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Summary

Controlling and managing the degree of phenotypic
diversification of microbial populations is a challeng-
ing task. This task not only requires detailed knowl-
edge regarding diversification mechanisms but also
advanced technical set-ups for the real-time analy-
ses and control of population behaviour on single-
cell level. In this work, set-up, design and operation
of the so called segregostat are described which, in
contrast to a traditional chemostat, allows the con-
trol of phenotypic diversification of microbial popula-
tions over time. Two exemplary case studies will be
discussed, i.e. phenotypic diversification dynamics
of Eschericia coli and Pseudomonas putida based
on outer membrane permeabilization, emphasizing
the applicability and versatility of the proposed
approach. Upon nutrient limitation, cell population
tends to diversify into several subpopulations
exhibiting distinct phenotypic features (non-perme-
abilized and permeabilized cells). Online analysis

leads to the determination of the ratio between cells
in these two states, which in turn triggers the addi-
tion of glucose pulses in order to maintain a prede-
fined diversification ratio. These results prove that
phenotypic diversification can be controlled by
means of defined pulse-frequency modulation within
continuously running bioreactor set-ups. This lays
the foundation for systematic studies, not only of
phenotypic diversification but also for all processes
where dynamics single-cell approaches are required,
such as synthetic co-culture processes.

Introduction

Controlling and managing the degree of phenotypic
diversification of microbial populations has recently
attracted a lot of attention (Ackermann and Schreiber,
2015; Binder et al., 2017), due to our expanding knowl-
edge about noise of biological systems (Eldar and Elow-
itz, 2010). This trend is promoted by the emergence of
new disciplines, such as cybergenetics (Milias-Argeitis
et al., 2016; Benzinger and Khammash, 2018), applying
control theory for managing cell-to-cell heterogeneity in
gene expression at a very high spatio-temporal resolu-
tion. However, these studies have mostly been con-
ducted in microfluidic cultivation devices. A more
conventional device that is thoroughly used for microbial
physiology studies is the chemostat, allowing the long-
term cultivation of microbial population in defined limiting
conditions (Wides and Milo). The main reason behind
the intense use of this cultivation device is because it
was recognized as being able to stabilize microbial pop-
ulation in a given physiological state. However, results
accumulated in recent years pointed out that this is not
true (Wides and Milo), and the impact of phenotypic
diversification has not been taken into account so far.
Indeed, chemostat cultivations lead to a very competitive
environment generating many successive takeovers of
different subpopulations that are non-detectable at the
biomass or substrate levels. Therefore, novel tools need
to be established based on combination of single-cell
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technologies, such as flow cytometry (FC), and process
engineering approaches.
Nutrient stress is a strong trigger of phenotypic diversi-

fication that can be eventually used for controlling the
degree of diversification of a bacterial population. Previ-
ous studies have shown that such phenotypic diversifica-
tion mechanisms are governed by a complex set of
physiological mechanisms involving noise in gene
expression, metabolism and growth (Kiviet et al., 2014;
Kleijn et al., 2018; Patange et al., 2018), these three
mechanisms being highly cross-correlated and being
controlled through mutual feedback loops. Ultimately, the
superimposition of these three mechanisms leads to
population phenotypic heterogeneity that can in turn con-
fer interesting functionalities to the whole population (e.g.
bet-hedging, division of labour) (Ackermann, 2015). Most
of the works focused on phenotypic diversification of
microbial populations have been carried out based on
single-cell proxies involving either GFP expression (used
as a proxy for noise in gene expression) (Nikolic et al.,
2013; Baert et al., 2015) or growth rate (Dusny et al.,
2012; Grunberger et al., 2013). In the context of this
work, we propose to focus on another relevant single-
cell proxy, i.e. outer membrane (OM) permeabilization.
Indeed, membrane permeability is a fundamental physio-
logical parameter driving the way that microbes respond
to environmental cues and, eventually, adapt to stresses
(Ferenci, 1996). However, like growth rate (van Heerden
et al., 2017), membrane permeability is a physiological
process involving an intricate set of genes and regulation
processes. It is thus of importance to develop advanced
single-cell technologies for characterizing such physio-
logical parameter. This phenomenon is depicted in Fig. 1
for Escherichia coli BW25113 DompC and Pseu-
domonas putida KT2440. Propidium iodide (PI) is the
most frequently used fluorescence indicator for cell via-
bility based on assessment of membrane integrity (Shi
et al., 2007). PI is also a very stable molecular probe
that can be used in combination with online FC to get an
instantaneous snapshot of the physiological status of
cells, by comparison with GFP-based biosensors that
are typically exhibiting lag time due to transcriptional-
and translational-dependent dynamics for the activation/
degradation of the fluorescent protein (Delvigne et al.,
2015). The dynamics of outer membrane (OM) perme-
abilization will be considered as a model system for
dynamic high-throughput single-cell analyses. More pre-
cisely, population profiling by online FC will be per-
formed in chemostat mode. Based on this information,
subpopulation ratio will be controlled based on a feed-
back control loop working based on FC data in a device
we called segregostat. This device is able to trigger glu-
cose pulses at given time interval, based on the ratio
between the non-permeabilized and OM-permeabilized

