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Abstract

In healthy participants, the strength of task-evoked network reconfigurations is associated with cognitive performance across
several cognitive domains. It is, however, unclear whether the capacity for network reconfiguration also plays a role in cognitive
deficits in brain tumor patients. In the current study, we examined whether the level of reconfiguration of the fronto-parietal
(‘FPN’) and default mode network (‘DMN’) during task execution is correlated with cognitive performance in patients with
different types of brain tumors. For this purpose, we combined data from a resting state and task-fMRI paradigm in patients with a
glioma or meningioma. Cognitive performance was measured using the in-scanner working memory task, as well as an out-of-
scanner cognitive flexibility task. Task-evoked changes in functional connectivity strength (defined as the mean of the absolute
values of all connections) and in functional connectivity patterns within and between the FPN and DMN did not differ signif-
icantly across meningioma and fast (HGG) and slowly growing glioma (LGG) patients. Across these brain tumor patients, a
significant and positive correlation was found between the level of task-evoked reconfiguration of the FPN and cognitive
performance. This suggests that the capacity for FPN reconfiguration also plays a role in cognitive deficits in brain tumor
patients, as was previously found for normal cognitive performance in healthy controls.

Keywords Task-evoked network reconfiguration - Fronto-parietal network - Brain tumor patients - Working memory - Cognitive
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Introduction

In Europe, between 8.5 and 14 per 100,000 persons per year
are diagnosed with a primary brain tumor (Gigineishvili et al.
2014). In adults, the most common types of primary brain
tumours are gliomas, developing from glial cells, and menin-
giomas, developing in the meninges. Gliomas are infiltrating
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compliance (Talacchi et al. 2011; Taphoorn et al. 2010).
Cognitive deficits are present across different tumor types
(Klein et al. 2003; Meskal et al. 2016, 2015; Miotto et al.
2011; Tucha et al. 2001), despite the fact that meningioma,
low-grade glioma and high-grade glioma patients have dis-
tinct prognoses.

Complex cognitive functions that involve multiple forms
of information processing depend on interactions across a col-
lection of brain areas. These brain areas are organized into
large-scale networks (Bressler and Menon 2010; Gratton
et al. 2016; Power et al. 2011; Smith et al. 2009). Based on
functional connectivity measurements, it appears that the spa-
tial architecture of these networks is fairly stable across di-
verse cognitive domains as well as across task execution and
rest (e.g. Betti et al. 2013; Cole et al. 2014; Gratton et al. 2016;
Krienen et al. 2014). The stability of these intrinsic networks
over rest and task execution points to an intrinsic topology,
possibly resulting from the structural connectivity between,
and the longlasting coactivation of regions across the lifespan
(Dosenbach et al. 2007).

Notwithstanding their stable spatial architecture across rest
and task, these networks can also show modest but reliable
task-specific changes in functional connectivity. These task-
evoked changes seem to reflect specific task demands
(Bullmore and Sporns 2012; Cole et al. 2013; Krienen et al.
2014), suggesting that the brain adjusts its connectivity to
facilitate task execution (Cole et al. 2014). This has been
shown across a wide range of domains, amongst others, for
reasoning (Cocchi et al. 2014; Hearne et al. 2015), working
memory (Braun et al. 2015; Vatansever et al. 2017, 2015), and
cognitive control (Cocchi et al. 2013; Dwyer et al. 2014).

Importantly, in healthy subjects, the level of task-evoked
network reconfigurations has been associated with the vari-
ance in cognitive performance in several cognitive domains,
such as learning (Bassett et al. 2011), working memory (Braun
et al. 2015; Vatansever et al. 2017; Vatansever et al. 2015),
attention (Shine et al. 2016), cognitive control (Dwyer et al.
2014) and general intelligence (Schultz and Cole 2016). The
direction of this relation, however, is not very clear yet. Some
studies have found that individuals with greater network re-
configuration when performing the task show enhanced cog-
nitive performance (e.g. Braun et al. 2015; Tommasin et al.
2018). This is in line with the idea that larger changes in the
functional connectivity pattern are associated with larger,
more optimal updates from rest, leading to improved behav-
ioral performance. Alternatively, smaller changes in function-
al connectivity patterns between rest and task have also been
associated with better behavioral performance (e.g. Schultz
and Cole 2016; Zuo et al. 2018). This has been explained by
the fact that high-performing individuals have a more optimal
network organization at rest, requiring less effort to update the
functional connectivity pattern to a state that is optimal to
perform the task.
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Currently, even less is known about network recon-
figuration during task performance in brain tumor pa-
tients. One may argue that impaired network reconfigu-
ration is related to the broad range of cognitive deficits
that are frequently seen in these patients. Identification
of these underlying network dynamics of cognitive def-
icits could therefore be an important first step towards
development of clinical biomarkers for prognosis and
treatment-response of cognitive functions (Derks et al.
2014). The goal of this study was therefore to explore
whether task-evoked network reconfigurations are also
associated with cognitive functioning in brain tumor pa-
tients. Although cognitive dysfunctions manifest them-
selves across multiple domains in brain tumor patients,
executive functioning is one of the most frequently af-
fected domains (Habets et al. 2014; Noll et al. 2015).
As measures of cognitive performance, we therefore
looked at tasks that are considered to strongly engage
executive functions, more specifically an N-back task
that assesses working memory function and an out-of-
scanner shifting attention task that assesses cognitive
flexibility.

