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Abstract

Motivation: Single-cell RNA-seq makes possible the investigation of variability in gene expression among cells, and
dependence of variation on cell type. Statistical inference methods for such analyses must be scalable, and ideally
interpretable.

Results: We present an approach based on a modification of a recently published highly scalable variational autoen-
coder framework that provides interpretability without sacrificing much accuracy. We demonstrate that our ap-
proach enables identification of gene programs in massive datasets. Our strategy, namely the learning of factor
models with the auto-encoding variational Bayes framework, is not domain specific and may be useful for other
applications.

Availability and implementation: The factor model is available in the scVI package hosted at https://github.com/
YosefLab/scVI/.

Contact: v@nxn.se

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The study of the regulatory architecture of cells has revealed numer-
ous examples of co-regulation of transcription of large numbers of
genes (Jang et al., 2017; Kondo et al., 2018), and this has been used
to link the organization of cells to their distinct functions in response
to developmental or external stimuli (Romero et al., 2012). While
studies of cells in bulk have led to interesting population-level
insights about the relationships between genes (Thompson et al.,
2015), the study of individual cells via single-cell RNA-seq has led
to questions about the dependence of relationships between genes
on cell type (Lindgren et al., 2017).

Principal component analysis (PCA) is a popular linear method for
dimensionality reduction in single-cell RNA-seq (Andrews and
Hemberg, 2017; Rostom et al., 2017). As a result of its efficiency, PCA
has been used for exploratory data analysis to visualize the structure of
high-dimensional data in two or three dimensions. PCA also provides a
linear model of the data; a key feature of the method that can be used
for prediction (Tipping and Bishop, 1999). In the case of single-cell
RNA-seq, datapoints correspond to cells and the coordinates of each
cell represent the gene expression levels for each gene in the transcrip-
tome. Thus, PCA can be used to study structured variation between
cells by revealing differences along axes of greatest variation. In PCA,

linear weight parameters (loadings) are used to predict gene expression
in each cell, conditional on the latent variables (coordinates) per cell.
The loadings corresponding to the principal component axes can be
interpreted as ‘meta-genes’: sets of genes which tend to be expressed to-
gether (Brunet et al., 2004; Raychaudhuri et al., 2000). Thus, PCA of
gene expression provides a formal mathematical framework for study-
ing the biological idea of ‘gene programs’ (Stuart et al., 2003) by simul-
taneously explaining structured variation between cells and genes (Guo
et al., 2010; Islam et al., 2011).

While PCA is easy to use and is often applied to single-cell RNA-
seq data, the method has some drawbacks. PCA models data as aris-
ing from a continuous multivariate Gaussian distribution, and thus
optimizes a Gaussian likelihood (Pearson, 1901; Tipping and Bishop,
1999). This model assumption is at odds with the count data meas-
ured in single-cell RNA-seq (Svensson, 2020; William Townes et al.,
2019), and leads to interpretation problems (Hicks et al., 2018). To
address this issue, a number of methods define factor methods tail-
ored to single-cell transcriptomics data (Buettner et al., 2017; Durif
et al., 2019; Pierson and Yau, 2015; Zhu et al., 2017). For example,
ZINB-WaVE defines a linear factor model where gene weights are
parameters, cell factor values are latent variables and data arise from
a zero-inflated negative binomial distribution (Risso et al., 2018).
However, as single-cell transcriptomics datasets have grown in size to
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hundreds of thousands of observations (Svensson et al., 2018), effi-
ciency and scalability considerations have become paramount and in-
ference with parametric models can be intractable. To address
scalability requirements, new methods based on variational autoen-
coders have been developed; these leverage the large amounts of avail-
able data to learn non-linear maps, and crucially scale well thanks to
efficient algorithms for inference that leverage the structure of autoen-
coders (Eraslan et al., 2019; Lopez et al., 2018).

Autoencoders consist of a pair of functions: a representation func-
tion and a reconstruction function, which are typically parameterized
as neural networks (Hinton and Zemel, 1993). The two autoencoder
functions can be seen as a non-linear generalization of the two projec-
tions associated with PCA (Plaut, 2018). By optimizing the pair of
neural networks, efficient low-dimensional representations of data
can be identified. A variational autoencoder (VAE) uses a similar
strategy but with latent variable models (Kingma and Welling, 2013).
Each datapoint is represented by a set of latent variables which can be
decoded by neural networks to produce parameters for a probability
distribution, thus defining a generative model. To infer the latent vari-
able values (the representation), a neural network is used to find per-
datapoint parameters for a probability distribution in the representa-
tion space. This defines an ‘inference model’ which attempts to ap-
proximate the posterior distribution of the latent variables given the
observed data with a variational distribution (Marino et al., 2018).

