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Simple Summary: Myeloid-Derived Suppressor Cells (MDSCs) have been regarded as the main promoters
of cancer development in recent years. They can protect tumor cells from being eliminated by neutralizing
the anti-tumor response mediated by T cells, macrophages and dendritic cells (DCs). Therefore, different
treatment methods targeting MDSCs, including chemotherapy, radiotherapy and immunotherapy,
have been developed and proven to effectively inhibit tumor expansion. Herein, we summarize the
immunosuppressive role of MDSCs in the tumor microenvironment and some effective treatments targeting
MDSCs, and discuss the differences between different therapies.

Abstract: Myeloid-derived suppressor cells (MDSCs), which are activated under pathological conditions,
are a group of heterogeneous immature myeloid cells. MDSCs have potent capacities to support tumor
growth via inhibition of the antitumoral immune response and/or the induction of immunosuppressive
cells. In addition, multiple studies have demonstrated that MDSCs provide potential therapeutic targets
for the elimination of immunosuppressive functions and the inhibition of tumor growth. The combination
of targeting MDSCs and other therapeutic approaches has also demonstrated powerful antitumor effects.
In this review, we summarize the characteristics of MDSCs in the tumor microenvironment (TME) and
current strategies of cancer treatment by targeting MDSCs.

Keywords: myeloid-derived suppressor cells; regulatory T cells; immunosuppression; tumor
microenvironment; therapy; cancer; tumor; immunotherapy; chemotherapy; radiotherapy

1. Introduction

The tumor microenvironment (TME) is a complex immune network that is a vital contributor to
the promotion of tumor cell proliferation, metastasis, and immune escape. In the TME, other cells are
present in addition to tumor cells, such as fibroblasts, immune and inflammatory cells, adipose cells,
and immunosuppressive cells. In the TME, tumor cells incapacitate immune cells, including natural
killer (NK) cells and T cells, by themselves and by immunosuppressive cells that are reprogrammed
such that the tumor cells are not recognized and killed by the immune system. These “assistants”
that assist tumorigenesis consist of tumor-associated macrophages (TAMs), regulatory T cells (Tregs),
cancer-associated fibroblasts (CAFs), and myeloid-derived suppressor cells (MDSCs). All members
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of these suppressive cells secrete large amounts of cytokines, chemokines, and other small molecule
metabolites to build a hotbed suitable for the survival of malignant tumors [1–3].

MDSCs are a heterogeneous group of cells. Under normal circumstances, MDSCs represent a group
of immature myeloid cells (IMCs) derived from bone marrow (BM) of various stages of differentiation
and eventually differentiate into macrophages, dendritic cells (DCs), and neutrophils [4]. Therefore,
MDSCs have considerable plasticity and diversity. However, under pathological conditions, such as the
graft-versus-host disease (GVHD), autoimmune diseases, infections, and cancers, MDSCs are abnormally
generated and activated [5]. Especially in the TME, hematopoietic progenitor cells (HPCs) are stimulated by
tumor-derived inflammatory factors, e.g., granulocyte-macrophage colony-stimulating factors (GM-CSF),
tumor necrosis factor-alpha (TNFα), vascular endothelial growth factor (VEGF), and prostaglandin
E2 (PGE2), and differentiate into common myeloid progenitors (CMPs) and granulocyte-macrophage
progenitors (GMPs). GMPs differentiate into monocyte/macrophage and dendritic cell precursors (MDPs)
and myeloblasts (MBs) and are ultimately converted into MDSCs [6,7] (Figure 1). Activated MDSCs flow
through the blood and spleen and are eventually recruited to the tumor site by C–X–C motif chemokine
ligand 1 (CXCL1), C–C motif chemokine ligand 2 (CCL2), and other chemokines. MDSCs expressing
anti-inflammatory factors such as interleukin (IL)-10 and transforming growth factor-beta (TGFβ) play
important immunosuppressive roles in the TME to promote tumor development and expansion [6,8,9].
Given the obvious protumoral capabilities, tumor treatment strategies targeting MDSCs are highly valued.
In this review, we summarize the classification of MDSCs, their functional characteristics in the TME and
how MDSCs exert immunosuppressive functions. On the other hand, we discuss cancer treatments by
targeting MDSCs and combination therapy of immunotherapy and targeting MDSCs.
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Figure 1. Differentiation and development of myeloid-derived suppressor cells (MDSCs) in
the tumor microenvironment (TME). Under physiological conditions, neutrophils, dendritic cells
(DCs), and monocytes originate from hematopoietic progenitor cells (HPCs) in the bone marrow.
HPCs differentiate into granulocyte-macrophage progenitors (GMPs) after common myeloid progenitors
(CMPs), and then GMPs differentiate into monocyte/macrophage and dendritic cell precursors (MDPs)
and myeloblasts (MBs). Among them, MDPs are the precursors of DCs and monocytes, and MBs are
the precursors of neutrophils. However, under pathological conditions, such as cancer, myeloid cells
are induced to differentiate into suppressor cells, including monocytic myeloid-derived suppressor cells
(M-MDSCs), tumor-associated macrophages (TAMs), polymorphonuclear myeloid-derived suppressor
cells (PMN-MDSCs), and tumor-associated neutrophils (TANs). TME, tumor microenvironment; HPCs,
hemopoietic progenitor cells; CMPs, common myeloid progenitors; GMPs, granulocyte-macrophage
progenitors; MBs, myeloblasts; MDPs, monocyte/macrophage and dendritic cell precursors; M-MDSCs,
monocytic myeloid-derived suppressor cells; PMN-MDSCs, polymorphonuclear myeloid-derived suppressor
cells; TAMs, tumor-associated macrophages; TANs, tumor-associated neutrophils; DCs, dendritic cells.
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2. MDSCs in the TME

2.1. Classification and Functional Differences of MDSCs

The identification of MDSCs has been controversial. Since the phenotype and morphology of MDSCs
are similar to those of neutrophils and monocytes, the distinction between MDSCs and these cells is unclear.
In mice, MDSCs mainly include polymorphonuclear MDSCs (PMN-MDSCs) and monocytic MDSCs
(M-MDSCs). Among them, M-MDSCs are defined as CD11b+Ly6C+Ly6G−; conversely, PMN-MDSCs
are defined as CD11b+Ly6C−/lowLy6G+. In humans, MDSCs consist of M-MDSCs, PMN-MDSCs,
and early-MDSCs (e-MDSCs). M-MDSCs have the phenotype CD11b+CD33+CD14+CD15−HLA-DR−/low,
whereas PMN-MDSCs are phenotypically CD11b+CD33+HLA-DR−/lowCD14−CD15+ (or CD66b+) [10–12].
Given the similar phenotype to neutrophils, studies have shown that lectin-type oxidized LDL receptor 1
(LOX-1) is expressed in PMN-MDSCs in the peripheral blood and tumor sites of cancer patients, so it can
be distinguished based on the expression of LOX-1 [13]. e-MDSCs, which are composed of immature
MDSC progenitor cells, are defined as HLA-DR-CD33+Lin−(CD3−CD14−CD15−CD19−CD56−) [6,14].
Nevertheless, it is still necessary to continue to explore methods to distinguish MDSCs from other immune
cells although the strength of the immunosuppressive effect on T cells is typically used to identify MDSCs.

