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Abstract: Anthropogenic impulsive sound sources with high intensity are a threat to marine life
and it is crucial to keep them under control to preserve the biodiversity of marine ecosystems.
Underwater explosions are one of the representatives of these impulsive sound sources, and existing
detection techniques are generally based on monitoring the pressure level as well as some frequency-
related features. In this paper, we propose a complementary approach to the underwater explosion
detection problem through assessing the arrow of time. The arrow of time of the pressure waves
coming from underwater explosions conveys information about the complex characteristics of the
nonlinear physical processes taking place as a consequence of the explosion to some extent. We
present a thorough review of the characterization of arrows of time in time-series, and then provide
specific details regarding their applications in passive acoustic monitoring. Visibility graph-based
metrics, specifically the direct horizontal visibility graph of the instantaneous phase, have the best
performance when assessing the arrow of time in real explosions compared to similar acoustic
events of different kinds. The proposed technique has been validated in both simulations and real
underwater explosions.

Keywords: passive acoustic monitoring; surveillance; underwater explosions; arrow of time; impul-
sive event detection; anthropogenic noise characterization

1. Introduction

Underwater explosions (UNDEX) are one of the loudest sounds that can be heard
in the ocean and can disrupt everything from tiny plankton to blue whales [1,2]. These
sounds are a direct hazard to marine life and the environment, not only causing confusion
but also shock waves that can produce permanent damage in the internal organs of many
species [3]. For this reason, UNDEX are strongly regulated. In the European Union (EU),
for instance, the Marine Strategy Framework Directive (MSFD) was adopted in 2008 and
revised in 2017 in the descriptor D11C1 to regulate the spatial distribution, temporal extent,
and levels of anthropogenic impulsive sound sources (which includes UNDEX) [4]. This
regulation defines maximum threshold levels for the different kinds of impulsive sound,
above which the sound must be reported to the corresponding authorities and included in
a national register. Mitigation activities must also be implemented if needed. Examples
of controlled uses of UNDEX include deepening of harbors and channels, excavation of
trenches for installing oil and gas pipelines and communication cables, demolition work or
removal of offshore structures, and excavation for foundations (civil engineering) [5].

Even though the use of UNDEX for fishing (also known as blast fishing) is illegal and
has almost been eradicated, it is still seen in some areas in the world [6]. This is a highly
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destructive method that destroys habitats (coral reefs in most cases), resulting in a drastic
reduction in catches and affecting food security.

All of these activities produce characteristic acoustic events that can be automatically
detected [7,8] and employed to devise law enforcement tools and control mechanisms.
It would be desirable to develop UNDEX detection procedures that do not just rely on
the reported data. They should also rely on a more active approach based on passive
acoustic monitoring of the UNDEX events. There are different passive acoustic monitoring
technologies and systems designed to characterize anthropogenic sound, and all of them
can be used to automatically detect UNDEX events. Detection algorithms can be used in
single-sensor monitoring devices, such as the one presented in [9], to alert of the presence
of an UNDEX by means of surface buoys and surface telemetry. However, with the use of
multiple vector sensors, UNDEX localization can be done even at distances up to sixteen
thousand kilometers [10]. Recently, some authors have employed a compact array of
acoustic vector sensors (1.25 m × 1.25 m) to locate sounds around 1 kHz [11]. Compact
arrays of sensors provide a system that is easy to deploy, which in many situations gives
sufficient localization accuracy. Surveillance vehicles such as remotely operated vehicles
(ROVs) [12] or gliders [13] can also integrate UNDEX detection algorithms to perform
mobile acoustic measurements in the immediate vicinity of a surveillance area.

The use of signal processing algorithms for the detection of UNDEX events might
seem to be an easy task due to the high sound pressure levels that these events may reach.
However, there are some practical problems that make simple detection algorithms cause
problems and produce a large number of false positives [14]. There are some desirable
characteristics that a robust UNDEX detector should have:

1. Pressure-level independent detection. This is necessary to be able to deal with the
large dynamic range of these acoustic events. Possible situations may range from
clipping in high intensity or very close-range UNDEX to low signal-to-noise ratios
in the case of low intensity or detonations happening far away from the acoustic
recorder.