Inference using VAEs scales to arbitrarily large data since mini-
batches of data can be used to train the parameters for both the in-
ference model and the decoder function (Kingma and Welling,
2013). However despite these efficiency advantages, the representa-
tions inferred with VAEs are not directly interpretable. While efforts
have been made to develop interpretable VAE’s (Ainsworth et al.,
2018), the difficulty in interpreting VAE representations continues

to be a major drawback of VAE’s. We show that using a flexible
non-linear inference model along with a linear reconstruction func-
tion makes it possible to benefit from the efficiency of VAEs, while
retaining the interpretability provided by factor models. Specifically,
by adapting the method of scVI (Lopez et al., 2018), we demonstrate
a scalable approach to learning a latent representation of single-cell
RNA-seq data, that identifies the relationship between cell represen-
tation coordinates and gene weights via a factor model. Our ap-
proach results in a tradeoff: whereas typically autoencoder models
are designed with the same network topology in the inference func-
tions and the reconstruction functions, what we propose is a
restricted reconstruction function that leads to an increase in recon-
struction error. However, by virtue of being linear, our reconstruc-
tion function provides an interpretable link between gene programs
and cellular molecular phenotypes (Fig. 1a).

2 Materials and methods

The generative model of scVI, when data are from a single batch
and zero-inflation is deactivated, is

zn � Normalð0; IÞ;
sn � log normalðsl; s

2
rÞ;

ln ¼ softmax
�

fWðznÞ
�
;

vg
n � Gammaðhg; lg

nÞ;
yg

n � Poissonðvg
n � snÞ:

In this model, sn is a random variable for the exposure or count
depth of a cell, with priors sl and sr. The random variable zn pro-
vides a D-dimensional representation of cells. The parameter hg

Fig 1. (a) A sketch of the general architecture of scVI autoencoders with two alternative representation models. (b) Comparison of reconstruction error on the Pijuan-Sala et al.

(2019) data with VAE and the four variants of LDVAE after running 100 epochs. (c) Results from fitting a 20-dimensional LDVAE. (Left column): Density plots of the cells in

representation space. (Right column): Scatter plots of gene loadings corresponding to the representation coordinates. The last row shows a pair of factors which discriminates

three cell types annotated by Pijuan-Sala et al. (2019) (red: erythroid, blue: extraembryonic endoderm, green: epiblast). Top genes indicated as vectors with names. (Color ver-

sion of this figure is available at Bioinformatics online.)
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represents the overdispersion of a gene, and the Gamma is parame-
terized by its shape and mean. We replace the neural network fW znð Þ
with a linear function:

ln ¼ znWT :

This way the expression level lg
n of a gene g in a cell n is affected

by the weights wd
g depending on the coordinate zd

n of a cell n, giving
a direct link between cell representation and gene expression.

We also considered a variation of this model where the latent
variables zn are distributed as a logistic normal (ln) distribution. In
this case, each zn has positive values and sums to 1, making it similar
to semi-non-negative matrix factorization (Levitin et al., 2019;
Srivastava and Sutton, 2017). Such a model adds a further layer of
interpretability; the cells are embedded in a simplex, where the
nodes of the simplex represent archetypal cell types (Korem et al.,
2015). In addition, we investigated the effect of applying a batch-
norm transformation of the linearly decoded parameters (Ioffe and
Szegedy, 2015).

3 Results

To explore the potential for interpretability in the VAE framework,
we implemented a linearly decoded variational autoencoder
(LDVAE) in scVI. The model was applied to two datasets of single-
cell RNA-sequencing from a large number of developing mouse em-
bryos in different stages of development (Cao et al., 2019; Pijuan-
Sala et al., 2019). The first dataset (Pijuan-Sala et al., 2019) consists
of 125 775 cells from 411 mouse embryos undergoing gastrulation
measured using the commercial 10� Genomics platform and
sequenced relatively deeply (11% non-zero values).