There are differences in the mechanisms by which two MDSC subtypes exert inhibitory functions.
M-MDSCs highly express inducible nitric oxide synthase (iNOS, also known as NOS2) through
the signal transducer and activator of transcription (STAT1) signaling pathway, generating large
amounts of nitric oxide (NO), whereas PMN-MDSCs produce high levels of reactive oxygen species
(ROS) and less NO through the STAT3 pathway to suppress immune responses [15]. Both subtypes
overexpress arginase 1 (ARG1), and both iNOS and ARG1 can reduce the concentration of arginine
in the microenvironment and promote T cell apoptosis [4,16–18]. In general, both M-MDSCs and
PMN-MDSCs have the potential to inhibit the antitumor response, but the mechanism is not identical.

2.2. Immunosuppressive Activity of MDSCs in the TME

The immunosuppressive function of MDSCs is a double-edged sword, and very different roles
are noted under different circumstances [18] (Figure 2). For example, in organ transplantation, high
levels of MDSCs inhibit CD8+ T cell-mediated graft-versus-host disease (GVHD) and translate to
better graft survival [19–21]. However, in cancer, MDSCs are major contributors to tumorigenesis,
metastasis, and development [22] (Figure 2). MDSCs significantly inhibit the antitumor activity of T
cells, especially cytotoxic T lymphocytes (CTLs), and also make proinflammatory cells, such as NK cells,
DCs, and B cells incompetent; in addition, MDSCs induce the generation of anti-inflammatory Tregs,
TAMs, and Th17 cells, which remodel the microenvironment that supports tumor development [23].
MDSCs promote tumor epithelial–mesenchymal transformation (EMT) by expressing factors, such as
TGFβ, IL-6, hepatocyte growth factor (HGF), and high mobility group binding (HMGB)-1, which makes
tumors exhibit aggressive phenotypes with high migration ability [16]. In addition, MDSCs establish
a premetastatic niche (pMN) for tumor development [24]. MDSCs also facilitate angiogenesis by
secreting matrix metalloprotease 9 (MMP9), which induces VEGF release from the matrix [25]. Moreover,
MDSCs subsequently promote tumor mesenchymal–epithelial transition (MET) to facilitate cancer cell
proliferation [26].
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Figure 2. Multiple mechanisms of immunosuppression mediated by MDSCs in the TME. MDSCs secrete
a large number of cytokines to remodel the TME by accelerating tumor development, angiogenesis,
and metastasis; inhibiting the antitumor response mediated by T cells, B cells, NK cells, and DCs; and
promoting the differentiation of immunosuppressive TAMs, Tregs, and Th17 cells. NK cells, natural
killer cells; Tregs, regulatory T cells; Bregs, regulatory B cells.

2.2.1. Suppression of T cells

MDSCs inhibit the activity of T cells through multiple mechanisms. First, amino acids are essential
nutrients for T cell proliferation and activation. MDSCs catalyze the decomposition of L-arginine into
urea and L-ornithine (Orn) or NO and L-citrulline by overexpressing ARG1 and iNOS and increase the
uptake of L-arginine by elevating the expression of cationic amino acid transporter 2 (CAT2) [27,28].
L-arginine is an important part of the T cell receptor (TCR) ζ-chain. The depletion of L-arginine
caused by MDSCs prevents T cells from recognizing antigens and further causes T cells to remain
in the G0/G1 cell cycle, suppressing the immune response [29]. MDSCs make use of the transporter
solute carrier family 7 member 11 (SLC7A11) to sequester cysteine. T cells cannot synthesize cysteine
autonomously and can only take up the cysteine delivered by DCs [30]. Therefore, MDSCs inhibit T cell
activation and induce apoptosis by reducing the cysteine concentration in the TME [31]. L-tryptophan
is also an important nutrient required for T cell proliferation. MDSCs overexpress indoleamine
2,3-dioxygenase (IDO) in an IL-6-dependent manner to convert L-tryptophan to kynurenine (Kyn) by
stimulating the STAT3 signaling pathway. Thus, T cell proliferation is inhibited and vascularization
is promoted [32,33]. Second, MDSCs produce a large amount of ROS and nitrogen species (RNS) by
means of NADPH oxidase (NOX), ARG1, and iNOS, which inhibit the synthesis of the TCRζ-chain
and further cause T cell anergy [8,34]. Third, MDSCs interact with the L-selectin (CD62L) molecule
on the surface of T cells through ADAM metallopeptidase domain 17 (ADAM17), which reduces the
homing of T cells to peripheral lymph nodes (PLNs) [35]. Fourth, immune checkpoints are widely
believed to negatively regulate T cell activation. Programmed death ligand-1 (PD-L1) on MDSCs
induced by hypoxia-inducible factor 1-alpha (HIF-1α) promotes apoptosis of T cells by binding to
programmed cell death-1 (PD-1) on the surface of T cells [36]. Fifth, V-domain Ig suppressor of T cell
activation (VISTA) was recently identified and is expressed on MDSCs and negatively regulates CD8+ T
cells [37,38]. Sixth, MDSCs attenuate the development of tumor antigen-specific effector T-helper cells
(Th1) through IL-6 production [39]. Recently, a report demonstrated that methylglyoxal, a metabolite
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of MDSCs, induces T cell paralysis, which can be overcome by neutralizing the dicarbonyl activity in
methylglyoxal [40]. In human early-stage lung cancer, a subset of tumor-associated neutrophils (TANs)
similar to antigen-presenting cells (APCs) does not exhibit immunosuppressive effects but instead
promotes the proliferation and activation of T cells and enhances the antitumor response [41–45].
Whether PMN-MDSCs with similar phenotypes can trigger the antitumor effect of T cells in the early
stage of tumorigenesis is also worthy of attention.