subpopulations. These glucose pulses generate alternat-
ing conditions between nutrient excess and nutrient limi-
tation, further modulating the appearance of OM-
permeabilized cells.

Results: Membrane permeabilization dynamics in
E. coli and P. putida upon nutrient limitation

One of the critical steps for studying the outcome of phe-
notypic diversification relies on the identification of rele-
vant single-cell proxies. In this work, we have identified
propidium iodide (PI) as an effective biomarker for cells
switching to adaptation in nutrient limitation (Fig. 1). PI
will be used for keeping track of the progressive perme-
abilization of the OM upon nutrient limitation. Indeed, we
have observed that, during switch from exponential
phase to stationary phase in flask culture experiments,
Gram-negative bacteria undergo OM permeabilization,
leading to an intermediate PI-stained fraction of cells
(Fig. 1B for E. coli and Fig. 1C for P. putida). Addition-
ally, these OM-permeabilized cells exhibit different meta-
bolic features as observed during dual-staining
experiments (see Appendix S2). For the two Gram-nega-
tive bacteria, OM-permeabilized cells exhibited fluores-
cence associated with RedoxSensor Green (RSG) and
2-NBDG uptake, suggesting that these cells are
metabolically active. However, differences have been
observed at the level of fluorescence intensity. For
E. coli, dual-staining experiments revealed that OM-per-
meabilized subpopulation exhibited reduced glucose
uptake, as indicated by 2-NBDG staining, and enhanced
electron transport chain, as indicated by RSG staining.
For P. putida, the opposite trend has been observed, i.e.
OM-permeabilized cells exhibited slightly reduced elec-
tron transport activity based on RSG staining and slightly
enhanced glucose uptake capacity based on 2-NBDG.
These data suggest that the physiological mechanisms
behind OM permeabilization are triggered by different
mechanisms in E. coli and P. putida. These potential
mechanisms will be developed in the discussion section.
Since this particular phenotype seems to be triggered

by nutrient limitation, chemostat experiments at low dilu-
tion rate, i.e. D = 0.1 h�1, were carried out. Indeed, it
has been previously observed that cultivating E. coli at
this dilution rate triggers adaptation to nutrient limitation,
notably through a complete remodelling of the porins at
the level of the OM (Liu, 1998). It has also been shown
that this dilution rate is in the range of growth rate for
which active porin remodelling takes place (Ferenci,
2001). On this basis, chemostat experiments were per-
formed both for E. coli and P. putida with online FC pro-
filing (Fig. 2). Similar trends have been observed for
E. coli and P. putida. In the first phase with increasing
OM-permeabilized subpopulation, followed by a second
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phase where this subpopulation decreases. Other inter-
esting observation for each species is a continuous evo-
lution at the level of their subpopulation ratio, whereas a
chemostat is typically used for ‘stabilizing’ microbial pop-
ulation (Wortel et al., 2016; Wides and Milo). In front of

the results, E. coli exhibits a lower phenotypic diversifi-
cation rate than P. putida. Indeed, if we compute the
rate of diversification from the first phase of a chemostat
where the OM-permeabilized subpopulation increases,
the value is 0.044 h�1 for E. coli against 0.085 h�1 for