Both working memory and cognitive flexibility involve
multiple brain networks, most importantly the fronto-parietal
(‘FPN”) and the default mode network (‘DMN”) (e.g. Braver
et al. 2003; De Baene et al. 2012; Dosenbach et al. 2007;
Douw et al. 2016; Gordon et al. 2012; Provost and Monchi
2015; Repovs and Barch 2012; Spreng et al. 2014; Yin et al.
2018). Several studies have reported an association between
the level of task-evoked reconfiguration of both the FPN and
the DMN and cognitive performance on a working memory
task (Schultz and Cole 2016; Tommasin et al. 2018; Zuo et al.
2018). Furthermore, the cooperation between DMN and FPN
seems to be critical to perform challenging cognitive tasks
(Cocchi et al. 2013). For executive functioning, increased
connectivity between DMN and FPN has been associated with
better performance (e.g. Bluhm et al. 2011; Dwyer et al. 2014;
Fornito et al. 2012).

To investigate the link in brain tumor patients between
task-induced reconfiguration of the FPN and DMN and work-
ing memory performance, we used an N-back working mem-
ory paradigm in the scanner to evoke reconfigurations in brain
activity. Furthermore, we examined whether the link between
task-induced reconfiguration and cognitive performance also
generalizes to another executive function, namely cognitive
flexibility that was assessed outside the scanner and conse-
quently, did not have a direct causal relationship with the
reconfigurations in brain activity measured in the scanner.

Given that task-evoked functional connectivity changes of
the FPN and DMN are associated with cognitive performance
in healthy subjects, we also expected a similar association
between reconfiguration of these networks and executive
function abilities in brain tumor patients.
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Methods and procedure
Study population

All newly diagnosed meningioma and glioma patients under-
going resective tumor surgery at the Elisabeth-Tweesteden
Hospital (Tilburg, the Netherlands) between July 2016 and
August 2018 were eligible for participation. Inclusion criteria
were, next to histologically confirmed unilateral glioma WHO
grade II-IV or meningioma, the availability of (1) resting state
fMRI, (2) task fMRI, (3) structural 3D MRI necessary for co-
registration, and (4) neuropsychological test results. Exclusion
criteria were (1) history of intracranial neurosurgery, (2) his-
tory of cranial radiotherapy or chemotherapy, and (3) history
of neurological or psychiatric disorders.

This study was approved by the Medical Ethics Committee
Brabant, The Netherlands [protocol number:
NL51147.028.14]. All procedures were carried out with writ-
ten informed consent of all subjects and in accordance with
the principles of the Declaration of Helsinki.

Experimental procedure

One to five days before the tumor resection, patients were
neuropsychologically assessed and scanned. In this scan ses-
sion, we collected anatomical, resting state and task data.

Neuropsychological assessment

As a measure of cognitive flexibility, we used the results on
the shifting attention task that is part of the Central Nervous
System Vital Signs (CNS VS; Gualtieri and Johnson 2006).
The CNS VS is a brief computerized battery composed of
seven neuropsychological tests (for more details on the
different tests, see Rijnen et al. 2017). The CNS VS takes
approximately 30 to 40 min to complete and generates 11
cognitive domain scores. The results on the shifting attention
task (#correct responses - #incorrect responses) are summa-
rized in the scores on the “executive functioning” domain.
Higher executive functioning scores therefore reflect better
performance.

In-scanner task design

The N-back task was part of a larger fMRI experiment with
multiple conditions with varying working memory load. Each
of the conditions consisted of 2 blocks. The task was present-
ed in blocks of 30 s, with two or three consecutive conditions,
interleaved with rest blocks of 15 s. Instructions for each con-
dition were presented for four seconds prior to the relevant
task block.

In the N-back task, patients payed attention to a fast se-
quence of consonants: Stimuli were presented for 400 ms with

an inter-stimulus interval of 1 s at the center of the screen.
Patients needed to respond if a stimulus was equal to a stim-
ulus presented 2 trials before (i.e. a 2-back task) by pushing a
button on a button box with their right hand.

(fIMRI acquisition

Subjects were positioned head first and supine in the magnetic
bore. Images were collected with a 3 Tesla Philips Achieva
scanner (Philips Medical Systems, Best, The Netherlands)
using a standard 32-channel radiofrequency head coil.
Participants were instructed not to move their heads in order
to avoid motion artefacts. First, high-resolution whole-brain
anatomical images were acquired using a T1-weighted se-
quence for anatomical registration purposes (TR/TE: 8.4/
3.8 ms, FOV: 254x254x158 mm, flip angle: 8°, sagittal slice
orientation, voxel size 1 mm isotropic). Task and resting state
fMRI volumes were obtained using an EPI pulse sequence
(TR/TE: 2000/28 ms, transverse slice orientation, FOV:
240x240x111 mm, voxel size: 3x3x3). A fixed number of
219 task functional volumes and 225 resting state volumes
were collected per patient. During the resting state scan, all
subjects were instructed to close their eyes and relax, but not
to sleep, in the scanner while thinking of nothing in particular.

MRI data pre-processing

Imaging data were analysed using SPM12 (Wellcome Trust
Center for Neuroimaging, London, UK) and the CONN-
toolbox (Whitfield-Gabrieli and Nieto-Castanon 2012). Both
resting state and task data were preprocessed with the same
pipeline. Since tumor tissue may theoretically alter the BOLD
response locally and confound our connectivity analyses, we
excluded voxels covered by the tumor mask on a subject level.

Preprocessing included realignment, slice time correction,
functional outlier detection (based on ART-based scrubbing
with a global-signal scan-to-scan Z-value threshold of 3 and
a composite motion-value threshold of 0.5 mm), segmentation
of the structural image, spatial normalization of the structural
and functional images to the template MNI brain, resampling
to 2 x 2 x 2 mm cubic voxels and smoothing using a 4 mm full
width at half maximum (FWHM) Gaussian Kernel.

