on 
a stereotaxic instrument (RWD Life Science, China) and 
fixed with auxiliary ear and incisor bars. Using the sterile 
surgical procedures, the mice received a midline cranial 
skin incision, and the scalp was retracted to expose the 
skull. Then, the mice received a right lateral craniotomy 
(3.5  mm in diameter) with 1.5  mm lateral to sagittal 
suture and 2.0 mm posterior to the bregma remaining the 
dura mater intact, which was performed with a motor-
ized drill. The cortical impact was performed at a velocity 
of 5.0 m/s, a depth of 2.0 mm below the cortical surface, 
and an impact duration of 180 ms, which would cause a 
moderately severe contusion in the sensorimotor cor-
tex. Medical grade cyanoacrylate gel was applied to the 
exposed dura mater and skull surface after CCI. The hole 
on the skull was filled with bone wax, and the skin inci-
sion was sutured with an absorbable suture. The antibi-
otic ointment was applied to the suture area. The mice 
were wrapped in an electric blanket to maintain the body 
temperature and transferred to a clean cage. Sham injury 
mice underwent the same craniotomy and postoperative 
care procedures. All the mice were anesthetized with  1% 
pentobarbital sodium solution (0.1  ml/20  g)  24  h post-
TBI. The mice were transcardially perfused with 10  mL 
4℃ 0.9% saline. The ipsilateral cortex around the contu-
sion site was dissected rapidly and stored at − 80℃. All 
the 6 cortex samples were used for qRT-PCR.

RNA‑seq data processing
The SRR files (SRR3271216-SRR3271221) of mice cortex 
samples of sham injury (n = 3) and TBI groups (n = 3) 
were retrieved from Gene Expression Omnibus (GEO) 
NCBI [22], which were converted to ‘fastq’ format data 
using sratoolkit (version 2.9.6). Using FastQC (version 
0.11.9), quality control of the raw sequence data was per-
formed. Low-quality reads and adaptors were removed by 
the trimmomatic software (version 0.36). The reference 
genome and genome annotation files of mouse (Release 
M24 GRCm38.p6) were downloaded from GENCODE 
(www.​genco​degen​es.​org). Then, the high-quality reads 
were aligned to the reference genome with hisat2 (ver-
sion 2.0.0) [23]. The generated SAM (Sequence Align-
ment/Map) files were converted to the BAM (Binary 
Alignment/Map) format by using samtools (version 1.10) 
[24]. The BAM files were converted to counts files by 

http://www.gencodegenes.org
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using featureCounts in subread software (version 2.0.0) 
[25]. Then, the “.csv” files were generated, each consist-
ing of all gene counts for a particular sample. All of the 
“.csv” files were combined, and a single file with sample 
names depicted as columns and gene names depicted as 
rows was obtained. LncRNAs and mRNAs were anno-
tated according to the genome annotation files.

Identification of differentially expressed lncRNAs 
and mRNAs
Using the DESeq2 package [26], the counts files were 
normalized and differentially expressed analyses were 
performed. lncRNAs and mRNAs with |log2(fold 
change)|> 1 and adjusted P-values < 0.05 were considered 
DElncRNAs and DEmRNAs.

Functional enrichment analysis
Both the Gene ontology (GO) enrichment and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichment analyses were performed using the Database 
for Annotation, Visualization, and Integrated Discovery 
platform (DAVID 6.8; https://​david.​ncifc​rf.​gov/) [27]. 
DEmRNAs or the mRNAs involved in ceRNA network 
were used for GO and KEGG pathway enrichment analy-
ses. The GO terms and pathways, with corrected P-val-
ues < 0.05 using the Benjamini method, were considered 
significant functional categories.

Construction of ceRNA network
Firstly, the interactions of DElncRNAs and targeted miR-
NAs with high stringency (> = 3) were identified using 
starBase v2.0 [28]. Then, miRNA-targeted mRNAs were 
identified using miRTarBase, a highly reliable miRNA ref-
erence database [29]. The miRTarBase database has accu-
mulated more than three hundred and sixty thousand 
miRNA-targeted interactions which were experimentally 
validated by western blot, reporter assay, microarray and 
next-generation sequencing experiments. Moreover, the 
targeted mRNAs that were not differentially expressed 
between control cortex and TBI cortex samples were 
filtered out. The ceRNA network was constructed and 
viewed using Cytoscape (version 3.7.2; http://​www.​cytos​
cape.​org/) [30].