(A)

(B)

(C)

Fig. 1. A. With the three physiological state according to PI staining (each state is illustrated by images acquired by high resolution microscopy
(confocal microscopy with Airyscan detector).
B. Flow cytometry experiments (x-axis corresponding to forward scatter or FSC; y-axis corresponding to red fluorescence related to PI staining)
with E. coli taken at different cultivation stages (cultures made in flasks).
C. Flow cytometry experiments (x-axis corresponding to forward scatter or FSC; y-axis corresponding to red fluorescence related to PI staining)
with P. putida taken at different cultivation stages (cultures made in flasks).
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P. putida. These experiments show that it is not possible
to maintain cell population heterogeneity within standard
chemostat experiments. Indeed, the subpopulation
dynamics that have been observed lead to the conclu-
sion that data obtained based on chemostat cultivation
might need to be reanalysed in the light of the presence
of phenotypically different subpopulations.

Based on these data, we designed an alternative culti-
vation device for maintaining cell population heterogene-
ity (or cell subpopulation ratio) at a constant level with
time. This device, which we called segregostat (see
Fig. 3 for a description of the set-up), is also running in
continuous mode, but is under the control of the degree
of diversification of the microbial population, i.e. in our

(A)

(B)

Fig. 2. Dynamics of phenotypic diversification in chemostat for A: E. coli; B: P. putida.
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case the ratio between cells in non-permeabilized and
OM-permeabilized subpopulation. Continuous monitoring
of cell population is ensured by online FC like in chemo-
stat experiments. However, in the case of the segregostat,
the system is continuously fed with base medium without
any carbon source. Glucose is pulsed at given time inter-
val based on the outcome of flow cytometry analysis.
Pulses have been performed in order to avoid glucose
accumulation during the cultivation (dissolved oxygen pro-
files are provided in Appendix S3). Since the switch of
cells to the permeabilized state is triggered by carbon limi-
tation, glucose pulse can be used as an efficient actuator
for limiting this phenotypic switch. During these experi-
ments, glucose pulse is triggered automatically when the
amount of cells in the permeabilized subpopulation exceed
10% of the total amount of cells (displayed as a subpopu-
lation ratio of 0.1 on Fig. 4). This threshold has been con-
sidered here as being a significant proxies for the
induction of the diversification process.

The E. coli and P. putida profiles displayed clear
similitudes, but also some differences. First, upon the
entry in the segregostat mode, both Gram-negative
bacteria exhibited a strong phenotypic diversification
traduced by a series of glucose pulses (Fig. 4; ~5–
10 h). However, this process seems to be faster for
P. putida than for E. coli. Indeed, a nice feature of the
segregostat is that the diversification periods can be
easily tracked based on the glucose pulse profile.
Indeed, these Gram-negative bacteria tend to induce
OM permeabilization upon nutrient limitation, this pro-
cess is being controlled by glucose pulses. Then, a
phase with successive glucose pulses corresponds to
a period of intense phenotypic diversification. Diversifi-
cation process is faster for P. putida, with an average
3.9 pulses per h, in comparison with E. coli for which
the average is 2.28 pulses per h. These observations
are in good accordance with the results gained
through chemostat experiments pointing out that the

Fig. 3. A. Scheme with the different components for the online FC platform.
B. Use of the platform in the chemostat mode.
C. Use of the platform in the segregostat mode. It is important to keep in mind that during segregostat, glucose pulses are added based on
population diversification, and therefore, the growth rate (l) is not necessarily equal to the dilution rate (D).
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(A)

(B)