Possible sources of spurious variance were regressed out
from the data, including (a) undesired linear trends, (b) the
realignment and scrubbing parameters, (c) the white matter
signal, and (d) the ventricular system signal. Global signal
regression was not performed due to the ongoing controversy
associated with this step (Caballero-Gaudes and Reynolds
2017; Saad et al. 2012). To allow comparison of resting state
and task data, filtering (0.01-0.15 Hz) at a low frequency
component of the BOLD signal known to be sensitive to both
resting state and task-based functional connectivity (Bassett
et al. 2015; Sun et al. 2004) was also applied.
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Given that task-evoked activations substantially inflate
task-state functional connectivity estimates (Al-Aidroos et al.
2012; Cole et al. 2019, 2013; Fair et al. 2007), we removed
these task-evoked activations before calculating the functional
connectivity of the task fMRI time series (see below) using the
finite impulse response (FIR) task regression approach put
forward by Cole et al. (2019). This approach allows to empir-
ically determine the correct HRF shape for task regression by
fitting the cross-trial mean response for each time point in a
specific time window that is time-locked to the trial onset for a
given task condition (Fair et al. 2007). Each task condition
(separately for targets and non-targets) was therefore fit with
a series of 10 regressors, one per time window (resulting in a
time window of 20 s), to account for the likely duration of the
HREF. The residual time series from this regression were used
for task functional connectivity estimation.

Functional connectivity

To assess the functional connectivity in each patient,
preprocessed rs-fMRI and task data were first parcellated into

nodes
Fisher-transformed correlation coefficients

333 regions of interest (ROIs) according to the Gordon
parcellation scheme (Gordon et al. 2016). These 333 parcels
divide into 12 different functional brain networks, including
the cingulo-opercular (CON), salience (SN), fronto-parietal
(FPN), dorsal attention (DAN), ventral attention (VAN) and
default mode (DMN) networks. The representative time series
for each ROI were obtained by averaging the BOLD time
series over the tumor-free extent of the parcel. For each patient
and for both rest and task data, a weighted adjacency matrix
was created by computing the correlation coefficient between
every pair of nodes which were then Fisher transformed. The
fully-weighted functional connectivity values were used rath-
er than the binarized ones to conserve all connectivity infor-
mation (Bassett et al. 2011; Vatansever et al. 2015; Zuo et al.
2018). From this correlation matrix (see Fig. 1a, b) we extract-
ed nodes from our a priori networks to create network-specific
graphs for the FPN (24 x 24) and the DMN (41 x 41).
Additionally, we created an FPN-DMN graph (24 x 41) con-
taining all connections between the 24 FPN regions and the 41
DMN regions. Consequently, we ended up with six (3 net-
works % 2 task states) graphs for each subject. Regions of

C FPN " within-network

.connections

between-network
\ connections

FPN FPN - DMN

nodes
Fisher-transformed correlation coefficients

Reconfiguration T

Fig. 1 a FPN (in red) and DMN (in yellow) regions defined according to
the Gordon parcellation. b Correlation matrix for one subject in rest (left)
and during the N-back task (right). Nodes 1 to 24 belong to the FPN
network. Nodes 25 to 65 belong to the DMN network. ¢ Definition of
within- and between-network connections. Connections between nodes
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of the FPN (in red) and connections between nodes of the DMN (in
yellow) are within-network connections. Connections between nodes of
the FPN and nodes of the DMN (in black) are between-network
connections
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the FPN or DMN that were fully covered by tumor mask on a
subject level were excluded for that patient from our analyses.
The resulting number of missing regions within the FPN or
within the DMN due to tumor overlap was used as a covariate
in our analyses.

To quantify the communication abilities within and between
networks, we computed the connection strength (Zuo et al.
2018) for each of these six graphs (see Fig. 1c). This connection
strength is defined as the mean of the absolute values of all
connections in a graph. As a measure of change from rest to
task, we computed the ratio between the connection strength for
the task graphs and the connection strength for the rest graphs.

Task-evoked changes in functional connectivity strength are
not necessarily identical across all connections within a network
or across all between-network connections (e.g. Vatansever et al.
2017). The connection strength measure used here is not able to
dissociate these connection-specific changes. Therefore, we also
examined task-evoked changes in the functional connectivity pat-
terns within the FPN and DMN as well as between these two
networks. To this end, as a first measure of similarity of functional
connectivity patterns between task and rest, we computed the
Pearson correlation between the network graphs in resting state
and in task state for each patient and for each of the networks
(Schultz and Cole 2016). For the FPN and DMN, we excluded
redundant edges by considering only the upper triangle of the
network graph. For the FPN-DMN graph, all edges were consid-
ered. The resulting correlation coefficients were Fisher trans-
formed for each network. Lower values indicate stronger task-
evoked reconfiguration based on the inference that lower similar-
ity in functional connectivity patterns between rest and task are
thought to indicate that a larger distance in state-space is required
to travel from one condition to another condition.

As a second measure of similarity of functional connectivity
patterns between task and rest, we computed the slope (3;) of
the general linear model between task connectivity and rest
connectivity (i.e. task connectivity = 3; * rest connectivity +
o) for the FPN, DMN and FPN-DMN graph (Tommasin
etal. 2018). Again, for the FPN and DMN, we excluded redun-
dant edges by considering only the upper triangle of the net-
work graph. For the FPN-DMN graph, all edges were consid-
ered. Lower values for the slope indicate a reduced linear de-
pendence of connectivity in the task state versus connectivity in
the resting state, thus a higher task-evoked reconfiguration.

Statistical analyses

Pearson’s Chi square tests were performed to test for differ-
ences between groups (between meningioma, LGG and HGG
patients) in sex, education, tumor hemisphere and frontal ver-
sus non-frontal tumor involvement. Kruskal-Wallis tests were
performed to explore group differences in age, tumor volume,
missing regions within the FPN (due to tumor overlap) and
missing regions within the DMN (due to tumor overlap).

Since even subtle head movement during a scan can spurious-
ly affect measures of functional connectivity (Power et al.
2012; Van Dijk et al. 2012), we also checked the group differ-
ences in head motion during resting state and during task state
according to the composite motion score and according to the
number of time points scrubbed. When a Kruskal-Wallis test
showed significant results (p < 0.05), post-hoc analyses were
performed by means of Mann-Whitney U tests.

