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Cerebral white matter hyperintensities on MRI are markers of cerebral small vessel disease, a major risk factor for 
dementia and stroke. Despite the successful identification of multiple genetic variants associated with this highly 
heritable condition, its genetic architecture remains incompletely understood. More specifically, the role of DNA 
methylation has received little attention.
We investigated the association between white matter hyperintensity burden and DNA methylation in blood at 
∼450 000 cytosine-phosphate-guanine (CpG) sites in 9732 middle-aged to older adults from 14 community-based 
studies. Single CpG and region-based association analyses were carried out. Functional annotation and integrative 
cross-omics analyses were performed to identify novel genes underlying the relationship between DNA methylation 
and white matter hyperintensities.
We identified 12 single CpG and 46 region-based DNA methylation associations with white matter hyperintensity 
burden. Our top discovery single CpG, cg24202936 (P = 7.6 × 10−8), was associated with F2 expression in blood (P = 
6.4 × 10−5) and co-localized with FOLH1 expression in brain (posterior probability = 0.75). Our top differentially methy-
lated regions were in PRMT1 and in CCDC144NL-AS1, which were also represented in single CpG associations 
(cg17417856 and cg06809326, respectively). Through Mendelian randomization analyses cg06809326 was putatively 
associated with white matter hyperintensity burden (P = 0.03) and expression of CCDC144NL-AS1 possibly mediated 
this association. Differentially methylated region analysis, joint epigenetic association analysis and multi-omics co- 
localization analysis consistently identified a role of DNA methylation near SH3PXD2A, a locus previously identified  
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in genome-wide association studies of white matter hyperintensities. Gene set enrichment analyses revealed func-
tions of the identified DNA methylation loci in the blood–brain barrier and in the immune response. Integrative cross- 
omics analysis identified 19 key regulatory genes in two networks related to extracellular matrix organization, and 
lipid and lipoprotein metabolism. A drug-repositioning analysis indicated antihyperlipidaemic agents, more specif-
ically peroxisome proliferator-activated receptor-alpha, as possible target drugs for white matter hyperintensities.
Our epigenome-wide association study and integrative cross-omics analyses implicate novel genes influencing white 
matter hyperintensity burden, which converged on pathways related to the immune response and to a compromised 
blood–brain barrier possibly due to disrupted cell–cell and cell–extracellular matrix interactions. The results also sug-
gest that antihyperlipidaemic therapy may contribute to lowering risk for white matter hyperintensities possibly 
through protection against blood–brain barrier disruption.
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Introduction
Cerebral white matter hyperintensities (WMH) on MRI are indi-
cative of cerebral small vessel disease (cSVD) and are part of the 
spectrum of brain vascular injury that affects cognitive func-
tion, also known as vascular contributions to cognitive impair-
ment and dementia.1,2 While the pathophysiology of WMH is 
little understood and probably heterogeneous, it probably has 
ischaemic and neurodegenerative origins.1 Historical pathology 
data suggested chronic ischaemia resulting in demyelination 
and axonal loss as an underlying mechanism; however, neuroi-
maging data point to blood–brain barrier (BBB) dysfunction, dys-
functional blood flow linked with impaired cerebrovascular 
autoregulation, vascular stiffness, periarteriolar inflammation 
and more recently protein deposition (i.e. amyloid angiopathy).2

Genetics play a significant role in WMH with a heritability esti-
mated from 54% to 80%3–7; however, the genetic variants iden-
tified in association studies explain only ∼29% of WMH 
variance.8,9 Epigenetic changes such as DNA methylation 
(DNAm), which regulate gene expression, have emerged as an-
other key component of the genetic architecture of complex 
traits.10 Unlike DNA sequence variation, which remains un-
changed throughout life, DNAm is plastic and highly sensitive 
to changes in the environment and ageing.10,11 To date, its 
role in cSVD has received little attention. We hypothesized 
that there may be patterns of DNAm associated with WMH 
that are common across all populations. We also hypothesized 
that the interplay between genotype, epigenotype and risk fac-
tor exposure underlies cSVD aetiology and used an integrated 
analytic framework to identify such relationships.

Materials and methods
Overview

This study comprised five analytic parts to implicate novel genes 
and gene networks in WMH aetiology (Fig. 1). First, we performed 
an epigenome-wide association analysis to identify DNAm loci, 
both cytosine-phosphate-guanine (CpG) sites and differentially 
methylated regions (DMRs), associated with WMH burden. The 
identified DNAm loci were then annotated for regulatory features, 
pathways and association with other traits. Second, we investigated 
the contribution of genetic variation to variation in DNAm at the 

identified CpGs and used Mendelian randomization (MR) techni-
ques to test for causal association with WMH burden and for the 
mediating role of expression of nearby genes. Third, we examined 
the role of DNAm at established WMH genome-wide association 
study (GWAS) loci. Fourth, we integrated gene expression and ex-
pression quantitative trait loci (eQTL) data to prioritize candidate 
genes associated with the identified CpGs. Last, we performed inte-
grative cross-omics analyses to derive WMH-associated genes net-
works and their key drivers and to reposition drug targets.