Fig. 4. Dynamics and control of phenotypic diversification in segregostat for (A) E. coli; (B) P. putida. Glucose pulses have been made based
on a population diversification ratio of 0.1.
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diversification rate is approximately twice as much for
P. putida than for E. coli.
At this level, it was investigated whether the pulses

addition follow a stochastic trend. For this purpose,
stochastic simulations have been performed based the
rate of glucose pulse addition previously determined

through the segregostat experiments (here considered
as the transition rates (k, in h�1) for stochastic simula-
tions). Poisson processes were simulated based on the
average number of pulses per hours and the total pulses
injected over the segregostat cultures for the two Gram-
negative models (Fig. 5A). Interestingly, it can be

(A)

(B)

Fig. 5. Analysis of glucose pulses addition profiles in segregostat.
A. Total time needed for adding 57 and 98 glucose pulses, respectively, according to a theoretical Poisson process (the number of pulses, as
well as the rate k of the Poisson process, has been determined from the experimental segregostat data).
B. Distribution of waiting time between two consecutive glucose pulses according to a theoretical Poisson law (simulation) and from the seg-
regostat data (experimental).

ª 2019 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology., Microbial
Biotechnology, 12, 1064–1075

1070 H. Sassi et al.



observed that the mean time computed from the distribu-
tion, i.e. 24.9 h, matches very well with the experimental
time which is roughly around 25 h.
However, when looking at the glucose pulse profiles

displayed in Fig. 4, it can be observed that we are
diverging from a classical Poisson process. It is particu-
larly obvious in the case of P. putida where bursts in glu-
cose pulses are observed, i.e. a period with successive
pulses followed by period with no pulses. In order to
highlight this phenomenon, we computed the waiting
time distribution, i.e. in our case, this is described by the
time between two successive glucose pulses. Stochastic
simulations involving Poisson processes have been run
with the transition rate determined experimentally, and
the results have been compared with the distribution
acquired experimentally (Fig. 5B). There are two inter-
esting features that need explanation. The first feature
relies on the fact that, in the experimental distribution, a
lot of low waiting time values are non-represented,
whereas some others are overrepresented. This can be
explained that in the segregostat set-up, glucose pulses
are added in discrete time intervals (glucose pulse is
potentially injected every 12 min depending on the
degree of diversification of the microbial population),
whereas stochastic simulations are carried out in contin-
uous time. The second, and most interesting value, is
that some high waiting time values, not predicted by
stochastic simulations, can be noticed in both cases, but
the effect is more obvious for P. putida (these values
has been pointed out by red arrows for the experimental
distribution displayed in Fig. 5). These values corre-
spond to the arrests in glucose pulses profiles displayed
in Fig. 4 and are typical of a bursting process, i.e. pro-
cess exhibiting period of intense diversification, followed
by periods with no activities. Possible explanations about
the source of such burst behaviour will be discussed in
the next section.

Discussion

Phenotypic diversification is due to stochasticity in gene
expression, arising from fluctuations in transcription and
translation despite constant environmental conditions.
These mechanisms have been the focus of intensive
researches during the last decade and have led to a
coherent mathematical and experimental framework of
molecular stochasticity in prokaryotic and eukaryotic sys-
tems (Kaern et al., 2005; Eldar and Elowitz, 2010). This
framework has been notably used in order to decipher
the impact of regulatory network structure on the propa-
gation (Blake et al., 2003; Kleijn et al., 2018) and control
of phenotypic diversification (Milias-Argeitis et al., 2016;
Briat and Khammash, 2018; Briat et al., 2018), as well
as on the possible functionality of such diversification