2. Robust detection in the presence of non-UNDEX close-range sounds: The detector
should be able to distinguish real UNDEX from other similar-duration transients or
low-intensity sounds happening close to the acoustic recorder (non-UNDEX). In many
cases, these acoustic events are close-range sounds such as nearby alpheid shrimps.
In addition, signals with significant energy are generated when the hydrophone is
physically impacted, which could be caused by grazing fish, for example [14].

Traditional machine-learning techniques for UNDEX detection found in the literature
are based on obtaining the energy, duration [10,15], and some frequency-related parameters
in order to obtain an acoustic signature [7]. Although these techniques provide fairly good
detection percentages, they fail to detect UNDEX events in the two situations previously
described. In this work we try to address the problem from a different perspective. We
explore the arrow of time, a concept first introduced by Sir Arthur Eddington [16], to assess
the feasibility of using arrow of time metrics in the characterization of UNDEX events. It
must be noted that UNDEX are highly asymmetrical physical processes and therefore the
thermodynamic arrow of time is high [17]. Even though the arrow of time has given good
results in the characterization of economic series and the determination of the the playback
direction of videos [18], and also in the characterization of electrocardiograms (ECG) [19],
it has never been applied in the characterization of underwater acoustic events.

The rest of this work is structured as follows. In Section 2, we summarize the physics
behind UNDEX and explain why the arrow of time metrics might help in the creation of
robust UNDEX detectors. Later, in Section 3, we formally introduce the arrow of time as
well as the different techniques that can be used when assessing it. We also give details on
how these techniques can be employed in passive acoustic monitoring in general and in
UNDEX events specifically. Then, in Section 4, we test the behavior of the different arrow
of time metrics using simulated signals. We test them for different signal-to-noise ratios in
the presence of clipping. In Section 5, we present a real application to assess the arrow of
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time metric in low-intensity UNDEX. We conclude the work discussing the possibilities
and limitations of the proposed approach for the automatic detection of UNDEX.

2. General Description of an UNDEX

The underwater detonation of an explosive charge can best be described as an exother-
mic chemical reaction that is self-sustaining after initiation [20]. It is a complex phe-
nomenon, involving many aspects that need to be addressed in order to fully understand
the development and propagation of the acoustic pressure wave through the fluid. In a
simple approach, we can decompose the pressure wave into a primary shock wave due to
the detonation itself followed by a series of bubble pulses (see the bottom left rectangular
inset of Figure 1). The shock pulse has a rapid rise time and exponential decay, whereas
the bubble pulses have an oscillating behavior due to expansion and contraction during
the vertical migration of the highly pressurized gas bubble. Some low explosives, such as
black powder, do not generate an instantaneous pressure rise or shock wave [21]. However,
as a result of the gas bubble, successive bubble pulses and oscillations appear in both
low-detonation and high-detonation explosives.

Some parameters of this oscillation convey information about the explosive yield.
As an example, if the explosion is far from both the water surface and the bottom, (1)
approximates the first bubble oscillation period (T1) in seconds [22,23]),

T1 = K
W1/3

(Z + 10)5/6 (1)

where W is the explosive yield in kilograms, Z is its depth in meters, and K = 2.11 for TNT.
All pressure waves generated at the explosive source propagate through the media to

the observation point where the acoustic recorder is placed. The main contributions that
need to be taken into account depend on the bathymetry, sound speed profile, and seabed
geoacoustics. Some of the multipath contributions to be taken into account are the direct
wave, the surface-reflected wave, the bottom reflected wave, and the bottom transmitted
wave (the wave transmitted through the bottom materials and transmitted back into the
water). Figure 1 represents a simplistic modeling approach for the process under constant
speed of sound through the water column.