We tested patient group differences in cognitive performance
(accuracy on the N-back task and raw scores on the cognitive
flexibility task) using linear mixed-models (using the fit/me func-
tion in MATLAB R2016a). To estimate the model parameters,
the maximum likelihood estimation method was used. An un-
structured covariance matrix was used in which all elements of
the variance-covariance matrix are estimated (Cholesky parame-
trization). In every model, subject-ID was modelled as a random
effect and the variables patient group (dummy coded; meningi-
oma as reference category), age (in years), sex, education (dum-
my coded; middle education as reference category), tumor hemi-
sphere, frontal versus non-frontal tumor involvement and tumor
volume (in cm®) were included as fixed effects in the model.

To test for patient group differences in similarity of func-
tional connectivity patterns between resting state and task
state, these linear mixed-models (one for each network) were
extended with the addition of the number of missing regions
within the respective network as a fixed factor. Note that for
the FPN-DMN network, the number of missing regions within
both the FPN and the DMN were added as fixed factors.

To test for differences in connection strength between rest-
ing state and task state, the linear mixed-models (one for each
network) were further extended by adding state (resting state
vs task state) as a fixed factor. In a second step, these models
were even further extended to account for interactions be-
tween state and patient group to test for group differences in
task-evoked changes in connection strength.

To evaluate whether the similarity of functional connectivity
patterns between resting state and task state accounts for a sub-
stantial proportion of individual variability in cognitive perfor-
mance, the linear-mixed models for working memory and for
cognitive flexibility performance were further expanded. For
both performance measures and separately for the different net-
works, the Fisher-transformed correlation coefficients between
the resting and task state graphs of that particular network or the
slope of the linear model between task connectivity and rest
connectivity were added to the model as predictor variables.
Similarly, to evaluate whether the task-evoked change in con-
nection strength accounts for a substantial proportion of individ-
ual variability in cognitive performance, the ratio between the
connection strength for the task graph and the connection
strength for the rest graph was added to the linear-mixed models
as predictor variable. In all these models, the ratio between the
composite motion score in task state versus resting state was
included as fixed factor.
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Fig.2 Frequency distribution of tumor (all 48 patients). The color scale shows minimal overlap (dark blue) to maximal overlap (red). MNI y coordinates
of the coronal sections are given

For each of the linear-mixed models described above, we
next performed a backward elimination analysis to develop
the most parsimonious model (Heinze et al. 2018). In this
analysis, the weakest (sociodemographic, clinical and control)
variables are sequentially eliminated until only those making a
statistically significant contribution to the model (p <.05) re-
main. Note that similar results were found when all variables
were included in the model.

A significance threshold of oc=10.05 was used. The false
discovery rate (FDR) correction was applied for multiple com-
parisons. FDR-adjusted p-values are reported where
necessary.

Results
Subject information and behavioral performance
The initial sample contained 53 patients. Based on the func-

tional outlier detection, one patient was excluded from further
analyses because too little time points remained in the task

state (43% of all task state time points were scrubbed for this
patient). One patient did not have valid scores on the cognitive
flexibility task. One patient scored more than 2.5 standard
deviations below the mean on the N-back task, 2 patients
scored more than 2.5 standard deviations below the mean on
the cognitive flexibility task. All these patients were removed
from all further analyses. Consequently, 48 patients were in-
cluded in the final data analyses. The distribution of the tu-
mors across these 48 patients is shown in Fig. 2.

Detailed sociodemographic and clinical information about
the patients is listed in Table 1.

The group of 48 patients consisted of 22 patients with a
meningioma, 13 patients with a LGG (including 7 astrocyto-
ma and 6 oligodendroglioma) and 13 patients with a HGG
(including 2 IDH-wildtype LGG, 1 secondary glioblastoma
and 10 primary glioblastoma).

To classify the level of education, the Dutch Verhage scale
was used (Verhage 1964). Its seven categories were merged
into three ordinal categories: low (Verhage 1-4), middle
(Verhage 5), and high educational level (Verhage 6 and
7)(Cf. Rijnen et al. 2017).

Table 1 Sociodemographical and clinical characteristics

Variable All patients (n=48)  Meningioma patients ~ LGG patients HGG patients
(n=22) (n=13) (n=13)

Female (n) 26 (54.17%) 16 (72.73%) 3 (23.08%) 7 (53.85%)

Age in years (mean; range) 48.64 (18-73)
Tumor volume in cm’ (mean; range)

Education (n)

Low (Verhage 1-4) 9 (18.75%)

Middle (Verhage 5) 16 (33.33%)

High (Verhage 6-7) 23 (47.92%)
Left tumor hemisphere (n) 27 (56.25%)
Frontal tumor involvement (n) 31 (64.58%)
Missing regions within FPN in % (mean; std) 1.48 (4.08)
Missing regions within DMN in % (mean; std) 0.97 (2.83)
Head motion resting state (mean; std) 0.20 (0.08)
Head motion task state (mean; std) 0.13 (0.04)
Scrubbed time points resting state in % (mean; std)  6.78 (8.72)
Scrubbed time points task state in % (mean; std) 7.64 (8.70)

41.98 (2.56-148.42)

48.69 (18-68)
59.29 (13.11-148.42)

53.00 (32-73)
32.87 (2.56-92.05)

41.23 (21-67)
40.08 (4.84-97.13)

4 (18.18%) 3 (23.08%) 2 (15.38%)
9 (40.91%) 3 (23.08%) 4 (30.77%)
9 (40.91%) 7 (53.85%) 7 (53.85%)
12 (54.55%) 7 (53.85%) 8 (61.54%)
17 (77.27%) 10 (76.92%) 4 (30.77%)
1.70 (4.58) 0.96 (2.50) 1.60 (4.67)
1.00 (2.88) 0.38 (1.35) 1.50 (3.80)
0.20 (0.08) 0.23 (0.11) 0.18 (0.06)
0.12 (0.05) 0.14 (0.04) 0.12 (0.03)
6.08 (7.47) 9.95 (12.56) 4.82 (5.11)
8.33(7.82) 821 (11.19) 5.90 (7.72)

@ Springer



Brain Imaging and Behavior (2020) 14:2351-2366 2357

a 100

/ \
\ [ \ / \
90 - N / \ / \

80 — \ / \ /“ \ /

Accuracy

75 Ve

Ll —
70 .