2.2.2. Inhibition of NK cells, DCs, and B cells

It has been reported that MDSCs can inhibit NK cells, DCs, and B cells. MDSCs inhibit NK cell
cytotoxicity, downregulate the NK activation-related receptor NKG2D by secreting TGFβ, and reduce
interferon gamma (IFNγ) production. IL-23 produced by myeloid cells can effectively inhibit NK
cells. After blocking IL-23R, the proportion of NK cells expressing IFNγ increased significantly [46].
Secreted IL-6 inhibits the proliferation and activation of NK cells. Moreover, the production of IL-10 by
MDSCs also affects the function of NK cells [1]. Treatment with the MDSC inhibitor SX-682 significantly
improved the antitumor effect of NK cells [47]. MDSCs antagonize NK-cell Fc receptor-mediated
functions, including cytokine production, signal transduction, and antibody-dependent cellular
cytotoxicity, in a contact-independent manner via iNOS-dependent NO production [48].

In the TME, activated HIF-1α stimulates the expression of VEGF in MDSCs, which inhibits the
differentiation of DCs [48]. In addition, IL-10 produced by MDSCs impairs DC cell activation and
proinflammatory functions by suppressing the production of IL-12 in DCs and inhibiting the T cell
stimulatory activity of DCs [28,49]. MDSCs reduce the maturation of DCs in a dose-dependent manner
and damage the ability of DCs to take up antigens, migrate, and induce T cells to produce IFNγ [9].
MDSCs prevent the differentiation of DCs, thereby further increasing the accumulation of MDSCs
through STAT3-mediated activation of the expression of calcium binding proteins S100A8/A9 [15].
The activated STAT3 signal in MDSCs induces the expression of NOX2, thereby generating a large
amount of ROS to prevent the differentiation of DCs [1,49].

Another cell type that interacts with MDSCs is B cells. IL-7 and downstream STAT5 signaling
pathways play a key role in the development and differentiation of B cells, but these pathways are
damaged during tumor development; in addition, the decrease in serum immune globulin (Ig)G levels
indicates impaired B cell function [50]. After the elimination of MDSCs with anti-Gr-1 antibody, serum
IgG and IL-7 levels recovered, and the level of TGFβ1 decreased, indicating that MDSCs negatively
regulate the immune response of B cells. Moreover, MDSCs also inhibit B cell proliferation in vitro in
an ARG1-dependent manner [50]. The accumulation of IgA+ B cells expressing PD-L1 and IL-10 can
be promoted by MDSCs in a TNF receptor 2 (TNFR2)-dependent manner [51,52]. Due to the exclusive
loss of L-selectin through a contact-dependent mechanism and interaction with ADAM17 expressed by
MDSCs, the homing of B cells to distant lymph nodes is disrupted [53]. MDSCs also serve as inducers
of the differentiation of regulatory B cells (Bregs) by secreting inflammatory cytokines, such as IL-10
and TGFβ [54]. The proliferation of B cells activated by IL-4 and LPS is inhibited by MDSCs in a T
cell-dependent or T cell-independent manner [54]. Similar to Tregs, Bregs also mediates suppression of
the antitumor response by inducing T cell apoptosis [55]. In the 4T1 breast cancer model, MDSCs seem
to induce the accumulation of Bregs with high PD-L1, thereby producing IL-10 and IgA and inhibiting
T cells by inducing apoptosis [54].

2.2.3. Induction of Tregs

The accumulation of immunosuppressive Tregs is also a major contributor to tumor invasion
and expansion, similar to MDSCs. MDSCs promote the skewing of CD4+ T cells into Tregs [56].
The secretion of TGFβ, IL-10, and IFNγ has been implicated in the differentiation and activation of
Tregs [57,58]. MDSCs exert immunosuppressive functions by mediating the induction and recruitment
of Tregs, in which MDSCs expressing CD40 interact with CD40L on Tregs [59]. Another mechanism
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by which MDSCs mobilize Tregs involves promoting the migration of Tregs to tumor sites and lymph
nodes through overexpression of IDO [60,61].

2.2.4. Activation of TAMs and Th17 cells

MDSCs are also involved in the activation of TAMs and Th17 cells. MDSCs promote the
transformation of M1 macrophages into M2 TAMs [10]. TAMs are reprogrammed to reduce IL-12
production and increase IL-10 release, resulting from the interaction with MDSCs [62]. Hypoxia in the
TME induces the downregulation of STAT3 activity in MDSCs, thereby promoting the differentiation of
M-MDSCs into TAMs [63]. IL-17-producing T helper cells (Th17) suppress the antitumor activity of T
cells [64]. The production of cytokines IL-1β, IL-6, IL-23, and TGFβ in MDSCs activates the expression
of iNOS in T cells, which promotes the differentiation and proliferation of Th17 cells [54,65].

2.2.5. Exosome

Exosomes represent an abundant group in the TME. MDSCs secrete exosomes that are packed with
a large number of tumor-promoting factors to exert immunosuppressive effects. Proteins, such as TGFβ,
MMP, IL-10, and S100A8/A9, and microRNA are transported by exosomes and play an important role
in inducing MDSCs to exert immunosuppressive functions, promoting angiogenesis, and promoting
tumor metastasis [55,63].

Overall, the TME is a complex network composed of diverse immune cells. MDSC-mediated
immune suppression occurs through multiple mechanisms. If we want to dynamically and deeply
study the role of MDSCs in the TME, comprehensive research is necessary.

3. The Therapeutic Effects of Targeting MDSCs

Immunotherapy is currently the mainstream cancer therapy and can effectively save the lives
of cancer patients through an immune checkpoint blockade (ICB) [66]. However, immunotherapy is
not effective for every patient. Only a few patients can be cured, and it is limited to specific types
of cancer. The immunosuppressive function of MDSCs is considered to make a major contribution
to tumor development given their extensive inhibition of antitumor responses and promotion of
tumorigenesis. Studies have shown that MDSCs are the main contributors to the poor clinical outcome
of immunotherapy [67,68]. Therefore, in recent years, a variety of cancer treatment strategies have
been developed to reduce the number of MDSCs and impede the immunosuppressive function of
MDSCs. In addition, some traditional treatment approaches, such as radiotherapy or other methods,
can also effectively damage the inhibitory activity of MDSCs [69,70]. Furthermore, a large number of
studies have combined treatment methods targeting MDSCs with immunotherapy, which has exhibited
potential antitumor effects (Figures 3 and 4).