WATER SURFACE

Figure 1. Main wave reflections produced by an UNDEX event received by a passive acoustic
recorder moored at the bottom of the sea under constant speed of sound assumption.

The smooth sea surface is a strong reflector of acoustic energy at nearly all frequencies.
The reflection coefficient is close to −1, indicating that a 180-degree phase reversal occurs
upon reflection.

The sea bottom, or seafloor, is a reflector of acoustic energy. However, in principle,
the impedance contrast between water and bottom materials is smaller than in the water/air
interface, although this depends on the type of sediment/bottom considered. Consequently,
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a large fraction of acoustic energy that impacts the seafloor will be transmitted into the
bottom where it may reflect from sub-bottom layers.

When the charge is detonated very close to the sea surface, the reverse-polarity surface
reflected signals can cancel out the direct path signal. In this scenario, the two main
propagation paths are nearly identical in length, and, consequently, the two signals can
arrive nearly simultaneously. Similarly, if the charge is detonated close to the sea floor,
the two signals may partially overlap, causing constructive interference. The received
signal strength is therefore a function of angle, frequency, and source depth.

As a result, an UNDEX produces a high pressure disturbance that propagates, pro-
ducing a highly complex and disordered motion of water. As the disturbance moves away
from the point of explosion the rate of entropy increase becomes slower [24]. The main hy-
pothesis of this work is that (although weakly) the pressure waves reaching the underwater
acoustic recorder might convey part of its complexity. Following the works by [24,25], we
suggest that the arrow of time is an indirect method of measuring the complexity. As a
result, we can use arrow of time measures as an indicator for the presence of UNDEX. It is
important to highlight that UNDEX are not the only complex non-linear and dissipative
events that have a strong arrow of time. For instance, seismic and underwater volcanic
activity also have a strong arrow of time and thus arrow-of-time metrics should not be
used as a standalone UNDEX detector.

3. Arrow of Time: Definition and Application Methods

The arrow of time is the “one-way direction” or “asymmetry” of time. The dynamics
of many natural phenomena are traditionally modeled as if they had time reversibility,
meaning that the statistical properties are identical when examined forwards and back-
wards in time [26]. However, this time symmetry is not always true and, in the real world,
there are many examples of irreversible processes; e.g., financial time series, chaotic dis-
sipative processes, nonlinear stochastic processes, and processes with memory operating
away from thermodynamic equilibrium [27].

Many authors have studied the idea of time reversibility and have addressed its ap-
plicability to temporal series from different perspectives. Some of the most representative
are the following: extracting a given feature that is related to the time-reversal asymmetry
(e.g., the skewness of the slope distribution) and testing it against surrogates [28]; using
a linear [29] or a non-linear predictor [26] to evaluate the statistical properties of the pre-
diction error when examined both forwards and backwards in time; or performing a time
series symbolization and subsequently analyzing the symbolized series using compression
algorithms both forwards and backwards in time [30]. Recently, deep learning techniques
have been proposed to capture the arrow of time in a Markov (decision) process [31].

Some of these approaches are not very appropriate when measuring the arrow of time
in UNDEX events. For example, typical symbolization is local and requires some a priori
knowledge about the timescale to be used in the temporal series. This information might not
generally be available for UNDEX events because it depends on many unknown variables
(explosive yield, distance of the detonation to the detector, propagation channel, etc.). Some
other techniques such as testing against surrogates or deep learning techniques may be
computationally intensive and may not be useful for real-time detectors. Additionally, it is
important to stress that underwater acoustic events are usually non-stationary, which is
a drawback when trying to evaluate the arrow of time. In fact, according to the original
definition, non-stationary time series are infinitely irreversible, so the quantification of how
irreversible a non-stationary time series is is an ill-defined problem that has not yet been
satisfactorily solved [27]. Here, we will circumvent this problem with a careful selection of
techniques that have proven to be able to quantify different degrees of irreversibility in
both stationary and non-stationary processes.