65 —

60 | | |
Meningioma LGG HGG

40 —

30 — \ ‘/“ \ / /

raw cognitive flexibility score

20 — |

| | |
0
Meningioma LGG HGG

Fig. 3 Distribution of the results on (a) the N-back task and (b) the performance scores. The filled circles represent the individual data points.
cognitive flexibility task for the meningioma (left column), LGG (middle White circles and black line segments denote, respectively, the median
column) and HGG (right column) patients. The contour of the violin plot and 1st and 3rd quartiles

represents the estimate of the density of patients with particular

There were no significant group differences in age (Kruskal-  Chi square = 1.28; p =.53), educational level (Chi square = 1.44;
Wallis Chi square =4.8; p =.09), tumor volume (Kruskal-Wallis ~ p =.84), tumor hemisphere (Chi square = 0.20; p =.90), missing
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plot represents the estimate of the density of patients with particular
connection strength. The filled circles represent the individual data
points. White circles and black line segments denote, respectively, the
median and 1st and 3rd quartiles
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Fig.6 Association between Working Memory performance and the slope
linking connectivity during task and at rest for the FPN network (after
adjusting for the effect of sex)

regions within the FPN (Kruskal-Wallis Chi square = 0.34;
p =.85), missing regions within the DMN (Kruskal-Wallis Chi
square = 0.5; p =.78), head motion during resting state (Kruskal-
Wallis Chi square = 1.57; p = .46), head motion during task state
(Kruskal-Wallis Chi square =2.63; p=.27), number of time
points scrubbed from resting state data (Kruskal-Wallis Chi
square =2.6; p=.27) or number of time points scrubbed from
task state data (Kruskal-Wallis Chi square = 0.9; p = .64). A sig-
nificant difference in sex (Chi square =8.11; p <.05) and in fron-
tal versus non-frontal tumor involvement (Chi square =8.91;
p <.05) was found between groups.

Taking sex into account (the only variable that reached statis-
tical significance after backward elimination; F(1,44)=4.92,
p<.05), the accuracy on the N-back task was not significantly
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Pearson correlation between rest and task graph

Fig. 7 Association between Cognitive Flexibility performance and the
Pearson correlation between rest and task graph for the FPN network
(after adjustment for the effect of frontal tumor involvement, tumor
group and tumor hemisphere)

different between groups (Meningioma: mean = 85.68%; LGG:
mean = 84.87%; HGG: mean =82.44%; F(2,44)=1.26,
p=.29). The performance on the shifting attention task, however,
did differ between groups (Meningioma: mean score =42.45;
LGG: mean score =43.85; HGG: mean score=30.62;
F(2,44)=17.13, p < .05), taking frontal versus non-frontal tumor
involvement into account (F(1,44)="7.40, p <.05). Post hoc
analyses, however, showed no significant pairwise differences
(all p’s > .11 after FDR correction for multiple testing), see Fig. 3.
Performance on the N-back task correlated significantly
with the cognitive flexibility performance (Spearman rank
correlation =.33, p <.05). Furthermore, behavioral perfor-
mance was not correlated with the composite motion score.
Both performance on the N-back task and performance on the
cognitive flexibility task were not correlated with task state
motion (Spearman rank correlation = —.20, p = .18 for N-back
task; Spearman rank correlation =—.03, p =.84 for cognitive
flexibility task) or with resting state motion (Spearman rank
correlation =—.18, p=.22 for N-back task; Spearman rank
correlation =—.07, p = .64 for cognitive flexibility task).

Functional connectivity differences between rest
and task

Linear mixed effects models were used to test for connection
strength differences between resting and task state for the different
networks, taking age, educational level, sex, tumor volume, tumor
hemisphere, frontal versus non-frontal tumor involvement and
missing regions within the respective networks (FPN, DMN or
both) into account. After backward elimination, only tumor vol-
ume remained as fixed effect in the FPN model (F(1,93) =5.30,
p<.05). For the DMN and FPN-DMN, no sociodemographic,
clinical and control variables remained in the model after back-
ward elimination. Connection strength was larger during task
relative to rest (after FDR correction for multiple testing) for the
FPN (F(1,93)=673.26; p<.001), DMN (F(1,94) =365.99,
p<.001) and FPN-DMN (F(1,94) =808.81, p <.001), see Fig. 4.

Effect of tumor type on task-evoked network
reconfiguration

To examine differences between meningioma, LGG and HGG
patients on the changes in connection strength between rest and
task, the interaction between patient group and state was added to
the linear mixed effects models, taking also age, educational
level, sex, tumor volume, tumor hemisphere, frontal versus
non-frontal tumor involvement and missing regions within the
respective networks (FPN, DMN or both) into account. After
backward elimination, the final models contained the main ef-
fects of state and patient group as well as their interaction.
Furthermore, tumor volume remained as fixed effect in the
FPN model (F(1,89)=5.91, p <.05). Tumor type did not modu-
late the task-evoked changes in connection strength (after FDR
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Table 2 Parameter estimates of the linear mixed models with the similarity of functional connectivity patterns between rest and task (defined as the
Pearson correlation between the network graphs) as predictor for performance on the N-back task

Network FPN DMN FPN-DMN

Predictor Beta (standard error) p Beta (standard error) p Beta (standard error) p
Similarity rest-task (Pearson correlation) —17.59 (6.86) 14 -1.25(7.59) 87 —12.03 (7.65) 28
Sex 3.48 (1.70) <.05 3.85(1.81) <.05 3.68 (1.76) <.05

correction) in the FPN (F(2,89)=1.12, p=.42), DMN
(F(2,90)=1.66, p = .42) or FPN-DMN (F(2,90) = 0.87, p= .42).