3.1. Chemotherapy Targeting MDSCs

The fundamental purpose of therapy targeting MDSCs is to eliminate MDSCs. Without the
immunosuppression mediated by MDSCs, the limitation of the antitumor response can be lifted, and tumor
development can be suppressed. Current chemotherapy approaches targeting MDSCs mainly include
(1) inhibition of immunosuppressive functions of MDSCs; (2) elimination of MDSCs in both tumor sites
and the circulatory system; (3) blockade of MDSC recruitment to the TME; and (4) induction of the
differentiation of MDSCs into mature myeloid cells that lack suppressive activity [4,71,72] (Figure 3).
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mainly studied from four aspects: (1) Attenuation of the immunosuppressive activity of MDSCs
by downregulating the expression of ARG1, iNOS, and IDO, the activation of STAT3 and the production
of reactive oxygen species (ROS); (2) induction of MDSC differentiation inducing MDSCs to differentiate
into mature myeloid cells, such as DCs and macrophages, to initiate and regulate immune responses;
(3) targeting chemokine receptors on the surface of MDSCs to prevent MDSCs from migrating to tumor
tissues; and (4) promotion of MDSC deletion to reduce the population of MDSCs. ARG1, arginase 1;
iNOS, inducible nitric oxide synthase; IDO, indoleamine 2,3-dioxygenase; STAT3, signal transducer
and activator of transcription 3; ROS, reactive oxygen species; PDE5, phosphodiesterase 5; COX2,
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alone, the therapeutic outcome is not very satisfactory mainly due to the strong suppressive effect
of MDSCs on cytotoxic T cells. Dual therapy involving immunotherapy and targeted MDSCs can
enhance the therapeutic effect of immunotherapy. On one hand, it can effectively reduce the population
of MDSCs; on the other hand, it can also greatly weaken the ability of MDSCs to inhibit cytotoxic
T cells. PD-1, programmed death 1; PD-L1, programmed death ligand-1; CTLA-4; cytotoxic T
lymphocyte-associated antigen 4; B7, costimulatory molecules.
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3.1.1. Inhibition of Immunosuppressive Functions

Diminishing the protumoral effects of MDSCs can be achieved by weakening the immunosuppressive
function of MDSCs.

As mentioned above, STAT3 plays an indispensable role in MDSC-mediated tumorigenesis.
By applying a specific small molecule inhibitor of p-STAT3 or STAT3-targeted siRNA to block the
activation of STAT3, the suppressive activity of MDSCs can be eliminated by reducing the expression
of ARG1 in MDSCs [73,74]. Receptor tyrosine kinases, such as TYRO3 (a type of protein tyrosine
kinase), AXL (a type of receptor tyrosine kinase), and C-Mer proto-oncogene tyrosine kinase (MERTK)
and their ligands, Gas 6 and Protein S, can reverse the tumorigenic properties of MDSCs, increase
the numbers of tumor infiltrating CD8+ T cells, and strengthen anti-PD-1 immune checkpoint
therapy. MERTK abolishes the suppressive capability of MDSCs by negatively regulating STAT3 [75].
Moreover, all STAT3 inhibitors, such as sunitinib, AZD9150, and BBI608, or a conjugate of the STAT3
antisense oligonucleotide (ASO) tethered to immunostimulatory toll-like receptor 9 (TLR9) agonist
(CpG-STAT3ASO) conjugates can significantly diminish the immunosuppressive function of MDSCs
and rescue antitumor immunity [48,76–78].

PGE2 induces MDSCs to upregulate the production of ARG1 and iNOS and exert suppression.
Cyclooxygenase-2 (COX-2) is the upstream molecular signal of PGE2, which regulates the generation
of PGE2. Thus, COX-2 can be targeted to negatively regulate the synthesis of PGE2. shRNA targeting
of COX-2 significantly reduces MDSCs in the spleens of tumor-bearing mice [79]. COX-2 expression
can also be inhibited by acetylsalicylic acid, NS-398, and celecoxib, thereby hindering the activity of
MDSCs and increasing the infiltration of CTLs in tumor sites [80–82]. RIPK3 induces cell necrosis by
interacting with TLR3/4 [83]. RIPK3 deficiency activates the NF-κB signaling pathway and upregulates
the expression of the downstream signaling molecules COX-2 and PGE2, which aggravates the
immunosuppressive activity of MDSCs and accelerates tumor growth. Treatment with aspirin (ASA,
COX inhibitor) significantly protected mice against tumorigenesis [84]. Additionally, the overexpression
of fatty acid transport protein 2 (FATP2) is also involved in the synthesis of PGE2 through the activation
of the STAT5 signaling pathway. Administration of the selective FATP2 inhibitor lipofermata selectively
inhibits the function of MDSCs while enhancing immunotherapy [85].

Phosphodiesterase 5 (PDE5) is another target of MDSC treatment that is a hydrolase that acts on
the NO/cyclic guanosine monophosphate (cGMP) signaling pathway [86]. The application of PDE5
inhibitors, including sildenafil, tadalafil, and vardenafil, can reduce the production of ARG1 and iNOS
in MDSCs, abolish the inhibitory activity of MDSCs, reduce the number of Tregs, and thus greatly
delay the progression of tumors [87–90]. Treatment with tadalafil combined with cytokine-induced
killer (CIK) cell-based immunotherapy enhanced CIK activity against human hepatocellular carcinoma
(HCC) cell lines in vitro [91]. Nitroaspirin is another inhibitor of ARG1 and iNOS that reduces ROS
generation [92].