Construction of protein–protein interaction (PPI) network
The Search Tool for the Retrieval of Interacting Genes 
(STRING version 11.0; www.​string-​db.​org) was used to 
construct the PPI network of DEmRNAs involved in the 
ceRNA network [31]. The interactions with a score more 
than 0.4 were included. The PPI network was constructed 
and viewed using Cytoscape (version 3.7.2).

RNA preparation and qRT‑PCR
The brain cortex tissues of sham and TBI groups were 
cut into small chunks and rinsed with PBS, which were 
further dissolved with TRIzol reagent (Invitrogen, USA) 
to acquire total RNA. Then, using Reverse Transcrip-
tion Kit (TaKaRa, Osaka, Japan), the isolated RNA was 
reverse-transcribed to cDNA. The qRT-PCR analyses 
were performed on an Applied Biosystems 7500 Fast 
Real-Time PCR System (Roche, Basel, Switzerland) with 
SYBR Green supermix (172-5150, Bio-Rad, Shanghai, 
China). All the experiments were performed and ana-
lyzed in triplicate. Five miRNAs (mmu-miR-377-3p, 
mmu-miR-185-5p, mmu-miR-107-3p, mmu-miR-31-5p, 
and mmu-miR-130a-3p), four DElncRNAs (lncRNA 
C030018K13Rik, lncRNA Gm36823, lncRNA H19 and 
lncRNA Mir155hg) and four DEmRNA (P2ry12, Hes5, 
Cxcr2 and Mmp12) were randomly selected to perform 
qRT-PCR for validation. The primer sequences used in 
this study were shown in Additional file 1. The lncRNA, 
miRNAs and mRNA expression levels were calculated 
according to the 2−ΔΔCt method.

Statistical analysis
GraphPad Prism (version 6.0, GraphPad Software, San 
Diego, CA, USA) and R language (3.4.3) were used for 
statistical analysis. Statistical differences were deter-
mined by Student’s t test for two-group comparisons. 
A P-value < 0.05 was considered statistically significant. 
Barplots were generated by GraphPad Prism. Other 
plots, including bubble charts, volcano plots and heat 
maps, were produced by R language (3.4.3).

Results
LncRNA expression profile
The total detected reads for samples from sham (n = 3) 
and TBI (n = 3) groups were 100,290,212 and 96,819,024, 
respectively. The RNA-seq analysis of 3 normal brain 
cortex tissues and 3 TBI cortex tissues identified 9945 
lncRNAs. After deleting lncRNAs with average read 
count below 1 across all samples, there were 5700 lncR-
NAs remaining. The distribution of these lncRNAs in the 
chromosomes was shown in Fig. 1A. Of these lncRNAs, 
86 lncRNAs were differentially expressed (|log2FC|> 1 
and adjusted P-value < 0.05) in mouse cortex 24  h post-
TBI relative to normal brain cortex, which contained 
47 upregulated lncRNAs and 39 downregulated lncR-
NAs (Fig.  1B, Additional file  2). Hierarchical clustering 
analysis showed that lncRNA expression profiles in the 
injured cortex were significantly different from those in 
the control group (Fig.  1C). The differentially expressed 
lncRNAs (DElncRNAs) were distributed on all the chro-
mosomes, although the distribution on the chromosomes 
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Fig. 1  LncRNA profile based on RNA-seq data. A Distribution of all identified lncRNAs in TBI samples. B Volcano plot of DElncRNAs in mice cortex 
24 h post-TBI compared with control cortex. Red points represent upregulated DElncRNAs and blue points represent downregulated DElncRNAs 
in TBI group. The genesymbols of ten upregulated lncRNAs and ten downregulated lncRNAs with the most significant expression differences 
are shown in the plot. C Hierarchical cluster heatmaps of DElncRNAs. Each row represents an RNA, and each column represents a sample. Red 
indicates relatively high expression, and blue indicates relatively low expression. D Distribution of DElncRNAs in TBI, showing upregulated (gray) and 
downregulated (black) lncRNAs in each chromosome (chr)