Study subjects

The sample included 9732 middle-aged to older adults of European 
and African ancestry from 14 community-based studies. Our dis-
covery sample includes 5715 subjects of European ancestry (n = 
4610) and of African ancestry (n = 1105) from Atherosclerosis Risk 
in Communities (ARIC),12 Biobanking and BioMolecular resources 
Research Infrastructure,13 Cardiovascular Health Study (CHS),14

Coronary Artery Risk Development in Young Adults (CARDIA),15

Framingham Heart Study (FHS) offspring study,16,17 Genetic 
Epidemiology Network of Arteriopathy (GENOA) study,18 Lothian 
Birth Cohort 1936,19,20 Rotterdam Study21,22 and Study of Health 
in Pomerania (SHIP).23 To replicate our findings, we accessed data 
on 3398 subjects from the Alzheimer’s Disease Neuroimaging 
Initiative,24,25 FHS third generation study,26 the Older Australian 
Twin Study27,28 and the Rhineland Study.29 Additionally, we in-
cluded a secondary replication sample (n = 619) from the 
BRIDGET Consortium.30 Subjects with history of stroke or demen-
tia were excluded. Details about participating studies and study- 
specific ethics statements are provided in the Supplementary 
material. Each study obtained written informed consent from all 
participants and approval from the appropriate institutional re-
view boards.

WMH burden measurements

Brain MRI was taken in the same or the closest subsequent visit to 
the visit in which DNAm was measured. In each study, MRI scans 
were performed and interpreted using standardized procedures 
without reference to demographic or clinical information. The 
field strength of the scanners used ranged mostly from 1.5 to 3.0 
T. T1-, T2- and/or proton-density-weighted scans were obtained 
for all participants. Most studies used a fully automated 
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segmentation method to quantify WMH burden. MRI procedures 
and WMH quantification in each study are detailed in the 
Supplementary material.

DNAm profiling

DNAm levels were measured at ∼450 K CpGs from whole blood 
samples with the Illumina Infinium Human 450 Methylation 

BeadChip in most participating cohorts. The GENOA study mea-
sured methylation levels at ∼27 K CpGs with the Illumina 
Infinium HumanMethylation 27 BeadChip, entirely covered by the 
Human 450 BeadChip. CARDIA, SHIP-TREND, Alzheimer’s Disease 
Neuroimaging Initiative and Rhineland Study used the Illumina 
MethylationEPIC BeadChip with a denser coverage of CpGs 
(∼850 K). Each study independently performed quality control for 
DNAm data, complying with the agreed minimum quality control 

Figure 1 Overview of the study analytic scheme.

http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac290#supplementary-data
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guidelines; CpGs with >95% of samples with a detection P < 0.01 and 
samples with >95% of CpGs with a detection P < 0.01 were selected. 
DNAm values were then standardized using an intra-array normal-
ization method. The BRIDGET Consortium measured DNAm levels 
using Hi-seq bisulphate sequencing, and DNAm sites with sample 
coverage <95% were excluded. Details of DNAm data collection 
and processing in participating studies are presented in the 
Supplementary material.

Cohort-level epigenome-wide association analyses

We tested association between DNAm level (untransformed beta 
values) and WMH burden [ln(WMH+1)] using a linear mixed regres-
sion model by ancestry group adjusted for age, sex, study site if ap-
plicable, total (intra)cranial volume (cm3), white blood cell 
proportion (%)31 and within-ancestry principal components as 
fixed effects and technical covariates (i.e. plate, chip-position, 
row and column) as random effects. In FHS, family structure is 
also adjusted as a random effect. Multi-ancestry studies with a 
small number of subjects in each ancestry, namely CHS and 
CARDIA, performed a pooled-ancestry analysis that also adjusted 
for ancestry group as fixed effects. Additionally, subgroup analyses 
by hypertension status were conducted. Hypertension was defined 
if either systolic or diastolic blood pressure (SBP or DBP) is >140 or 
90 mmHg, respectively, or if a subject was taking any antihyperten-
sive medication at the time of MRI measurement. In the BRIDGET 
study, we tested the association of DNAm with an extreme-SVD 
phenotype defined as excessive WMH volume with or without brain 
infarcts accounting for age, sex, country, the sequencing read 
counts and sample relatedness.32 DNAm measurements and statis-
tical models used in participating studies are described in 
Supplementary material.