Nuclear factor E2-related factor 2 (Nrf2), a transcription factor, is considered to be the main regulator
of antioxidant stress. Nrf2 is associated with abnormal ROS accumulation in MDSCs, which has
been confirmed by a model of Nrf2-deficient mice. In Nrf2 knockout (KO) mice, the circulating
level of MDSCs did not change; however, with elevated amounts of cellular ROS, the number of
CD8+ T cells was significantly reduced, and the tumor growth rate increased [93,94]. Treatment with
Nrf2-inducing triterpenoids, such as omaveloxolone (RTA-408), CDDO-Me (RTA-402), and CDDO-Im
(RTA-403), increases the transcriptional activity of Nrf2, which attenuates the production of ROS,
abrogates the immune suppressive effect of MDSCs, and protects immune cells and tissues from
oxidative stress [95–97]. However, a recent study has demonstrated that Nrf2 is activated by PKR-like
endoplasmic reticulum (ER) kinase (PERK) in tumor-infiltrating MDSCs, giving MDSCs the potential
for immunosuppression [98]. The deletion of PERK or treatment with the selective inhibitor of
PERK AMG-44 reduces Nrf2 transcription, resulting in ROS overexpression, causing mitochondrial
damage, impeding the immunosuppression of MDSCs, and increasing the infiltration of CD8+ T cells.
This situation can be antagonized by the addition of the Nrf2 inducer sulforaphane [98]. According to
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the above report, it can be concluded that Nrf2overexpression and deletion affect the immunoinhibitory
activity of MDSCs. Only when Nrf2 maintains a steady state can MDSCs exert normal protumor effects.

N-Hydroxy-nor-L-arginine (nor-NOHA) is used as an ARG1 inhibitor. Blocking ARG1 by
nor-NOHA reversed the immunosuppressive activity of MDSCs [99]. Inhibition of the VEGF/VEGFR-2
axis with antibody DC101 repressed primary tumor growth and metastasis in the 4T1 breast cancer
model. However, it had no effect on MDSC mobilization and induced ARG1 expression. Combination
treatment with nor-NOHA and DC101 reduced the inhibitory effect of MDSCs, but T cell proliferation
was inhibited [100]. 1-Methyl-DLtryptophan (1-MT), a competitive inhibitor of IDO, ablates the
immunosuppressive function of MDSCs on T cells. When 1-MT is combined with nor-NOHA, the T cell
proliferation rate is almost completely restored [101]. Bruton’s tyrosine kinase (BTK) is a nonreceptor
intracellular kinase that is related to the migration and proliferation of MDSCs. Treatment with the
BTK inhibitory drug ibrutinib decreases the cytokine production and motility of MDSCs [102].

Recently, it was described that estrogen interacts with estrogen receptor alpha, driving the
mobilization of MDSCs by activating the STAT3 pathway, which facilitates deregulated myelopoiesis.
The progression of tumors can be delayed by removing estrogen activity though an anti-estrogen
treatment [103]. Castration-resistant prostate cancer exhibits resistance to androgen deprivation therapy
mainly because IL-23 secreted by MDSCs activates the androgen receptor (AR) and the STAT3/RORγ
signaling axis in prostate tumor cells. Blocking the production of IL-23 can counteract MDSC-mediated
CRPC through treatment with the anti-IL-23 antibody and AR antagonist enzalutamide [104].

MDSCs have low glycolysis and mitochondrial respiratory capacity but contain high levels
of methylglyoxal, which inhibits the antitumor activity of CD8+ effector T cells. Neutralization of
methylglyoxal with compounds containing guanidine groups, such as metformin, can effectively
abolish the immunosuppressive activity of MDSCs. The combination of metformin and anti-PD-1
overcomes the suppression of immunotherapy by MDSCs [40].

3.1.2. Depletion of MDSCs

The most direct MDSC-targeting therapy strategy is to eliminate MDSCs. Treatment with low
doses of chemotherapy drugs, such as gemcitabine, 5-fluorouracil (5-FU), paclitaxel, and cisplatin,
effectively affects the viability of MDSCs [8,28,105]. Gemcitabine is a selective inhibitor of MDSCs that
reduces the number of circulating Tregs and the level of TGFβ1 and PMN-MDSCs but not M-MDSCs in
the peripheral blood of patients with pancreatic cancer and restores the proliferation and antitumor
capacity of effector T cells [106]. 5-FU can equally induce the death of the two subtypes of MDSCs and
has no obvious effect on other immune cells, such as T cells, NK cells, DCs, and B cells. Treatment
with 5-FU triggered the apoptosis of MDSCs, promoted tumor-infiltrating T cells to produce high
levels of IFNγ and enhanced the T cell-dependent antitumor response in the mouse EL4 model [107].
Therefore, compared with gemcitabine, 5-FU significantly and specifically eliminated MDSCs by
inducing apoptosis in the TME and spleen of tumor-bearing mice [107]. However, the assembly of
NLRP3 in MDSCs is activated by 5-FU, which leads to the secretion of MDSC-derived IL-1β and CD4+

T cell-derived IL-17 and inhibits the antitumor effect of 5-FU. As a countermeasure, the combination
of 5-FU and IL-1β inhibitors, such as the indirect inhibitors DHA and SP600125, could represent
a successful approach [108,109]. Docetaxel, which has the same effect as paclitaxel, was shown to
significantly inhibit tumor growth. Docetaxel achieves its antitumor effect by polarizing MDSCs
to M1-type macrophages, reducing the proportion of MDSCs in the spleen [110]. ApoE impedes
tumor invasion and endothelial cell recruitment, but liver-X receptors (LXRs) inhibit ApoE expression.
Recently, it has been reported that the LXR agonists GW3965 and RGX-104 impair MDSC survival by
activating the LXR/ApoE axis and enhance the antitumor activity of CTLs [111,112]. CD33 is highly
expressed on MDSCs in humans, especially M-MDSCs, but CD33 is a therapeutic target on circulating
and tumor-infiltrating MDSCs across multiple cancer types [113]. The immunotoxin gemtuzumab
ozogamicin, a CD33 monoclonal antibody (mAb), effectively eliminates MDSCs and reactivates T cells
to fight against multiple cancers [113,114]. Additionally, targeting the bromodomain and extraterminal
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domain (BET), a component of the endogenous transcription enhancer of MDSCs, by treating HCC
patient-derived PBMCs with the small molecular inhibitor i-BET762 significantly reduced the number
of CD14+HLA-DR−/low M-MDSCs and enhanced the effect of immunotherapy [115].