(Eldar and Elowitz, 2010; Levine et al., 2013; Acker-
mann, 2015). However, most of these researches have
been conducted at low spatio-temporal resolution, i.e.
either on a limited numbers of cells, or focused on given
time point. In this work, we have developed a tool, called
segregostat, allowing to expand the methodology to a
very high amount of cells with a high temporal resolution.
Indeed, the segregostat allowed generating high-quality
subpopulation data. Such data are rarely available at
such population density and should help paving the way
for further characterization of microbial cell population
diversification dynamics. One characteristic feature of
the version of the segregostat that has been shown in
this work is that population control is made based on
glucose pulses. The resulting glucose pulse profile can
then be used for identifying the period of time for which
intense phenotypic diversification occurs. Interestingly, it
has been shown that the time between two consecutive
glucose pulses was not following a simple Poisson pro-
cess, but was rather occurring in a burst fashion. Tran-
scriptional and translational bursting are known to occur
at the single-cell level and drive intrinsic noise leading to
phenotypic diversification (Kaern et al., 2005; Eldar and
Elowitz, 2010). However, this process has never been
described for a whole microbial population and an out-
standing question would be to understand how such typi-
cal single-cell dynamics can be transposed to the
behaviour of whole microbial population. One hypothesis
is that glucose pulsing results in synchronization of
microbial subpopulations dynamics during cultivation in
chemostat. Indeed, since control is made based on glu-
cose pulsing, the microbial population is exposed to
cycles of nutrient excess and limitation, based on a
given diversification state. This hypothesis needs of
course confirmation and extra work is still required in
order to fully understand the molecular mechanisms
behind the appearance of OM-permeabilized subpopula-
tions, but the dynamic data acquired in this work allow to
point out some observations. First, by coupling PI stain-
ing with either 2-NBDG and RSG staining, different
observations were made for E. coli and P. putida.
Indeed, for E. coli, the OM-permeabilized subpopulation
exhibits different metabolic features than non-permeabi-
lized cells, i.e. a decreased glucose uptake capacity and
an increased electron transport chain (Appendix S2). In
the case of P. putida, the opposite trend was observed.
This could be explained by the fact that, from a mecha-
nistic point of view, glucose uptake mechanisms and cat-
abolism reactions between E. coli and P. putida are very
distinct. These differences could in part be responsible
for the observed dynamics. In E. coli, all the glycolytic
reactions take place in the cytoplasm. In contrast,
P. putida carries out some of the reactions leading to
glucose catabolism in the periplasm. Indeed, it has been
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shown that small amounts of gluconate and 2-ketoglu-
conate accumulate in the extracellular space when
P. putida grows on glucose (del Castillo et al., 2007).
These metabolic aspects will be developed further in this
section. For E. coli, a simple glucose pulsing strategy
can be used for controlling phenotypic diversification rate
and maintaining microbial population in a given degree
of heterogeneity with time. For P. putida, glucose pulsing
leads to oscillations around the subpopulation ratio that
has been used as the set point for the pulse addition,
and eventually leads to a loss of control at the end of
the cultivation. It seems thus that, in this case, an
advanced control strategy based on predictive model will
be required.
Taken altogether, the data gathered in this work point

out that the OM-permeabilization mechanism has differ-
ent origins in E. coli and P. putida. Ordinarily, PI mole-
cule carry two positive charges, one of which seems
open to the surroundings and should prevent its mem-
brane permeation. In a few conditions, such as high ATP
turnover and nutrient limitation, a lower membrane
potential will amplify the ion-motive force for cations, par-
ticularly if they carry two charges such as propidium
iodide (Bot and Prodan, 2010). Consequently, a
decreased membrane potential might facilitate diffusion
of PI molecules inside the periplasmic space. Although
different causes seem to be at the basis of PI diffusion
through the OM of the two Gram-negative bacteria inves-
tigated, its dynamics can be easily tracked by the online
FC platform. However, if some underlying physiological
mechanisms can be advanced for E. coli, this physiologi-
cal process has not been reported for P. putida. The
outer membrane of Gram-negative bacteria is composed
of an asymmetric lipid bilayer, phospholipids (PLs) being
located in the inner leaflet of the membrane and
lipopolysaccharides (LPS) being located to the outer
leaflet. In E. coli, the MlaA wall surrounding the channel
impairs transposition of PLs from inner to outer leaflet.
By contrast, outer leaflet PLs can enter this channel and
are removed from the OM via transfer to MlaC with the
particularly interaction of protein membrane (Chong
et al., 2015; Yeow et al., 2018). The combined function
of porin OmpC and MlaC in lipid transport and mainte-
nance of membrane asymmetry has been observed
(Chong et al., 2015). In addition to the disruption in OM
lipid asymmetry, cells lacking OmpC exhibit OM perme-
ability defects, including increased sensitivity to SDS/
EDTA and detergents. The authors also suggest that
OM permeability defects in DompC cells are not simply
a result of disruption in OM lipid asymmetry and OmpC
may be important for other processes that influence the
integrity and function of the OM. Membrane asymmetry
is also known to impact different bilayer properties,
including cell shape, surface charge, permeability and