Page 5 of 12Wang et al. Molecular Brain           (2022) 15:40 	

was not equal (Fig. 1D). Chromosome 7 had the largest 
number of DElncRNAs, of which 6 were upregulated and 
2 were downregulated, accounting for 9.3% (8/86) of all 
DElncRNAs.

mRNA expression profile
The RNA-seq analysis of 3 normal brain cortex tissues 
and 3 TBI cortex tissues also identified 21,807 mRNAs. 
After deleting mRNAs with average read count below 1 
across all samples, there were 17,711 mRNAs remain-
ing. The distribution of these mRNAs on all the chromo-
somes was shown in Fig. 2A. 1201 differentially expressed 
mRNAs (DEmRNAs) were identified between mouse 
cortex 24  h post-TBI and normal brain cortex, which 
contained 1076 upregulated mRNAs and 125 downregu-
lated mRNAs (Fig.  2B, Additional file  2). Hierarchical 
clustering analysis showed that mRNA expression pro-
files in the injured cortex were significantly different from 
those in the normal cortex (Fig. 2C). The DEmRNAs were 
distributed on all the chromosomes, although the dis-
tribution on the chromosomes was not equal (Fig.  2D). 
Chromosome 7 had the largest number of DEmRNAs, of 
which 103 were upregulated and 8 were downregulated, 
accounting for 9.24% (111/1201) of all DEmRNAs.

Gene ontology and pathway analysis of DEmRNAs
To explore the potential functional implication of the 
1,201 DEmRNAs, GO enrichment and KEGG pathway 
analyses were performed. In the GO enrichment analy-
sis, a total of 466 enriched GO terms in the Biological 
Process (BP) were identified. The top 20 significantly 
enriched terms were shown (Fig.  3A). The DEmR-
NAs were primarily enriched in immune inflammatory 
response-related BPs, such as “immune system pro-
cess”, “inflammatory response”, “neutrophil chemotaxis”, 
“immune response” and “response to lipopolysaccharide”. 
Furthermore, we also found that these DEmRNAs were 
also enriched in “cell response to interferon-beta”, “cellu-
lar response to tumor necrosis factor”, “cellular response 
to interleukin-1” and “cellular response to interferon-
gamma”, which indicated that the neural cells may be 
actively adapting to the drastically changing microenvi-
ronment. In addition, a total 62 enriched pathways were 
identified via the KEGG pathway analysis. The top 20 
significantly enriched pathways were shown (Fig.  3B). 
Among these pathways, “TNF signaling pathway” and 
“NF-kappa B signaling pathway” were corresponding to 
the enriched GO terms, which indicated that the two 
pathways may play significant roles in acute phase of TBI.

Construction of a ceRNA regulatory network in TBI
To elucidate the regulatory mechanism of TBI, a 
lncRNA‐miRNA‐mRNA ceRNA network of TBI was 

developed. As for integrated ceRNA network, lncRNA‐
miRNA‐mRNA axis consists of two forms: (1) downregu-
lated lncRNAs, upregulated miRNAs, and downregulated 
mRNAs; (2) upregulated lncRNAs, downregulated miR-
NAs, and upregulated mRNAs. According to the changes 
in the expression of previously reported miRNAs after 
TBI [32, 33], we included the five miRNAs (mmu-miR-
377-3p, mmu-miR-185-5p, mmu-miR-107-3p, mmu-
miR-31-5p, and mmu-miR-130a-3p) with the correct 
expression trends to develop the lncRNA‐miRNA‐mRNA 
ceRNA network (Fig.  3C). The ceRNA network in this 
study only contained upregulated lncRNAs, downregu-
lated miRNAs and upregulated mRNAs. The expression 
levels of mmu-miR-377-3p, mmu-miR-185-5p, mmu-
miR-107-3p, mmu-miR-31-5p, and mmu-miR-130a-3p 
in brain tissues were reported to downregulate after TBI 
in previous studies [32, 33]. Moreover, we used qRT-PCR 
to further confirm the expression alternations of the five 
miRNAs in network (Fig.  3E–I). The lncRNA‐miRNA 
and miRNA‐mRNA relationship pairs were listed in 
Additional file 3 and Additional file 4. The network was 
constructed with 30 nodes (23 mRNAs, 5 miRNAs and 2 
lncRNAs) and 28 edges. Blue squares represented lncR-
NAs, tan triangles represented miRNAs, and red cir-
cles represented mRNAs. Among the network, lncRNA 
Neat1 directly connected with 4 miRNAs and indirectly 
connected with 21 mRNAs, which indicated that lncRNA 
Neat1 could play an important role in acute phase of TBI.