3.1.3. Blockade of Migration

Blocking the migration of MDSCs can effectively reduce the proportion of MDSCs in the TME and
the periphery by impeding the response of MDSCs to chemokines [2,22]. Antagonists of chemokines
help prevent MDSCs, especially PMN-MDSCs, from reaching the tumor sites and modifying the
immunosuppressive microenvironment [116]. CXCR2 is an important chemokine receptor for MDSC
trafficking [117,118]. Blocking the CXCR2/CXCLs pathway through CXCR2 inhibitors, such as SX-682,
reparixin, and SB225002, effectively reduces the infiltration of MDSCs and improves the function of
cytotoxic T cells [84,119,120]. The progression and invasiveness of multiple tumors can be suppressed
by targeting the CCR5/CCL axis [121–124]. Administration of mCCR5–Ig-neutralizing CCR5 ligands
reduced the migration of MDSCs and Tregs without impacting the recruitment of effector T cells
to the TME [125]. The CXCR4 receptor for CXCL12 (also known as stromal cell-derived factor 1,
SDF-1) also mediates the recruitment of MDSCs. Neutralization of CXCR4 by antagonists, such as
AMD3100, reduces the number of MDSCs and Tregs and promotes M2 to M1 macrophage polarization
in the TME [126,127]. Moreover, the colony-stimulating factor-1 receptor (CSF-1R) is a tyrosine kinase
receptor that, when combined with the receptor, can induce the formation of MDSCs and trafficking to
tumor sites. It has recently been reported that CSF-1R inhibitors, such as RG7155 and PLX647, block
the CSF-1R signaling pathway, leading to ablation of MDSCs or inhibition of their tumor-promoting
functions and reprogramming of TAMs [68,128–130].

3.1.4. Induction of Differentiation

Furthermore, there is another therapeutic method that targets MDSCs by inducing MDSCs to
differentiate into cells with a proinflammatory phenotype. All-trans retinoic acid (ATRA) is a metabolic
intermediate of vitamin A and has been identified as an anticancer drug that induces MDSCs to
differentiate into DCs and macrophages [32,131,132]. ATRA induces the differentiation of MDSCs both
in vivo and in vitro, which greatly reduces the number of MDSCs. The specific mechanism is that the
added ATRA activates the ERK1/2 signal, which further upregulates the expression of glutathione
synthase in MDSCs, resulting in increased glutathione levels, neutralization of the generated ROS,
and inhibition of MDSC inhibitory activity [133]. Finally, myeloid cells differentiate in response to
treatment with ATRA. It is worth noting that the effects of ATRA on MDSCs are highly time-dependent
with tumor vaccination [134]. Evidence suggests that vitamin D3 may also promote the differentiation
of MDSCs. MDSCs at the tumor site have higher levels of vitamin D receptor compared with those in
the spleen and bone marrow. Treatment with the active form of vitamin D3 (1α,25-dihydroxyvitamin
D3,1,25(OH)D) significantly reduced the T cell suppressive capacity of MDSCs. In vitro-derived
MDSCs reduced the production of NO under the stimulation of 1,25(OH)D [135]. Another study
reported that the addition of 1,25(OH)D abolished the accumulation of IL-6-induced MDSCs [136].
In summary, therapies targeting MDSCs reduce the number and function of MDSCs at tumor sites and
the circulation. However, simply targeting MDSCs is difficult to achieve the goal of tumor elimination,
and combined therapy can prevent tumor growth more efficiently.

3.2. Immunotherapy in Combination with MDSC Targeted Therapy

Tumor and immunosuppressive cells, such as MDSCs, also inhibit antitumor responses through the
interaction of immune checkpoint molecules, such as PD-1/PD-L1, CTLA-4/B7, and Gal-9/TIM-3 [137].
Current studies mainly focus on the immunotherapy of PD-1, PD-L1, and CTLA-4. PD-1 antibodies
include pembrolizumab and nivolumab; PD-L1 antibodies include atezolizumab, durvalumab,
and avelumab; and CTLA-4 antibodies include ipilimumab and tremelimumab [137,138]. However,
because MDSCs are the main contributors to immunosuppression, the effects of immunotherapy



Cancers 2020, 12, 2626 11 of 24

are often hindered. Therefore, the combination of immunotherapy and targeted MDSCs has been
thoroughly researched and has made great progress (Figure 4).

3.2.1. Immunotherapy Combined with Inhibition of Immunosuppressive Functions of MDSCs

FATP2 is overexpressed in PMN-MDSCs and promotes tumor development. Combined treatment
with the FATP2 inhibitor lipofermata and checkpoint inhibitors anti-CTLA-4 or anti-CSF-1R inhibitors
abolished the inhibitory activity of PMN-MDSCs and blocked tumor progression in mice [85]. BLZ945,
a selective inhibitor of CSF-1R, enhances the response to anti-PD-1 treatment in neuroblastoma
mice [139]. CB-1158, a small molecule inhibitor of ARG1, blocks MDSC-mediated suppression of T
cells in vitro and in various mouse models of cancer. CB1158 or anti-PD-L1 monotherapy slows down
the development of tumors, while treatments combining the two drugs enhance the inhibition of tumor
growth [140].

3.2.2. Immunotherapy Combined with Depletion of MDSCs

The combination therapy of SRA737, an oral CHK1 inhibitor, and anti-PD-L1 leads to the activation
of antitumor effects. After adding low-dose gemcitabine to the combination therapy in the small
cell lung cancer model, the number of antitumor CD8+ cytotoxic T cells, DCs, and M1 macrophages
was more significantly increased. In addition, MDSCs and Tregs were decreased [141]. Additionally,
when administered in combination with gemcitabine, immunotherapy can impair tumorigenesis and
expansion mainly due to depletion of immunosuppressive cells, such as MDSCs [142]. In the mouse
model of fibrotic liver, the accumulation of M-MDSCs rather than the accumulation of PMN-MDSCs is
related to the increase in tumor infiltrating lymphocytes and tumorigenicity. Moreover, in human liver
cancer, CD33+M-MDSCs are obviously enriched in the fibrotic liver near the tumor [115]. Combined
therapy with anti-PD-L1 and BET bromodomain inhibitor i-BET762, which is currently in clinical
trials, synergistically inhibited the suppressive function of M-MDSCs and enhanced tumor-infiltrating
lymphocytes in a fibrotic-HCC mouse model [115].

3.2.3. Immunotherapy Combined with a Blockade of Recruitment of MDSCs

Mutated KRAS gene (KRASG12D)-mediated suppression of IRF2 in colorectal cancer leads to
increased secretion of CXCL3, thereby promoting the migration of MDSCs into tumor sites through
interaction with CXCR2. Treatment of tumor-bearing mice with the CXCR2 inhibitor SX-682 and
anti-CXCR2 antibodies decreased the migration of MDSCs, suppressed the tumor-promoting response,
and improved the efficacy of anti-PD1 therapy [119,143]. Blocking the CSF-1R/CSF-1 signaling
pathway by anti-CSF-1R effectively reduces the frequency and function of MDSCs in murine tumors
in vivo. Importantly, CTLA-4 blockade monotherapy upregulated the expression of CSF-1R in
tumor-infiltrating MDSCs and inhibited T cell proliferation, whereas anti-CSF-1R and CTLA-4 blockade
combined treatment induced antitumor T-cell responses and tumor regression in multiple tumor
models [144].