To examine differences between the different tumor types in
the two measures of similarity of functional connectivity patterns
between rest and task, a linear mixed effects model was defined
per measure for each network, taking age, educational level, sex,
tumor volume, tumor hemisphere, frontal versus non-frontal tu-
mor involvement and missing regions within the respective net-
works (FPN, DMN or both) into account. For the Pearson cor-
relation between the network graphs, only tumor side remained
as fixed effect in the FPN-DMN model (F(1,44)=10.19,
p <.05). None of the sociodemographic, clinical and control var-
iables remained in the FPN and DMN model after backward
elimination. Tumor type did not affect (after FDR correction)
the level of task-evoked network reconfiguration of the FPN
(F(2,45)= 45, p=.64), the DMN (F(2,45) =85, p=.64) or the
FPN-DMN (F(2,44)=2.01, p = .44)(Cf. Fig. 5a). For the slope
of the general linear model between task connectivity and rest
connectivity, the following variables remained as fixed effect in
the final model after backward elimination: tumor volume in the
FPN model (F(1,44)=8.57, p <.05), missing regions within the
DMN in the DMN model (F(1,44)=4.67, p<.05) and tumor
side in the FPN-DMN model (F(1,44)=6.45, p <.05). Tumor
type did not affect (after FDR correction) the level of task-evoked
network reconfiguration of the FPN (F(2,44) = .34, p =.75), the
DMN (F(2,44) = 29, p = .75) or the FPN-DMN (F(2,44) = 1.65,
p=.61) (Cf. Fig. 5b).

Behavioral relevance of functional connectivity
differences between rest and task

Separately for both performance measures (working memory
and cognitive flexibility performance) and for every network

(FPN, DMN and FPN-DMN), a linecar mixed model with the
similarity of functional connectivity patterns between resting
state and task state as a predictor variable (on top of the variables
age, educational level, sex, tumor type, tumor volume, tumor
hemisphere, frontal versus non-frontal tumor involvement,
missing regions within the respective networks (FPN, DMN
or both) and the ratio between the composite motion score in
task state versus resting state) was defined to evaluate whether
task-evoked network reconfiguration accounts for a substantial
proportion of individual variability in cognitive performance.
This was done separately for the two measures of functional
connectivity similarity (Pearson correlation between the net-
work graphs and slope of the linear model between task con-
nectivity and rest connectivity). Similarly, linear mixed models
with the ratio between the connection strength for the task state
and the connection strength for the resting state as predictor
were defined to evaluate whether the task-evoked change in
connection strength accounts for a substantial proportion of in-
dividual variability in cognitive performance.

Working memory

In a first set of analyses, accuracy on the N-back task was the
dependent variable. For all these models, sex was the only
variable that reached statistical significance after backward
elimination. The parameter estimates and FDR-adjusted p-
values of the linear mixed models with task-evoked reconfigu-
ration defined as the Pearson correlation between the network
graphs for the different networks as predictor and with the task-
evoked reconfiguration defined as the slope of the linear model
between task connectivity and rest connectivity for the different
networks as predictor are shown in Tables 2 and 3, respectively.
The parameter estimates of the linear mixed models with the

Parameter estimates of the linear mixed models with the similarity of functional connectivity patterns between rest and task (defined as the

slope of the linear model between task connectivity and rest connectivity) as predictor for performance on the N-back task

DMN FPN-DMN

Beta (standard error) p Beta (standard error) P

Table 3

Network FPN

Predictor Beta (standard error) p
Similarity rest-task (slope linear model) —13.16 (4.45)

Sex 3.87 (1.66)

<.05
<.05

-3.61 (5.26) 87
3.87 (1.80) <.05

—14.40 (5.59) .060
3.62 (1.69) <.05
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Table4 Parameter estimates of the linear mixed models with the change in connection strength between rest and task as predictor for performance on

the N-back task

Network FPN DMN FPN-DMN

Predictor Beta (standard error) p Beta (standard error) p Beta (standard error) p
Connection strength change -1.33 (3.49) .87 1.38 (3.09) .87 —.68 (3.37) .87
Sex 3.96 (1.83) <.05 3.85(1.80) <.05 3.90 (1.83) <.05

BOLD: Significant FDR-adjusted p-values

task-evoked connection strength change for the different net-
works as predictor are shown in Table 4.

Both measures of similarity of functional connectivity pat-
terns between rest and task pointed in the same direction (al-
though only significant for the slope of the linear model):
Lower similarity between resting and task state functional con-
nectivity of the FPN (i.e. more FPN reconfiguration) was asso-
ciated with a higher working memory score (Fig. 6). No signif-
icant association was found for the level of DMN and FPN-
DMN reconfiguration. Furthermore, for all networks, changes
in connection strength between rest and task were not signifi-
cantly associated with working memory score (Table 4).

Across all models, being female was associated with a
higher working memory score. Note that in none of the
models, the composite motion score was included as a signif-
icant predictor for the working memory score.