Epigenome-wide meta-analysis and replication 
analysis

We combined EWAS results based on sample-size-weighted 
z-score-based fixed-effect method in METAL33 because WMH was 
measured on different scales in the various cohorts and because 
our primary aim was to identify novel DNAm loci for WMH burden 
rather than estimate effect sizes of methylation probes.34

Hypertensive and normotensive subgroup meta-analyses and 
ancestry-specific meta-analyses (excluding CHS and CARDIA) were 
also performed. Study-specific results were corrected for inflation 
during meta-analysis if inflation was detected [genomic inflation 
factor (λ) > 1.0]. An association was considered as significant if P 
was smaller than Bonferroni threshold (∼1.2 × 10−7). A less stringent 
threshold was also set as 1.0 × 10−5 to detect suggestive associations. 
CpGs on sex chromosomes were not considered because our analytic 
plan did not account for hemi-methylation on the X chromosome 
due to chromosome X inactivation in females. Cross-reactive CpGs 
reported by Chen et al.35 and those showing evidence of heterogen-
eity (Cochran Q P-value < 0.05) were removed from the results post 
hoc. In the replication samples, associations for the identified CpGs 
were tested. CpGs were considered replicated if they were significant 
at the Bonferroni threshold (0.05 / the number of the CpGs). We plot-
ted epigenetic associations in cis (±50 kb) using R ‘coMET’ package.36

Annotation of regulatory features and traits

We scored genomic positions of the identified CpGs according to 
RegulomeDB’s37 ranking criteria ranging from one (likely to affect 
binding and linked to expression of a gene target) to five (minimal 

binding evidence) and also computed a probability score within a 
range from zero to one (the most likely to be a regulatory variant). 
CpGs at the locations with significant regulatory features (rank cat-
egory one or two, and probability score ≥0.9) are discussed. We also 
identified enhancers or promoters mapped to CpGs using the database 
of genome-wide enhancer-to-gene or promoter-to-gene associations 
computed based on five elements: eQTLs, eRNA co-expression, tran-
scription factor co-expression, capture Hi-C and gene target distance 
(GeneHancer DB).38 Identified CpGs were also searched in EWAS cata-
logue39 and EWAS atlas40 to identify associated traits reported in pre-
vious EWAS. Last, to examine possible correlations among the CpGs, 
Spearman correlations were calculated in 906 European ancestry and 
639 African ancestry subjects from the ARIC study.

DMR analysis

We performed a DMR analysis to identify a group of CpGs that col-
lectively influence WMH burden using two specific methods, 
Comb-p41 and DMRCate,42 accounting for their spatial correlations. 
Briefly, Comb-P detects regional enrichment of low Ps at varying dis-
tance using the Stouffer–Liptak–Kechris correction for adjacent Ps.41

DMRcate models Gaussian kernel smoothing within predefined dis-
tance (1 kbp in this study) and collapses contiguous significant CpGs 
(P < 0.05) after multiple testing correction. DMR identified by both 
Comb-P (Šidák P < 0.05) and DMRCate (FDR < 0.05) was considered 
significant. To replicate, individual association Ps were pooled at 
each identified DMRs using DMRCate in the replication samples.

Gene set enrichment analysis of WMH-associated 
epigenetic loci

Identified CpGs and DMRs were tested for enrichment in gene sets 
from MSigDB c5 gene ontology database43,44 and KEGG pathway 
database,45 using ‘gsameth’ and ‘gsaregion’ functions built in R 
‘missMethyl’ package.46

Shared epigenetics with blood pressure

BP is an influential risk factor for WMH.47–49 To investigate the 
shared epigenetics between WMH burden and BP, we performed a 
pairwise multivariate association test using summary statistics 
from a previous EWAS of SBP and DBP.50 CpGs associated with 
both traits were tested against the null hypothesis H0: βWMH = βSBP 

or DBP = 0. The test uses Z-scores for each trait and estimates multi-
variate test statistics accounting for the trait correlation calculated 
on the basis of the null associations (trait-specific P > 1 × 10−5). This 
method is implemented in the ‘metaUSAT’ software.51 To avoid 
false positive associations driven entirely by one trait, we included 
CpGs showing significance (P < 0.001) for both traits. Bonferroni 
threshold was set at 8.33 × 10−3 (=0.05/6) on the basis of the number 
of associations tested.