3.2.4. Immunotherapy Combined with an Induction of Differentiation of MDSCs

Due to the high infiltration of MDSCs in solid tumors, such as breast cancer, anti-angiogenic
therapies treated with anti-VEGFR2 antibodies are largely ineffective. ATRA increased the efficacy
of anti-VEGFR2 antibodies alone by reversing the accumulation of MDSCs, reducing hypoxia,
and secreting high levels of vessel-destabilizing S100A8 [145]. ATRA treatment in vitro reduces
the immunosuppressive function of MDSCs on lymphocytes. Regarding possible mechanisms,
ATRA reduces the expression of immunosuppressive genes in MDSCs, such as IDO, IL-10, NOX1,
PD-L1, and TGFβ. In clinical studies, the addition of ATRA significantly reduced the level of circulating
MDSCs compared with ipilimumab treatment alone in advanced-stage melanoma patients [146].
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In summary, ICB monotherapy is limited and will be invalidated by the immunosuppressive
effect mediated by MDSCs. Dual or triple therapy targeting MDSCs and ICB may become the focus of
future cancer treatment research. Several clinical trials of the combined treatment are listed in Table 1.

3.3. Other Therapy Strategies

In addition to the targeted MDSC approaches, other treatments can affect the number and function
of MDSCs and thus achieve the purpose of inhibiting tumor growth and improving survival (Figure 5).
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Figure 5. Effect of radiation therapy (RT) on MDSCs. Treatment with conventional fractionated
radiotherapy (CFRT) promotes the secretion of tumor cytokines and chemokines in response to
activation of the STING signaling pathway and DNA damage. These secreted factors bind to the
receptors on the membrane of MDSCs, which increases the number of MDSCs migrating to the
TME, upregulates the expression of PD-L1 on MDSCs, and strengthens the ability to suppress T cells.
Ablative hypofractionated radiotherapy (ABHRT) reduces the recruitment of MDSCs by destroying
the hypoxic environment in the TME and induces tumor apoptosis, leading to reactivation of the
antitumor response. CCL, CC chemokine ligand; STING, stimulator of interferon genes; VEGF, vascular
endothelial growth factor.
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Table 1. Clinical trials of the regulation of MDSCs.

Strategy Target Intervention Drug Cancer Types Clinical Trial Status

Inhibition of
suppressive functions

COX-2 Celecoxib Nivolumab
Ipilimumab Colon carcinoma NCT03026140 Recruiting

PDE5 Tadalafil
Placebo N/A Head and neck squamous

cell carcinoma NCT01697800 Completed

STAT3 BBI608 Nivolumab Colorectal cancer NCT03647839 Recruiting

ARG1 ARG1 peptide PD-L1 peptide Myeloproliferative
neoplasms NCT04051307 Recruiting

VEGF Bevacizumab Capecitabine Breast cancer NCT00109239 Completed
IDO Indoximod Gemcitabine Pancreatic cancer NCT02077881 Completed
BTK Lbrutinib Nivolumab Renal cell NCT02899078 Recruiting

Androgen Androgen-ablation
therapy Cabozantinib Prostate cancer NCT01630590 Active

Estrogen Anti-estrogen therapy Afinitor Breast cancer NCT02291913 Completed

Depletion

N/A 5-FU Gemcitabine
Cisplatin

Pancreatic cancer
Biliary cancer NCT01661114 Completed

N/A Docetaxel Bevacizumab Breast cancer NCT00217672 Completed

LXR RGX-104 Nivolumab
Ipilimumab Malignant neoplasms NCT02922764 Recruiting

BET bromodomain GSK525762 Placebo
Fulvestrant Neoplasms NCT02964507 Active

Blockade of migration

CXCR2 SX-682 Pembrolizumab Melanoma NCT03161431 Recruiting

CXCR4 BL-8040 Pembrolizumab Pancreatic
adenocarcinoma NCT02907099 Active

CCR5 Maraviroc Pembrolizumab Colorectal Cancer NCT03274804 Completed

CSF-1R Pexidartinib Durvalumab
Colorectal cancer
Pancreatic cancer
Metastatic cancer

NCT02777710 Completed

Induction of
differentiation

RAR/RXR ATRA Pembrolizumab Melanoma NCT03200847 Recruiting

Vitamin D3 Bevacizumab
chemotherapy

Colorectal
adenocarcinoma NCT04094688 Recruiting
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3.3.1. Radioactive Therapy

Radiotherapy is a traditional and effective method of treating cancer. Exposure of the tumor
site to different doses of radiation promotes tumor cell necrosis [69]. In a mouse model of prostate
cancer, exposure to conventional fractional radiotherapy (CFRT) increases the number of MDSCs in the
spleen, lymph nodes, and peripheral blood as well as the level of CSF-1 by two-fold in tumors [147]
(Figure 5). Further investigation has demonstrated that this effect is attributed the DNA damage
induced by radiotherapy, which induces the transfer of the kinase ABL1 to the nucleus. ABL1 combines
with the promoter of the CSF-1 gene to enhance the transcription of the CSF-1 gene. The increase
in circulating CSF-1 promotes the infiltration of MDSCs to tumor sites through the CSF-1/CSF-1R
signaling pathway. Compared to radiotherapy alone, selective inhibition of CSF-1R is more effective
in assisting radiotherapy to inhibit tumor development. Radiotherapy-mediated activation of the
stimulator of interferon genes (STING)/IFNγ pathway also contributes to the recruitment of MDSCs.
After local ablative radiation, the STING/IFNγ pathway enhances tumor radioresistance by inducing the
expression of CCL2, CCL7, and CCL12, which attract CCR2+ MDSCs into the TME [148]. These effects
are abrogated by combination treatment with anti-CCR2 antibodies and radiotherapy [148].