Cognitive flexibility

In a second set of analyses, performance on the cognitive flexi-
bility task (raw scores) was the dependent variable. For all these
models, the variables frontal tumor involvement and tumor group
reached statistical significance after backward elimination. For
some models (see Tables 5 and 6), tumor hemisphere was also
included after backward elimination. The parameter estimates
and FDR-adjusted p-values of the linear mixed models with
task-evoked reconfiguration defined as the Pearson correlation
between the network graphs for the different networks as

predictor and with the task-evoked reconfiguration defined as
the slope of the linear model between task connectivity and rest
connectivity for the different networks as predictor are shown in
Tables 5 and 6, respectively. The parameter estimates of the linear
mixed models with the task-evoked connection strength change
for the different networks as predictor are shown in Table 7.

Both measures of similarity of functional connectivity pat-
terns between rest and task pointed in the same direction (al-
though only significant for the Pearson correlation between the
network graphs): lower similarity between resting and task state
functional connectivity of the FPN (i.e. more FPN reconfigura-
tion) was associated with a higher cognitive flexibility score
(Fig. 7). No significant association with the cognitive flexibility
score was found for the level of DMN and FPN-DMN recon-
figuration. Furthermore, for all networks, the level of change in
connection strength between task and rest was not significantly
associated with the cognitive flexibility score (Table 7).

Across all models, having a HGG was significantly asso-
ciated with lower cognitive flexibility. Additionally, a frontal
tumor (compared to a non-frontal tumor) was associated with
lower cognitive flexibility. The three models in which tumor
hemisphere was included pointed in the same direction for the
association between tumor hemisphere and cognitive flexibil-
ity score: a tumor in the left hemisphere was associated with
lower cognitive flexibility (although none of these models
reached significance). Note that, again, in none of the models,
the composite motion score was included as a significant pre-
dictor for the working memory score.

Parameter estimates of the linear mixed models with the similarity of functional connectivity patterns between rest and task (defined as the

DMN FPN-DMN

Beta (standard error) P Beta (standard error) P

Table 5

Pearson correlation between the network graphs) as predictor for performance on the cognitive flexibility task
Network FPN

Predictor Beta (standard error) P

Similarity rest-task (Pearson correlation) —48.31 (14.29) <.05

Frontal tumor involvement —8.41 (4.00) <.05

Tumor group

LGG (vs meningioma) 1.30 (4.06) .89

HGG (vs meningioma) —13.35 (4.57) <.01

Tumor hemisphere 8.36 (3.47) .061

—12.24 (16.36) 52 ~41.10 (17.47) 067
—11.78 (4.42) <05  -1225(4.12) <05
70 (4.69) .89 ~1.18 (4.40) 89
~17.59 (5.04) <01  —16.63 (4.70) <01
9.79 (3.93) 061

BOLD: Significant FDR-adjusted p-values
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Table 6 Parameter estimates of the linear mixed models with the similarity of functional connectivity patterns between rest and task (defined as the
slope of the linear model between task connectivity and rest connectivity) as predictor for performance on the cognitive flexibility task

DMN FPN-DMN

Beta (standard error) )2 Beta (standard error) )2

Network FPN

Predictor Beta (standard error) p
Similarity rest-task (slope linear model) —22.81 (10.14)

Frontal tumor involvement -9.81 (4.33)

Tumor group

LGG (vs meningioma) .60 (4.42) .89
HGG (vs meningioma) —15.45 (4.90)

Tumor hemisphere

.067
<.05

<.01

—13.64 (11.34) 38 —32.13 (12.65) .067
—11.21 (4.43) <.05 —11.19 (4.07) <.05
.94 (4.58) .89 —.65(4.31) .89
—16.57 (5.05) <.01 —15.46 (4.68) <.01
9.28 (3.78) .061

BOLD: Significant FDR-adjusted p-values
Discussion

The main goal of this study was to examine whether the level
of reconfiguration of the fronto-parietal and default mode net-
work, evoked by task execution, is correlated with cognitive
performance in patients with a meningioma or glioma, as has
been observed in healthy participants.

In our current study, we found that, across the brain tumor
patients, the level of task-evoked reconfiguration of the connec-
tions within the FPN was associated with the performance of the
working memory task itself as well as with the performance on a
cognitive flexibility task, measured outside of the scanner.
Furthermore, the level of task-evoked reconfiguration of the
connections within and between the FPN and DMN did not
differ significantly between meningioma, LGG and HGG pa-
tients. Additionally, the changes in strength from rest to task of
the connections within and between the FPN and DMN did also
not differ significantly between the different tumor groups.

In our study, we observed a relation between the level of
reconfiguration of the FPN and executive functioning in brain
tumor patients, similar as has been found previously in healthy
subjects for working memory (Braun et al. 2015; Vatansever
et al. 2017, 2015), for attention (Shine et al. 2016) and for
cognitive control (Dwyer et al. 2014). This finding suggests that
FPN network reconfiguration not only plays a role in explaining

variance in healthy cognitive performance, but also in cognitive
deficits in brain tumor patients. A large number of studies have
suggested that the FPN is the central control network activated
in WM tasks. Other studies have suggested that the FPN also
plays an important role in situations requiring highly adaptive
task control (Cole et al. 2013; Dosenbach et al. 2006). WM
performance is also linked to differences in activation and con-
nectivity within the FPN (e.g. Nagel et al. 2011; Osaka et al.
2004; Ullman et al. 2014). Importantly, our study also indicated
that the capacity to reconfigure the connections of the FPN is
predictive of cognitive performance on other tasks that engage
the same network (Niendam et al. 2012).