Let x(n), 0 < n < N − 1 be a length N sequence obtained by sampling an underwater
acoustic event with a sampling frequency fs = 1/Ts. Different techniques for assessing the
arrow of time of the acoustic event x(n) are presented below.
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3.1. Time-Reversal Asymmetry of Acoustic Events

A simple statistic to assess the arrow of time is the time-reversibility metric (TREV),
which is the mean of the slopes taken to the third power normalized by the standard
deviation to the third power (σ̂3) [32]. This metric is computed for a fragment of N0
samples (N0 < N) as described in (2),

TREV =
1

σ̂3 · (N0 − τ)

N0−1

∑
n=τ

(
x(n)− x(n− τ)

τ · Ts

)3

, (2)

where τ is an integer value that is empirically determined to make the slope estimation
less sensitive to noise. It is important to highlight that in the presence of clipping, which is
something that can happen in UNDEX to a greater or lesser extent, the slope distribution is
altered with a larger number of zero-slope intervals (the clipped regions). In order to make
TREV less sensitive to clipping, the selection of the signal fragment N0 is crucial. In the case
of UNDEX events, the early shock waves arriving at the recorder are the primary shock
waves resulting from the detonation itself; therefore, N0 should be set to this region (of the
order of T1 from (1)). However, as we have stated, some of these samples may be clipped
and, as a result, a sliding window of length N0 is proposed to obtain the mean TREV in the
first instants of the registered UNDEX signal.

The interpretation of the metric can be performed by taking into account that we
estimate the skewness of the slope distribution. Assuming a unimodal distribution of the
slopes, which is common in acoustic recordings, a negative time-reversal indicates that the
negative slope is more frequent than the positive one. The inverse happens for a positive
time-reversal. A zero value means that positive and negative slopes are balanced; therefore,
no evidence of an arrow of time exists. Although this is true for symmetric distributions, it
may not be true for asymmetric ones. We will use the absolute value | TREV | to measure
the arrow of time.

3.2. Prediction Residuals of Acoustic Events

A different approach for the arrow-of-time assessment consists of examining the
prediction error when the signal is predicted both forwards x(n) = {x(0), · · · , x(N − 1)}
and backwards xi(n) = {x(N − 1), · · · , x(0)} in time. We used an autoregressive inte-
grated moving average (ARIMA) model as well as a normalized nonlinear gradient descent
(NNGD) predictor to analyze the UNDEX time series. Estimation errors were obtained:
e(n) for the estimation error of the forward time series x(n); and ei(n) for the estimation
error of the backwards time series xi(n).

• The ARIMA model: Although some authors propose using a causal autoregressive
moving average model (ARMA) [29,33] due to non-stationary behavior, we propose
using an ARIMA(p,d,q) model for acoustic events. ARIMA models follow signals that
have the stronger trends that UNDEX events have much better than ARMA models.
The three components (p,d,q) are, respectively, the AR order, the degree of differencing,
and the MA order of the model. If the three components are not properly chosen the
model does not fit and the residuals will have a trend. Figure 2 illustrates this.

• The NNGD predictor: The NNGD algorithm [34] has been proven to outperform
other adaptive algorithms when predicting nonlinear and non-stationary signals and
has been used to forecast one sample ahead into the future of the acoustic events.
The prediction error was obtained both forwards and backwards in time.
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Figure 2. Example of how ARIMA(10,1,10) achieves better modeling (smaller residuals) than
ARMA(10,10) in signals having a trend similar to that of an UNDEX event.

An analysis of the error when using both linear and non-linear predictors was per-
formed by means of the following metrics:

(i) The predictive residuals sign-test metric (PRST): This metric shows the relative fre-
quency for which the absolute magnitude of each forward prediction error e(n)
exceeds the reverse prediction error ei(n).