Previous studies reported that downregulation of miR-
377 could promote angiogenesis and inhibit inflamma-
tion to alleviate ischemic brain injury and renal ischemia/
reperfusion injury [34, 35]. Feng et al. found that lncRNA 
ADAMTS9-AS2 could upregulate IGFBP-2 expression 
via decreasing miR-185-5p expression, further promot-
ing angiogenesis [36]. Moreover, several studies have 
confirmed that lncRNA Neat1 could sponge miR-185-5p 
to regulate IGF2 expression or DNMT1/mTOR signal-
ing, promoting cancer progression [37, 38]. In addition, 
the lncRNA Neat1 was reported to regulate CDK6 and 
CDK14 via sponging miR107 and further promote tumor 
growth [39, 40,  41]. Previous study found that over-
expressed lncRNA Neat1 could promote axon growth of 
neurons in vitro, inhibit cell apoptosis and restrict inflam-
mation after TBI [42]. To investigate the downstream 
mechanism of Neat1, we further analyzed subnetwork of 
Neat1 (Fig. 3D). For example, in this ceRNA network, an 
upregulated DEmRNA, myeloid differentiation factor 88 
(Myd88), were reported to be overexpressed dramatically 
in brain tissues after TBI and activate NF-κB as well as 
promote the production of proinflammatory cytokines 
[43]. Moreover, Cai et al. found that miR-31-5p/Myd88/ 
NF-κB pathway plays an important role in blood–brain 
barrier damage after subarachnoid hemorrhage [44]. In 
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Fig. 2  mRNA profile based on RNA-seq data. A Distribution of all identified mRNA in TBI samples. B Volcano plot of DEmRNAs in mice cortex 24 h 
post-TBI compared with control cortex. Red points represent upregulated DEmRNAs and blue points represent downregulated DEmRNAs in TBI 
group. The genesymbols of ten upregulated mRNAs and ten downregulated mRNAs with the most significant expression differences are shown in 
the plot. C Hierarchical cluster heatmaps of DEmRNAs. Each row represents an RNA, and each column represents a sample. Red indicates relatively 
high expression, and blue indicates relatively low expression. D Distribution of DEmRNAs in TBI, showing upregulated (gray) and downregulated 
(black) mRNAs in each chromosome (chr)
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Fig. 3  A The top 20 enriched terms in the GO biological process analysis. B The top 20 enriched pathways in the KEGG pathway analysis. C, D 
ceRNA network and subnetwork related to TBI. C lncRNA-associated ceRNA regulatory network related to TBI. D Subnetwork of lncRNA Neat1. Blue 
squares represent lncRNAs, tan triangles represent miRNAs, and red circles represent mRNAs. E–I Validation of expression alternations of miRNAs 
after TBI via qRT-PCR. All the experiments were performed and analyzed in triplicate. (*P < 0.05)
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addition, upregulated miR-31-5p was reported to inhibit 
cell apoptosis [45]. Yang et  al. revealed that lncRNA 
Neat1 was able to modulate inflammatory responses via 
miR-31-5p/POU2F1 axis [46]. Thus, we suggested that 
Neat1/miR-31-5p/Myd88 axis may be a crucial pathway 
in TBI process.