Both measures of task-evoked reconfiguration used in this
study indicated a positive relation between the level of reconfig-
uration of the FPN and executive functioning. Using similar re-
configuration measures, other studies on working memory, how-
ever, have shown an opposite association between network re-
configuration and cognitive performance (e.g. Schultz and Cole
2016; Vatansever et al. 2015). Based on these findings, Schultz
and Cole (2016) suggested that two effects may be at play here,
namely an efficiency effect and a distraction-based effect. Their
results seem to reflect the efficiency effect which was interpreted
as reflecting a more optimal network organization at rest in high
performing individuals that supports more efficient (i.e. smaller)
topological changes when performing a task. Our results then

Table 7  Parameter estimates of the linear mixed models with the change in connection strength between rest and task as predictor for performance on
the cognitive flexibility task

Network FPN DMN FPN-DMN

Predictor Beta (standard error) P Beta (standard error) P Beta (standard error) P
Connection strength change 15.26 (7.19) .071 —2.55 (6.80) 71 6.44 (7.20) 48
Frontal tumor involvement —13.30 (4.27) <.05 —11.78 (4.47) <.05 —12.57 (4.43) <.05
Tumor group

LGG (vs meningioma) 3.07 (4.50) .89 1.39 (4.63) .89 1.93 (4.64) .89
HGG (vs meningioma) —17.79 (4.85) <.01 -16.96 (5.22) <.01 —17.89 (5.05) <.01

BOLD: Significant FDR-adjusted p-values
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seem to reflect the distraction-based effect: the higher the network
similarity across task and resting state, the poorer the perfor-
mance. Given that more than half of brain tumor patients indicate
to have concentration difficulties (Pranckeviciene et al. 2017), it
is indeed reasonable to suggest that our results reflect the
distraction-based effect. However, our findings could also be
associated with a more general mechanism where network recon-
figuration reflects general task-involvement. A low level of re-
configuration would then reflect a low level of task involvement,
and consequently poor performance.

Our study also indicated an increase in overall intra-network
functional connectivity strength in the FPN and the DMN dur-
ing task performance in brain tumor patients. In addition, the
strength of the inter-network functional connectivity between
the FPN and the DMN also increased during task performance.
This in line with numerous studies in healthy participants (Ceko
et al. 2015; Liang et al. 2016; Newton et al. 2011; Tommasin
et al. 2018; Vatansever et al. 2017; Zuo et al. 2018). Note that
some studies also showed task-associated reductions of connec-
tivity within the DMN (Gordon et al. 2014; Hampson et al.
2006; Tommasin et al. 2018).

Despite their different origins, infiltration level, malignance
and developmental course, task-evoked changes of the connec-
tions within and between the FPN and DMN did not differ
between meningioma, LGG and HGG patients. This finding is
in line with the idea that the impact of all these different brain
tumors is not limited to the tumor location itself but spreads to
remote brain regions, which fits the network perspective with its
focus on connectivity and neural communication across regions.
Indeed, focal lesions caused by a glioma (LGG or HGG) have
been shown to have widespread effects (e.g. Bosma et al. 2009;
Briganti et al. 2012; Park et al. 2016; Xu et al. 2013), even
within the hemisphere contralateral to the lesion (e.g.
Bartolomei et al. 2006; De Baene et al. 2017; Maesawa et al.
2015). Meningiomas, in contrast with gliomas, do not directly
damage the brain regions but yield local effects through
perilesional edema and/or mass effect (Whittle et al. 2004).
However, these meningiomas might also reduce the functional
integrity of remote brain regions (through diaschisis, Carrera and
Tononi 2014), as locally compressed brain areas and white mat-
ter pathways are densely connected to other parts of the brain.

We also found a significant association between sex and
working memory: being female was significantly associated
with better performance on the N-back task. This is in line with
previous reports showing a female advantage for verbal work-
ing memory using the N-back task (Lewin et al. 2001; Speck
et al. 2000). Our results also showed a general link between
reduced cognitive flexibility and having a HGG. This finding is
in line with the observation that rapidly growing, malignant
tumors (such as HGG) typically lead to more cognitive impair-
ment than slowly growing tumors (such as meningiomas and
LGG) (Hoffermann et al. 2017; Noll et al. 2015; Wilson 1999).
Additionally, lower cognitive flexibility was also associated

with frontal tumor involvement, which is in line with the fact
that cognitive flexibility has been consistently linked with fron-
tal structures (for a review, see Sakai 2008). Similar findings
were reported by Hendrix et al. (2017).

A limitation of the current study is that we did not include a
healthy control group or longitudinal measures. Therefore, it is
impossible to distinguish whether lesion-induced functional
changes, compensatory changes, individual differences unrelated
to the tumor or a combination of these alter the task-evoked
reconfigurations within and between the FPN and the DMN in
brain tumor patients. Furthermore, with the inclusion of a healthy
control group, we could examine whether the link between the
task-evoked reconfiguration of the FPN and cognitive perfor-
mance is as strong in brain tumor patients as in healthy controls.

Another limitation of the current study is that we examined
a group of tumor patients that were very heterogeneous with
respect to tumor location. In this study, we only dissociated
tumors with a frontal involvement from tumors without a
frontal involvement, but we did not take the exact location
of the tumor into account. Topological properties of the FPN
and DMN might, however, be differently affected depending
on the specific region that is lesioned (Yuan et al. 2017).
Future studies should, therefore, take the importance of a re-
gion in network communication (e.g. hub vs non-hub) into
account.

Previous studies have shown that motion during a scan can
influence functional connectivity measures (Van Dijk et al.
2012), even after motion estimates have been entered into
the regression (Power et al. 2012). Although we used a con-
servative threshold for data scrubbing, we have examined the
effect of motion on our results in several ways. We found no
association between behavioral performance and the level of
motion during rest or while performing the task. Additionally,
in all models, the ratio between the motion score in task state
versus resting state was not associated with cognitive perfor-
mance. This clearly suggests that the findings reported here
are not caused by differences in motion.

Conclusion

In the current study, we found evidence that cognitive perfor-
mance in brain tumor patients is associated with the capacity
to reconfigure the FPN during a cognitive task. This suggests
that FPN reconfiguration not only plays a role in the variance
in normal cognitive performance in healthy controls, but also
in cognitive deficits in brain tumor patients. This finding was
independent of the character of the tumor.
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