membrane potential (Marquardt et al., 2015). Hence,
removing OmpC causes imbalance in OM lipids compo-
nents that affect cell morphology, membrane integrity
and membrane potential. Such increase in permeability
for DompC mutant has also been observed in this work
(Appendix S1). However, this mechanism seems to be
subjected to high cell-to-cell heterogeneity since two
clearly defined subpopulations can be observed upon PI
staining (Fig. 1B). Porins’ organization and regulation
have been less characterized in the case of P. putida.
By analogy with E. coli, these porins are organized in
different clusters involving membrane stabilization, cell
structure determination, transport of specific substrates
and pore formation (Hancock and Brinkman, 2002).
Among them, OprB has been more thoroughly investi-
gated and present a high homology with OprB from
P. aeruginosa and has been suggested to be involved in
glucose uptake. In E. coli, upon its entry into the peri-
plasm, glucose is phosphorylated by the phospho-
enolpyruvate:sugar phosphotransferase system.
Catabolism of the generated glucose-6-phosphate pro-
ceeds by the glycolytic pathway (Gosset, 2005). In con-
trast, P. putida has an incomplete glycolytic pathway
since it lacks 6-phosphofructokinase (Nikel et al., 2014).
Therefore, it metabolizes glucose via the Entner–Doudo-
roff pathway, where 6-phosphogluconate is the key inter-
mediate. When glucose enters the periplasm in this
organism, it can be imported to the cytoplasm via an
ABC transporter and then phosphorylated by glucoki-
nase. Glucose is also substrate of the periplasmic
enzymes glucose dehydrogenase and gluconate dehy-
drogenase, yielding gluconate and 2-ketogluconate
respectively. These two compounds and glucose-6-P are
the substrates of three convergent pathways leading to
the synthesis of 6-phosphogluconate (del Castillo et al.,
2007). These structural differences at the level of glu-
cose uptake between the two organisms can explain the
differences observed at the level of 2-NBDG uptake
(Appendix S2).).
Porin organization and regulation, as well as metabolic

pathways regulation, are fundamentally different between
E. coli and P. putida. However, these microbes display
similar features in terms of phenotypic diversification
upon nutrient limitation. Indeed, PI staining reveals in
both cases two clearly defined subpopulations, i.e. the
first one exhibiting no PI uptake and the second one
exhibiting partial staining probably due to the localization
of PI molecules inside the periplasm upon OM permeabi-
lization (Fig. 1).
The methodology presented in this work, based on the

use of the segregostat, will be an important component
of the experimental and numerical workflow needed for
addressing these very complex physiological processes.
This work points out the importance of choosing an
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appropriate single-cell proxy for controlling phenotypic
diversification and that the resulting online profiling of
subpopulations can lead to a more thorough understand-
ing of population dynamics.
In conclusion, the segregostat can in future be used

for several potential applications ranging from: generat-
ing population of constant structure over time to be used
for extended physiological studies, controlling biopro-
cesses and ‘homogenizing’ bioprocess populations, ana-
lysing and controlling synthetic co-culture processes,
and at a global level, expand our knowledge about the
dynamics of phenotypic diversification of microbial popu-
lations with a possible link to the functionality of this
diversification process.