Functional enrichment analyses of TBI ceRNA network
To explore the biological functions of ceRNA network in 
TBI, we performed the GO and KEGG pathway analyses 
for mRNAs involved in the network. The top 20 enriched 
GO terms were shown in Fig. 4A. The terms of signaling 
pathway regulation was significantly enriched, including 
“positive regulation of I-kappaB kinase/NF-kappaB sign-
aling”, “positive regulation of JNK cascade” and “positive 
regulation of ERK1 and ERK2 cascade”. The significant 
enriched terms of “angiogenesis” and “positive regula-
tion of smooth muscle cell proliferation” indicated that 
the ceRNA network may be involved in blood vessel 
reconstruction of cortex post-TBI. Moreover, the ceRNA 
network was also involved in immune and inflammatory 
response.

Construction of PPI network and identification of hub 
genes
To further explore the relationship among the DEm-
RNA involved in ceRNA network, we constructed PPI 
networks via the STRING database. The PPI network 
was shown in Fig.  4B. Furthermore, using Cytoscape 
App cytoHubba, we identified the hub genes with high-
est degrees (bigger purple circles), including Myd88, 
Tnfrsf1b, Cd1d1, Itgam and Irf1. These hub genes could 
play important roles in TBI ceRNA network.

Validation of DElncRNAs and DEmRNAs using qRT‑PCR
To validate the reliability of the RNA-seq data, we ran-
domly selected two up-regulated lncRNAs (lncRNA 
H19 and lncRNA Mir155hg), two down-regulated lncR-
NAs (lncRNA Gm36823 and lncRNA C030018K13Rik), 
two up-regulated mRNAs (Cxcr2 and Mmp12) and two 
down-regulated mRNAs (Hes5 and P2ry12) that were 
abundantly expressed and exhibited significant changes. 
We used qRT-PCR to analyze expression differences 
in control and injury cortex. The qRT-PCR analysis 
results were mostly consistent with the RNA-seq data 
(Fig. 4C–J).

Discussion
In recent years, an increasing number of studies have 
revealed that ncRNAs, including lncRNAs and miR-
NAs, play a key role in TBI [47, 48]. More and more 
studies have focused on the role of lncRNA-related 
ceRNA regulatory networks in various diseases, such 

as cerebral infarction [12], type 2 diabetes [13] and 
cardiac hypertrophy [49]. However, the potential role 
of the lncRNA-associated ceRNA regulatory network 
in TBI still remains unclear. In the present study, 9945 
lncRNAs and 21,807 mRNAs were identified via RNA-
seq analysis. 86 lncRNAs (47 upregulated and 39 down-
regulated) and 1201 mRNAs (1076 upregulated and 
125 downregulated) were detected to dysregulated in 
the cortex of mice 24  h after TBI. Functional enrich-
ment analyses indicated that dysregulated genes were 
involved in immune inflammatory processes and cell 
responses to tumor necrosis factor/interferon-gamma/
interferon-beta/interleukin-1. Moreover, ceRNA regu-
latory network was constructed based on 23 mRNAs, 
5 miRNAs and 2 lncRNAs. Function prediction indi-
cated that the network was involved in angiogenesis, 
immune and inflammatory response, and activation of 
several signaling pathways. The subnetwork of Neat1 
was further analyzed. Furthermore, PPI network was 
constructed and 5 hub genes were identified. Finally, 
randomly selected DEmRNAs and DElncRNAs were 
validated via qRT-PCR. This study could provide a 
comprehensive perspective on the underlying lncRNA 
regulatory mechanism in TBI.