PRST = P(| e(n) |>| ei(n) |) (3)

P(·) estimates the probability. If the predictions are equally accurate when the time
series is examined in the forward direction as when analyzed under time reversal,
the value PRST = 0.5. Values of PRST that are larger or smaller than 0.5 indicate
time directionality to some extent. We use | PRST − 0.5 | as the arrow-of-time metric.
The higher the metric the more evident the arrow of time is in the acoustic event.

(ii) The predictive correlation coefficient (PRCC): This is the Pearson correlation coeffi-
cient, rx̂x, between real forward values x(n) and predicted forward values, x̂(n) =
x(n)− e(n), as compared with the correlation coefficient, rx̂ixi

, between real backward
values xi(n) and predicted backward values, x̂i(n) = xi(n) − ei(n). The metric is
defined by:

PRCC =
rx̂x
rx̂ixi

. (4)

The ratio PRCC should be close to 1 when no arrow of time exists. We then use
| PRCC − 1 | as the arrow-of-time metric. As before, the higher the metric, the more
evident the arrow of time will be.

The combination of the two predictors (ARIMA and NNGD) with the two metrics
produces four different ways of assessing the arrow of time: PRARIMA

ST , PRARIMA
CC , PRNNGD

ST ,
and PRNNGD

CC .

3.3. Visibility Graphs of Acoustic Events

Visibility algorithms are a collection of methods that map series to networks according
to specific geometric criteria [35]. In this way, some powerful graph theory tools are used
to provide alternative time series characterization. One of these methods, which is used in
the present work, is the so-called direct horizontal visibility graph (DHVg). We can create
the horizontal visibility graph of x(n) by checking if two samples, i and j, are horizontally
connected. The criterion to be satisfied is that the two samples, i and j, are connected if one
can draw a horizontal line joining the two samples that does not intersect any intermediate
sample. The geometrical condition is described in (5) and the idea is illustrated in Figure 3.

x(i), x(j) > x(n), ∀n | i < n < j. (5)
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As a result, each sample n has an out-going degree kx
out(n) that can be obtained by

counting all of the samples to which sample n is horizontally connected (blue arrows
in Figure 3). The out-going degree kx

out(n) is related to the number of links with future
nodes. Similarly, an in-going degree kx

in(n) can be defined that is related to the number of
links with past nodes (red arrows in Figure 3). The information stored in the kx

in(n) and
kx

out(n) distribution takes into account the amount of time irreversibility of the associated
series. As a first approximation, this can be measured as the distance (in the distribution
sense) between the probability density function of kx

in(n), named Px
in(k), and that of kx

out(n),
named Px

out(k).

x(n)

n

3 1 3 1 1 0

0 1 2 1 2 3

kout(n)

kin(n)

0 1 2 3 4 5

Figure 3. Illustration of the way the horizontal visibility graph is obtained for a time series x(n)
according to the criteria in (5).

In order to enhance the overall results of the DHVg technique when applied to
passive acoustic monitoring and detection of UNDEX events, we propose working with
the instantaneous phase ψ(n) estimated by means of the Hilbert transform. The water
shock contributions and reflections present in UNDEX events introduce phase shifts in the
received signals x(n), so the instantaneous phase is well suited for the characterization
of these shock waves through the DHVg. Some researchers have already demonstrated
the importance of the phase for noise robust characterization of acoustic events in both
aerial [36] and underwater sound events [37]. Thus, (5) was rewritten as:

ψ(i), ψ(j) > ψ(n), ∀n | i < n < j, (6)

where ψ(t) = atan
[
=(H[x(n)])

x(n)

]
and=(·) is the imaginary part, andH[·] indicates the Hilbert

transform. Visibility graph analysis of the instantaneous phase provides the probability
functions Pψ

in(k) and Pψ
out(k). The distance between the in and out degree distributions can

be measured by making use of the Kullback–Leiber divergence [35]. We define the VGs
Kullback–Leiber Divergence metric (VGKLD) as:

VGKLD = D[Pψ
out(k), Pψ

in(k)] = ∑
k

Pψ
out(k) · log

Pψ
out(k)

Pψ
in(k)

, (7)

where log is the logarithmic function. When no arrow of time exists, both distributions
should be similar and the distance close to 0. Higher distances indicate the presence of an
arrow of time.