Experimental procedures

Strains and medium composition

The strains used in this study are E. coli JW2203-1
DompC (obtained from the Keio collection (Baba et al.,
2006). Genotype :DlacZ4787(::rrnB-3), k-, DompC768::kan,
rph-1, D(rhaD-rhaB)568, hsdR514) and Pseudomonas
putida KT2440 (kindly provided by Prof. Pablo I. Nikel,
Denmark Technical University, Lyngby). Escherichia coli
JW2203-1 DompC have been selected based on a pre-
screening test since it was able to display a higher diversi-
fication ratio by comparison with wild-type and other porin
mutants (see Appendix S1). All strains are maintained at
�80°C in working seed vials (2 mL) in solution with LB
medium and with 30% of glycerol (w/v). Precultures and
cultures have been performed on a defined mineral salt
medium containing (in g l�1): K2HPO4 14.6, NaH2-

PO4.2H2O 3.6; Na2SO4 2; (NH4)2SO4 2.47, NH4Cl 0.5,
(NH4)2-H-citrate 1, glucose 5, thiamine 0.01, antibiotic 0.1.
Thiamine is sterilized by filtration (0.2 lm). The medium is
supplemented with 3 ml l�1 of trace element solution,
3 ml l�1 of a FeCl3.6H2O solution (16.7 g l�1), 3 ml l�1 of
an EDTA solution (20.1 g l�1) and 2 ml l�1 of a MgSO4

solution (120 g l�1). The trace element solution contains
(in g l�1): CoCl2.H2O 0.74, ZnSO4.7H2O 0.18, MnSO4.H2O
0.1, CuSO4.5H2O, CoSO4.7H2O. The medium was supple-
mented with 5 g l�1 of glucose, and antibiotic (kanamycin
25 lg ml�1) was added for the cultivation of the E. coli
JW2203-1 DompC strain.

Chemostat cultivations

Bioreactor experiments were performed from overnight
precultures performed in 1 l baffled flasks containing
100 ml of culture medium and stirred with 200 rpm at
37°C. Cultures in chemostat and segregostat mode were
performed in lab-scale stirred bioreactor ((Biostat B-Twin,
Sartorius) total volume: 2 l; working volume: 1 l). For the
batch phase, the overnight cultures were diluted into 1 L

of minimal medium at an initial OD600 of 0.5. The pH
was maintained at 6.9 by automatic addition of ammonia
or phosphoric acid. The temperature was maintained at
37°C under continuous stirring rate of 800 rpm and aera-
tion rate of 1 VVM. Upon glucose depletion, observed
typically after 4–6 h with a sudden increase in dissolved
oxygen, the chemostat or segregostat (see next section)
mode is started.
For chemostat cultivations, the medium was continu-

ously fed with the complete minimal medium at a dilution
rate of 0.1 h�1.

Online flow cytometry platform

The platform employed is an improved version of a pre-
vious online FC platform (Brognaux et al., 2013; Baert
et al., 2015) and comprises three modules (this platform
can be connected to chemostat or segregostat as indi-
cated in Fig. 3): (i) a conventional culture device (Biostat
B-Twin, Sartorius, 2 l), (ii) a physical interface for sam-
pling and dilution comprising peristaltic pumps and mix-
ing chamber, (iii) a detection device, i.e. in our case an
Accuri C6 flow cytometer (BD Accuri, San Jose CA,
USA). Either module b or c is operated via custom made
C++ script.
In short, sample processing comprises the following

steps: (i) sample acquisition and online staining, (ii)
online FC analysis, (iii) dilution threshold and (iv) feed-
back control loop.
The sample is fed and removed from the mixing

chamber based on silicone tubing (internal diameter:
0.5 mm; external diameter: 1.6 mm, VWR, Belgium) and
five peristaltic pumps (400FD/A1 OEM-pump ~13 rpm
and 290 rpm, Watson Marlow). Before and after each
experiment, all the connection parts (tubing, pumps and
mixed chamber) are continuously cleaned with ethanol
and rinsed with filtered PBS.