A comparison of the VAE with the LDVAE methods showed
that VAE indeed has a smaller reconstruction error than the LDVAE
methods (Fig. 1b). Among the LDVAE method variants, using a nor-
mal latent distribution and batch norm has the smaller reconstruc-
tion error (on held-out data). Between the LDVAE models with ln
distributed latent space, the comparison was inconclusive for the
Pijuan-Sala et al. (2019) data, but batch norm performed better for
the Cao et al. (2019) data (Supplementary Fig. S1). With either VAE
or LDVAE, the representation Z can be used to learn which cells are
similar to each other and can be used for clustering. For example,
erythroid cells, extraembryonic endoderm cells and epiblast cells
annotated by the original authors can be separated by factors 2 and
17. However, the axes of representation learned by the LDVAE
model can be directly related to axes of co-expressed genes (Fig. 1c).
For example, variation along the Z2 axis is related to simultaneous
variation in expression of Pou5f1 and Tdgf1, two genes important
for epiblast development (Bianco et al., 2002; Wu and Schöler,
2014). Variation along the Z17 axis is related to co-variation in beta
globin (Hbb) genes which are key components of erythroid cells.
Additionally, variation between epiblast and erythroid cells along
Z2 is orthogonal to variation between epiblast and extraembryonic
endoderm cells along Z17, two independent lineages in embryonic
development.

While the ln latent distribution results in higher reconstruction
error than the normal distribution, it has benefits for interpretation.
Since a factor z is restricted to non-negative values, genes with nega-
tive weights w can only decrease in expression as a function of z.
This way cells using a particular regulatory program can more ef-
fectively be grouped to specific factors (Supplementary Fig. S2). We
also found that using batch-norm transformation improved model
performance.

The learned Z representations from the different models can be
compared by investigating the covariance matrix Ẑ

T
Ẑ (where Ẑ is a

centered and scaled version of Z). This illustrates that LDVAE learns
representations with fewer covarying factors zd (Supplementary Fig.
S3). Unlike linear methods, the VAE is not constrained by covarying
factors since the non-linear neural network fW �ð Þ can produce vastly
different gene expressions along a linear path in the Z representa-
tion. Comparing the proposed alternative LDVAE models, using a
normal latent distribution induces less correlation between factors.

By performing eigen decomposition on a covariance matrix the pro-
portion of variance explained by each factor can be quantified. This
allows ordering of factors which can be used to identify the regula-
tory programs with the most variation across the dataset. It also
illustrates the simplicial structure of ln distributed latent variables
since one factor is always linearly dependent on the other factors
(Supplementary Fig. S3).

The second dataset (Cao et al., 2019) consists of 1 949 131 cells
from 61 embryos in total using the sci-RNA-seq method at shallow
sequencing (2% non-zero values). This dataset is, to our knowledge,
the largest scRNA-seq study published to date. To illustrate the scal-
ability of our model, we fit a 10-dimensional LDVAE to the data
which allows identification of cells similar to each other and for the
determination of covarying genes (Supplementary Fig. S4).

Cells were also subsampled to different numbers before fitting
LDVAE models. We found that inference runs in linear time, with
5 s per 1000 cells to reach 10 epochs using a CPU (Intel Core i7-
7800X). Using a consumer-grade GPU (NVIDIA GeForce RTX
2070), inference only requires 2 s per 1000 cells to reach 10 epochs,
with a total time of less than an hour for the full dataset. The infer-
ence times did not depend on the sparsity of the data, as the neural
architecture is fixed, and operations are invariant to observed values
(Supplementary Fig. 5a). Investigating the reconstruction error
curves per epoch, the models converged after 2–3 epochs for data-
sets larger than 100 000 cells (Supplementary Fig. 5b). Determining
a minimal number of epochs is a difficult general problem, but our
results suggest a rule of thumb of ‘1 million divided by the number
of cells in the dataset’ epochs for first pass analysis.

Jupyter notebooks to produce the results are available at https://
github.com/pachterlab/SGYP_2019 as well as Figshare at https://
doi.org/10.6084/m9.figshare.11725920.v1. For convenience, the
embryo data from Pijuan-Sala et al. (2019) and Cao et al. (2019) are
also available in an H5AD object on the Figshare accession and on
Google Cloud Storage at gs://h5ad/2019-02-Pijuan-Sala-et-al-
Nature/pijuan_sala_atlas.h5ad and gs://h5ad/2019-02-Cao-et-al-
Nature/cao_atlas.h5ad. A general tutorial on how to use the
LDVAE model is available in the scVI Github repository at https://
github.com/YosefLab/scVI/blob/master/tests/notebooks/linear_de
coder.ipynb.

4 Discussion

Our results show that interpretable non-Gaussian factor models can
be linked to variational autoencoders to enable interpretable, effi-
cient and multivariate analysis of large datasets. This is useful for
the investigation of gene co-expression in large scRNA-seq datasets,
and the approach we have outlined should be applicable in other set-
tings where interpretability is paramount.
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