4. Montecarlo Simulations over Synthetic Signals

Simulations were carried out for a low explosive (like black powder), which does not
have an instantaneous pressure rise. As a result, we modeled only the sound pressure wave
obtained for a collapsing and rebounding spherical bubble using the Gilmore equation for
an initial bubble depth equal to the depth of the UNDEX [38]. In order to provide some
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statistical variability to the simulations, a very simple ray-tracing model was used. Our
current intent is not to perform a rigorous modeling of the propagation channel, but rather
to that take into account the constructive/destructive interferences of the broadband
acoustic waves as a result of the UNDEX. For that purpose we used three contributions [20]:
direct wave, bottom reflected, and surface reflected (see Figure 1). Details of the ray-tracing
simulation were as follows: seabed bottom at 50 m, receiver depth 40 m, source depth
randomly distributed in the range 6–50 m, and distance from source to receiver 1.5 km.

For non-UNDEX acoustic events, these sounds have been modeled as a damped
oscillation of random frequency ( f0) that is uniformly distributed in the frequency range
where most of the energy of UNDEX events is concentrated (100–600 Hz). This particular
modeling of the non-UNDEX events given by (8) was chosen empirically after examining
close-range misclassified events. In the simulations, the values of A = 10 and σ = 17 were
used to mimic the attenuation in time that is present in UNDEX events.

x(n) = A · e−σ·n/ fs · sin(2 · π · f0 · n/ fs), n ≥ 0 (8)

The same ray-tracing model was used for the non-UNDEX events. Figure 4 illustrates
the simulated UNDEX and non-UNDEX events. All of the arrow-of-time metrics described
in the previous section were tested in the simulated events for different signal-to-noise
ratios (SNRs), both with and without clipping.
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Figure 4. Example of simulated non-UNDEX and UNDEX events (although they are very different,
distinguishing between them may be challenging when they are severely clipped).

Although events of 1 s duration at fs = 24,000 Hz were simulated, only a small region
at the beginning of each event was used to evaluate the arrow of time with the proposed
metrics. It is in this region where most of the energy of the event is located and there
should be a stronger indicator of the time asymmetry. The specific details of how many
milliseconds were employed for each metric as well as some other settings are given in
Table 1.

Figures 5 and 6 show the results when adding different amounts of pink noise to
obtain a decreasing SNR from 15 dB to −5 dB. In each of the panels and for each of the
acoustic events (UNDEX and non-UNDEX), the continuous line represents the median of
500 Monte Carlo runs, whereas the shadow region represents the interquartile range (the
difference between the 25th and the 75th percentiles). Vertical axis limits were identically
set for the same metric between clipped and unclipped simulations.
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Table 1. Setting details used for the different arrow-of-time metrics.

Arrow-of-Time Metric Setting Details

Slope time-reversal N = 5000 (208 msec.),
N0 = 2400 (100 msec.),

τ = 5.
Prediction residuals (ARIMA) N = 5000 (208 ms.),

ARIMA (12,1,12)
Prediction residuals (LMS) N = 5000 (208 ms.),

tap size: 10 samples [34]
Visibility graphs N = 1000 (41 msec.)

Figure 5. Evolution of all the presented metrics in simulated events when the SNR decreases (Y
axis in arbitrary units). The results were obtained for 500 Monte Carlo runs and for unclipped
acoustic events.