Compared to CFRT, ablative hypofractionated radiotherapy (AHFRT) significantly reduces the
level of MDSCs in the TME and reduces their PD-L1 expression while reducing the level of VEGF in
the TME, inhibiting the VEGF/VEGFR pathway to impede the migration of MDSCs [149]. IDO1 plays
an important role in the immunosuppression mediated by MDSCs. An interesting study demonstrated
that IDO1 inhibition overcomes immune suppression and makes tumors sensitive to AHFRT by
reducing the number of IDO1-expressing MDSCs [150]. The strategy of radiotherapy combined with
anti-PD-L1 can effectively reduce the accumulation of MDSCs and remove the antitumor limitation of
T cells in tumor-bearing mice and patients with nonsmall cell lung cancer [151,152]. Stereotactic body
radiotherapy (SBRT) is an emerging treatment that directly and safely induces tumor cell death by
directly irradiating the tumor site. Three days after SBRT, the number of MDSCs in the peripheral blood
of cancer patients will be significantly reduced [153]. Sunitinib treatment promotes the therapeutic
effect of SBRT, abolishes the immunosuppression of MDSCs and Tregs, and strengthens antitumor
immunity [154]. Several clinical trials of radiotherapy are listed in Table 2.

Table 2. Clinical trials of radiation therapy.

Study Title Radiotherapy Drug Cancer Types Clinical
Trial Status

Trial of SBRT with
concurrent Ipilimumab in

metastatic melanoma

SBRT 24 Gy in 8
fractions 30 Gy in 10

fractions 36 Gy in
12 fractions

Lpilimumab Melanoma NCT02406183 Completed

Atezolizumab with
stereotactic ablative

radiotherapy in patients
with metastatic tumors

SBRT 45 Gy in
3 fractions Atezolizumab

Colorectal cancer
Non-small lung cancer
Renal cell carcinoma

Sarcoma

NCT02992912 Recruiting

Anti-PD-1 ± RT for
MSI-H solid tumors Regimen not stated Anti-PD-1 Colorectal cancer NCT04001101 Recruiting

Preoperative
Radiotherapy and

Chemotherapy in patients
with locally advanced

rectal cancer
(PROArCT)

25.2 Gy in 14 fractions
Oxaliplatin
Fluorouracil
Leucovorin

Rectal cancer NCT01013805 Completed

Pembrolizumab in muscle
invasive/metastatic

bladder cancer
(PLUMMB)

24 Gy in 6 fractions Bladder cancer NCT02560636 Active
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3.3.2. Epigenetic Therapy

Epigenetic therapy is an emerging method of targeting MDSCs to treat cancer. Current epigenetic
therapeutic approaches mainly include treatment with histone methyltransferase inhibitors (HMTis),
histone deacetylase inhibitors (HDACis), and DNA methyltransferase inhibitors (DNMTis) [155].
Enhancer of zeste homolog 2 (EZH2), a gene encoding histone methyltransferase, is often overexpressed
in multiple cancer types [156]. After treatment with the EZH2 inhibitor GSK343, the number of
functional MDSCs increased significantly in colorectal cancer mouse models or in vitro [156]. Similarly,
the use of another inhibitor, GSK126, also promoted the proliferation of MDSCs. Anti-Gr1 antibody or
gemcitabine/5-FU combined with GSK126 can relieve the immunosuppression of MDSCs and increase
the number of tumor-infiltrating T cells [157]. HDAC2 silences the transcription of the retinoblastoma
(Rb) gene through epigenetic modification; thus, M-MDSCs acquire partial phenotypes and functions
of PMN-MDSCs in tumor-bearing mice [158]. DNMTi 5-azacytidine (AZA) increases the proportion of
CD8+ T cells and NK cells in the TME through a type I IFN immune response, reduces the accumulation
of MDSCs, and promotes antitumor effects [159]. The addition of an HDACi entinostat (ENT) to AZA
further enhances the regulation of the immune microenvironment. Triple or quadruple treatment
of AZA and ENT plus immunotherapy anti-PD-1 and anti-CTLA-4 exhibited highly effective tumor
elimination [8,159–162]. Adjuvant epigenetic therapy with AZA and ENT blocks the migration of
MDSCs by downregulating CCR2 and CXCR2, which leads to the differentiation of MDSCs into
macrophages and disturbance of pMN [161,163,164]. Several clinical trials of the combination of
epigenetic therapy with immunotherapy are listed in Table 3.

Table 3. Clinical trials of epigenetic therapy combined with immunotherapy.

Target Intervention Drug Cancer Types Clinical Trial Status

EZH2 Tazemetostat Pembrolizumab Urothelial carcinoma NCT03854474 Recruiting

EZH2 CPI-1205 Ipilimumab Advanced solid tumors NCT03525795 Active

HDAC Panobinostat Ipilimumab Melanoma
Skin cancer NCT02032810 Active

HDAC6 ACY-241 Nivolumab Non-small cell lung
cancer NCT02635061 Active

HDAC Panobinostat Ipilimumab Melanoma
Skin cancer NCT02032810 Active

HDAC Mocetinostat Durvalumab Advanced cancer NCT02805660 Completed

HDAC Mocetinostat Pembrolizumab
Guadecitabine Lung cancer NCT03220477 Recruiting

DNMT Decitabine Nivolumab
Tetrahydrouridine

Lung cancer
non-small cell lung

cancer
NCT02664181 Completed

DNMT 5-Azacitidine Entinostat
Nivolumab Non-small lung cancer NCT01928576 Recruiting

Azacitidine
Oxaliplatin
Epirubicin

Capecitabine

Esophageal
cancer NCT01386346 Completed

DNMT Temozolomide Nivolumab Brain cancer NCT02617589 Active

DNMT Guadecitabine Nivolumab Colorectal carcinoma NCT03576963 Recruiting

DNMT Entinostat Pembrolizumab Myelodysplastic
Syndrome NCT02936752 Recruiting

4. Conclusions

Overall, MDSCs are one of the main promoters of cancer. MDSCs abolish the antitumor response
by exerting immunosuppressive functions, promote the formation of the tumor microenvironment,
and provide comfortable conditions for tumor growth. At present, research on MDSCs remains
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insufficient, and how to distinguish MDSCs from other myeloid cells remains controversial. Emerging
high-throughput technologies may help to better identify the phenotype of MDSCs. Therapeutic
methods targeting MDSCs have been shown to effectively limit the accumulation of MDSCs in tumor
tissue and peripheral organs. In the future, the combination of targeted MDSCs and immunotherapy
may become the main cancer treatment strategy.
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