Segregostat – Cultivation and sampling

For segregostat cultivations, the medium was continu-
ously fed with salt basal minimal medium except the car-
bon source (glucose) at a dilution rate of 0.1 h�1. The
pulse of glucose was fed in the culture medium accord-
ing to the regulation sequence controlled by the online
software, as it will be discussed further. Samples were
taken at an interval of 12 min according to the set of
dilution sequences that are controlled via the online soft-
ware. The latter is working through the following
sequence of steps. Firstly, the sampling tube was auto-
matically purged for 1 min to eliminate the previous sam-
ple and to ensure that fresh sample was collected. At
the same time, the mixing chamber and tubing were
washed continuously using filtered PBS in order to avoid
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cross-contaminations. The next step was to feed the
mixed chamber with 500 ll of PI diluted in filtered PBS
at a concentration of 4 mg l�1 and adjust the given dilu-
tion sequence. Then, the sample was mixed with PI fol-
lowed by incubation at room temperature for 1 min (for
E. coli) and 3 min (for P. putida) strains. Finally, the
sample is automatically transferred to C6 FC (BD Accuri
C6, BD Biosciences) and is analysed at a medium flow
rate (33 ll min�1) with a threshold FSC-H set at 16 000
and 80 000 for P. putida and E. coli strain respectively.
All the data related to the different parameters (mean,
median, CV) are available to be displayed in real time
during the cultivation.
During sample acquisition, the number of events per

microlitre was maintained in the range 500–1500 via a
tailor-made MATLAB script to further avoid doublet
detection. Indeed, if the number of cells per microlitre
corresponding to the current sample was below 2500
events/s, the actual dilution rate will be maintained for
the next sample. Otherwise, the dilution rate was
increased or reduced by a factor of 2 if the number of
cells per microlitre was above the upper threshold or
under the lower threshold respectively.
A tailor-made MATLAB script based on FC data con-

trolled the activation of the feedback control loop. Thus,
cells were gated based on forward scatter (FSC) and
red fluorescence (FL3) channel and expressed as a per-
centage. OM-permeabilized cells were gated based on a
lower threshold on FL3 (fixed as the background fluores-
cence with non-stained cells) and an upper threshold
(defined as the minimum detectable signal for dead
cells). The fraction of OM-permeabilized cells was kept
at 10% by glucose (w/v) pulsing (0.3 g of glucose) with
a digital control system comprising a peristaltic pump
(Watson Marlow, 101 UR).

Staining control experiments

For the preparation of non-viable cells to be used as a
positive control for PI staining and flow cytometry gating,
1 ml of cell suspension was heated at 80°C for 1 h. The
cells were then washed and resuspended in filtered PBS.
Then, 5 ll of propidium iodide (1 mg ml�1) was added to
the cell suspension and then incubated for 10 min at room
temperature. The red fluorescence signal was measured
by FC using the parameters described above. Double-
staining experiments with PI/RSG and PI/2-NBDG were
performed for a better characterization of the metabolic
properties of OM-permeabilized cells (Appendix S2).

Poisson process simulation

Control of population diversification in segregostat was
made based on glucose pulsing, where periods with

glucose pulses correspond to active phenotypic diversifi-
cation. In order to determine whether this phenotypic
diversification process followed a Poisson processes, sev-
eral stochastic simulations have been carried out. The
first set of simulations was carried out for determining the
time required for adding a given amount of glucose
pulses if it is assumed that the pulsing dynamics follow a
Poisson process with a given glucose pulse addition rate
k (h�1). Both the pulse addition rate k and the number of
pulses n have been determined experimentally from seg-
regostat experiments. Based on these data, the simulated
time for adding n glucose pulses was computed as :

tn ¼
Xn

1
� ln

randðnÞ
k

(1)

with rand being a random number generated from a uni-
form distribution.
The output of the simulations, i.e. the distribution of

time required for adding n glucose pulses following
Eq. 1, was used for computing the mean of the distribu-
tion (denoted as mean time, Fig. 5A).
The second set of simulations was made based on

the same algorithm, but the output data were processed
for computing the time between two consecutive glucose
pulses during segregostat experiments (denoted as wait-
ing time, Fig. 5B). All computations were made based
on MATLAB (R2014b) and R.
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