The upregulation of LncRNA Neat1 was found to func-
tion in early apoptosis. Zhong et  al. [42] explored the 
relationship between Neat1 and bexarotene in TBI treat-
ment in mice. They found that bexarotene can upregu-
lated Neat1, which further inhibited apoptosis and 
inflammation, contributing to better motor and cognitive 
function after TBI. In this study, we found that 5 genes in 
Neat1 subnetwork were involved in regulation of apopto-
sis, such as Igfbp3, Myd88, Itgam, Tnfrsf1b and Spp1 [50, 
51, 52]. The potential miRNAs between these apoptosis-
related genes and Neat1 were also shown in the subnet-
work (Fig. 3D). Besides, we revealed that 5 genes in Neat1 
subnetwork were involved in regulation of inflammatory 
response, such as Myd88, Krt16, Spp1, Tnfrsf1b and Sele. 
Likewise, the potential miRNAs between these inflam-
matory response-related genes and Neat1 were also 
shown in the subnetwork (Fig.  3D). Interestingly, miR-
31-5p was reported to be able to regulate the angiogene-
sis of vascular endothelial cells [53]. In addition, previous 
study found that miR-31-5p was involved in blood–brain 
barrier repair and Myd88/NF-κB pathway-mediated 
inflammation after subarachnoid hemorrhage [44]. Fur-
thermore, Myd88 was significantly upregulated after TBI 
and was able to activate NF-κB and then regulate inflam-
mation during TBI process [43]. Thus, we suggested that 
Neat1/miR-31-5p/Myd88 axis might play an important 
role in regulation inflammation cytokines and blood–
brain barrier repair in brain tissues after TBI, which 
needs to be further confirmed in future study.
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Fig. 4  A The top 20 enriched terms in the GO biological process analysis. B PPI network of mRNAs in ceRNA network. Circles represent 
protein-coding genes, and edges represent the interactions between two proteins. The purple circles represent top 10 hub genes with highest 
degrees. C–J Validation of expression differences of DElncRNAs and DEmRNAs via qRT-PCR. C–D P2ry12 and Hes5 expression significantly decrease 
in injury cortex 24 h post-TBI compared to control cortex. E–F Cxcr2 and Mmp12 expression significantly increase in injury cortex 24 h post-TBI 
compared to control cortex. G–H lncRNA C030018K13Rik and Gm36823 expression significantly decrease in injury cortex 24 h post-TBI compared 
to control cortex. I–J lncRNA H19 and Mir155hg expression significantly increase in injury cortex 24 h post-TBI compared to control cortex. All the 
experiments were performed and analyzed in triplicate. (*P < 0.05, **P < 0.01, ***P < 0.001)
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The expression of lncRNA H19 in brain tissues was 
upregulated after intracerebral hemorrhage (ICH), 
which could activate NF-κB and enhance inflammatory 
responses to aggravate brain edema and neurological 
injury [54, 55]. The role of lncRNA Mir155hg in brain 
injury has rarely been reported. Li et  al. reported that 
upregulation of lncRNA Mir155hg was able to promote 
M1 phenotype macrophage polarization and the release 
of proinflammatory cytokines in chronic obstruc-
tive pulmonary disease [56]. However, the function of 
lncRNA Gm36823 and lncRNA C030018K13Rik has 
not been reported so far. Cxcr2, a chemokine recep-
tor on cellular surface, could upregulate and activate 
microglia in cerebral stoke, Alzheimer’s disease and 
multiple sclerosis [57–59,  60]. Moreover, Cxcr2 might 
be involved in neutrophil infiltration and subsequent 
neurodegeneration following TBI [61, 62]. The Hes5 
was reported to be downregulated after brain injury 
[63, 64], while the Mmp12 expression was significantly 
increased in intracerebral hemorrhage [65]. However, 
the function of Mmp12 and Hes5 in brain injury needs 
to further studied. P2ry12 as a microglia marker could 
be utilized to evaluate the microglial cells. Previous 
study found that P2ry12 positive microglia were signifi-
cantly increased after TBI [66]. However, in this study, 
we found the P2ry12 expression was decreased after 
TBI. The different expression trends might be attrib-
uted to injury severity, brain regions or time points for 
sampling.

To summary, a lncRNA-associated ceRNA regulatory 
network of TBI was successfully constructed, which 
may provide a comprehensive view of the underlying 
mechanisms of gene regulation and interaction in TBI. 
Moreover, we proposed that the regulatory network 
centred on lncRNA Neat1 may play a critical part in 
TBI. Additionally, we further suggested that the Neat1/
miR-31-5p/Myd88 axis might be potential down-
stream molecular bases for Neat1 to regulate apoptosis, 
inflammation and blood–brain barrier damage. How-
ever, these regulatory axes require further studies to 
confirm the molecular mechanisms.
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