The simulation results show that the sign-test for the ARIMA model (top left panel of
Figure 5) is not able to clearly distinguish between UNDEX and non-UNDEX events. How-
ever, the correlation coefficient metric was successful at the task (middle left panel). In the
case of the NNGD model, the linear non-UNDEX events were not accurately predicted by
the non-linear predictor. This makes both the sign-test and the correlation coefficient have
inconsistent metrics with a higher value for the UNDEX events than that obtained for the
non-UNDEX events (top and middle right panels). The time reversal (bottom left panel)
and visibility graph metrics (bottom right panel) also showed some potential for assessing
the arrow of time in simulated events, even in low SNR.
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Figure 6. Evolution of all the presented metrics in simulated events when the SNR decreases (Y axis
in arbitrary units). The results were obtained for 500 Monte Carlo runs for events clipped to 50% of
their maximum value.

When clipping is added for the ARIMA model (Figure 6), the arrow-of-time identifi-
cation by means of the correlation coefficient metric diminishes due to the fact that linear
models cannot accurately predict the clipped acoustic events. In the case of the NNGD,
since both UNDEX and non-UNDEX events become nonlinear, the NNGD achieves a
better modeling and the obtained sign-test and correlation coefficient metrics agree with
what was expected (higher metric values for the UNDEX events than those obtained for
non-UNDEX). However, only the correlation showed some potential for distinguishing
between the two acoustic events in low SNR. Time reversibility is also affected by the
clipping, but it still maintains some capacity to measure the arrow of time. The visibility
graph metric (KLD distance of the DHVg) is the metric that was the least sensitive to
clipping in simulated signals.

5. Application to Real UNDEX Events

A real situation where UNDEX of low intensity can occur is in the process of tuna
harvesting, especially blue fin tuna (BFT). Some BFT farms use a spear gun with a shotgun
shell at the end of a long stick (2–3 m) that is propelled from a spear gun with elastic/rubber
bands, detonating the shotgun shell upon contact [39]. This guarantees that death occurs as
swiftly as possible and prevents the formation and build-up of lactic acid, which decreases
the quality of the meat.

It is important to highlight that a shotgun shell has an approximate load of 40–45 grains
(2.59–2.9 g). TNT equivalent can be obtained using the relative effectiveness factor (RE
factor) of black powder, which is 0.55. The TNT has an RE of 1, so the 2.6–2.9 g are
equivalent to 1.4–1.6 g of TNT. Thus, the load of one of these detonations is clearly under
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the limit that an underwater detonation must have in order to be included in the EU MSFD
impulsive noise register in the category of very low (8 g to 210 g).

An acoustic campaign was performed in the Mediterranean sea in the area of Carta-
gena (Spain). Recordings were performed with a SAMARUC passive acoustic monitoring
device (Universitat Poliècnica de València) [40] with a Cetacean Research hydrophone (C57)
and a sampling frequency of 48 kHz. The recorder was deployed at a depth of 50 m, close
to a tuna farm where the harvesting was performed using the lupara shotgun technique
(see Figure 7).

Figure 7. Cartagena region, showing the tuna farm and the UNDEX sites (red squares) as well
as the hydrophone location (green star). The distance from the UNDEX to the hydrophone was
approximately 1.2 km.

The recordings started in October 2018 and lasted for a month with a duty cycle of
5 min on/10 min off. Preliminary detection of the acoustic events for the impulsive database
creation was performed with a short time average/long time average (STA/LTA) detector,
which is a well-known seismic impulsive event detector [41]. Settings for the STA/LTA
detector were as follows: the short time-window duration was 1 s; the long time-window
duration was 8 s; and the mean power in the short time-window was 10 times larger than
that in the long time-window. The output of the STA/LTA detector gave 132 events with
a duration of 1 s. An inspection of the database by an expert acoustic technician showed
that the database was composed of UNDEX events as well as other impulsive events that,
in many cases, resemble UNDEX events. The events were carefully analyzed and classified
as UNDEX, non-UNDEX, and UNSURE categories. Many of the events had some degree of
clipping, which made the classification of the events difficult. Figure 8 shows an example
of two real non-UNDEX and UNDEX events from the recording campaign.
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Figure 8. Example of a non-UNDEX event and a real UNDEX event from the database over the
duration of the first 0.25 s.
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The 132 potential acoustic events were also evaluated with the arrow-of-time metrics
proposed in the previous sections. The results are presented in Figure 9. The figure
also shows a threshold level (dashed green line) that was obtained so that the detection
probability of UNDEX events remains equal to 90% in all of the metrics. With this threshold,
we obtained the probability of correct classification (PCC) and the probability of false
classification (PFC) of non-UNDEX events. The results are shown in Table 2 where the
UNSURE events (yellow bars) were not taken into account for the statistics.
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Figure 9. Assessment of the arrow-of-time metrics in the database of real events (Y axis in arbitrary
units). The colors indicate the human expert classification: red corresponds to UNDEX, blue cor-
responds to non-UNDEX, and yellow corresponds to UNSURE categories. The threshold (dashed
green line) was set to obtain a fixed detection of UNDEX events equal to 90%.

The analysis of Table 2 shows that the metrics PRARIMA
ST and PRNNGD

CC were not able to
show any clear arrow-of-time indication. The metrics PRARIMA

CC , PRNNGD
ST , and TREV gave a

detection probability that was slightly superior to 50%. Although this indicates the presence
of a higher arrow of time in UNDEX events compared to non-UNDEX events, this is not
enough if these metrics are used in the design of an automatic detector. The metric obtained
from the DHVg of the instantaneous phase, the VGKLD metric, was the only one that had a
PCC/PFC in a range that might be considered acceptable for automatic classification of
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UNDEX/non-UNDEX events. This behavior agrees quite well with what was shown in the
simulations, where the VGKLD was the metric that was the least influenced by the presence
of clipping.

Table 2. Probability of correct and false classifications for a fixed constant UNDEX detection of 90%.
Results obtained when applying the metrics to the database containing UNDEX and non-UNDEX
(UNDEX) events.

PFCUNDEX PCCUNDEX PFCUNDEX PCCUNDEX

PRARIMA
ST

10% 90%

89% 11%
PRARIMA

CC 42% 57%
PRNNGD

ST 47% 53%
PRNNGD

CC 89% 11%
TREV 47% 53%

VGKLD 21% 79%

6. Conclusions

In this paper, we have presented a rigorous study of the different techniques for assess-
ing the arrow of time and their application to underwater acoustic events in general and to
UNDEX events specifically. We have shown through simulations and real signal analysis
that the pressure waves resulting from UNDEX carry some features (complexity) that
indicate the nonlinear and dissipative process originating from them. These features can
be assessed using different arrow-of-time metrics and can be used for the characterization
of UNDEX events as well as for distinguishing them from similar impulsive non-UNDEX
events. Furthermore, in this paper, we have proposed a new metric that is based on
evaluation by means of the direct horizontal visibility graphs of the instantaneous phase.
This new metric obtained good results, surpassing all other arrow-of-time metrics that
are traditionally used, even when dealing with clipped events. Overall, the arrow-of-time
assessment of real underwater acoustic events has produced promising results and pro-
vided a classification that was very similar to that obtained by an expert analyst. However,
the detection percentages were not as high as the ones obtained with simulated signals.
A feasible explanation for this might be based on the fact that a realistic channel model was
not adopted and that evidence of the arrow of time diminishes in long-range detonations
due to frequency-selective attenuation and noise. Therefore, in order to develop surveil-
lance systems and automatic UNDEX detectors, we consider that the arrow-of-time metric
proposed here should be combined with machine learning and time-frequency features.
Future research on this topic that should be addressed includes the following: studying
how to combine arrow-of-time metrics with traditional ones, performing more real UNDEX
measures at different ranges and with different explosive types; and performing simula-
tions with realistic broadband acoustic propagation models (both in shallow waters and
deep water channels). Even though the use of arrow-of-time metrics might be limited to
UNDEX that occur close to the receiver, some of the obtained results could be be valuable
in designing detectors for situations when a large amount of energy is released, such as
tsunami waves from submarine earthquakes.
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