Heritability analysis and GWAS of WMH-associated 
CpGs

Inter-individual variation in DNAm may result from differences in 
environmental exposures, stochastic variation or genetic influ-
ences. To examine the contribution of genetic variation to variation 
in DNAm at the identified CpGs, we estimated the narrow-sense 
heritability (h2

meth) in the FHS Offspring Cohort subjects (n = 2377) 
adjusting for age, sex, blood cell counts, principal components 
and technical covariates. Body mass index (BMI) and smoking sta-
tus were additionally corrected in sensitivity analyses.

http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac290#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac290#supplementary-data
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To further identify genetic variants associated with DNAm le-
vels at the WMH-associated CpGs, we performed GWAS in ARIC 
European ancestry subjects (n = 984). Genotypes were measured 
with Affymetrix 6.0 array and imputed from 1000 Genome phase 
one version three reference using MaCH v.1.0.16. Variants were ex-
cluded if minor allele frequency <0.01, sample call rate <95% or im-
putation quality <0.3. The untransformed methylation beta value 
was tested for genetic association adjusting for age, sex, top 42 
methylation principal components and blood cell components.

Bi-directional MR analysis of the identified CpGs and 
WMH burden

To determine whether the WMH-associated DNAm level is a causal 
factor for WMH burden (Forward-MR) or a secondary outcome of 
WMH burden (Reverse-MR), we performed a bi-directional two- 
sample MR analysis52 for the identified CpGs with at least three in-
strumental variables (IVs). We identified methylation quantitative 
trait loci (mQTL) associations in cis (±1 Mb) from the FHS study 
(n = 4170) that had been validated using ARIC data (n = 963).53

Those mQTLs were clumped at linkage disequilibrium r2 < 0.05 for 
independence. For WMH, the UK Biobank GWAS summary statis-
tics (n = 11 226)54 was downloaded from the Cerebrovascular 
Disease Knowledge Portal (http://www.cerebrovascularportal.org/) 
on 1 September 2019. Reverse-MR analysis was performed using 
eight clumped genome-wide significant associations (linkage dis-
equilibrium r2 < 0.05). Since the FHS mQTL study shares only signifi-
cant associations in cis,53 we used the mQTL association statistics 
from ARIC European ancestry subjects for reverse-MR analysis.

For each CpG in both directions, causal association was 
tested on the basis of the IVW method in the R package 
‘TwoSampleMR’.55 To validate the MR result, sensitivity analyses 
based on weighted median and MR Egger methods, and built-in 
tests for pleiotropy and heterogeneity were also performed. For ex-
istence of pleiotropy (MR Egger intercept test P < 0.05), the Egger re-
gression estimate was assessed instead of the IVW estimate.

Mediating effect of in cis genes between CpGs and 
WMH burden

To investigate whether expression of nearby genes mediates the re-
lationship between the identified CpG and WMH burden, a two-step 
MR analysis was performed. We tested the directional relation-
ships: (i) from ‘the exposure (CpGs)’ to ‘the mediator (gene expres-
sion)’ (step one); and (ii) from ‘the mediator (gene expression)’ to 
‘the outcome (WMH burden)’ (step two) using the identified mQTL 
IVs, the WMH GWAS associations54 and eQTL associations from 
the GTEx version eight brain eQTL data accessed via eQTL 
Catalogue (https://www.ebi.ac.uk/eqtl/) on 12 November 2020. 
Among available GTEx brain tissues, cortex (n = 205), frontal cortex 
(n = 175), cerebellum (n = 209), cerebellar hemisphere (n = 175) and 
caudate basal ganglia (n = 194) were selected. MR association based 
on the IVW method was again tested and sensitivity analysis was 
also performed. Gene expression with IVW P < 0.05 at both steps 
was considered as a potential mediator in the association between 
the identified CpG and WMH burden.

Cis-acting genes associated with the identified CpGs 
in blood

To functionally annotate the identified CpGs, we tested associa-
tions with gene expression in blood in long-range53 cis-regions 
(±5 Mb) in 1966 and 728 European ancestry subjects from FHS and 

Rotterdam Study, respectively. Expression of the nearest gene/ 
mRNA was regressed on DNAm β score at the CpG adjusting for 
age, sex, population structure and family structure (FHS only), 
blood cell counts and technical covariates. Technical covariates 
and family structure were modelled as random effects. In sensitiv-
ity analyses, smoking status and BMI were added to the model. 
Estimates from two studies were then combined for each gene 
using the sample-sized based meta-analysis method in METAL.33

Genes co-localizing with the identified CpGs in brain

To investigate cis-acting genes co-localized with the identified 
CpGs in the brain, we performed a multiple-trait co-localization 
(moloc) analysis using brain QTL data. Before this analysis, we ex-
amined the inter-individual correlations between DNAm levels in 
whole blood and in prefrontal cortex at the identified CpGs, using 
publicly available data.56 For CpGs with significant correlation (P < 
0.05) between blood and prefrontal cortex, we tested the posterior 
probabilities for full co-localization (PPFC) that multiple traits 
(DNAm, gene expression and WMH burden) share causal variants 
at each locus, given the data. We used coloc priors of 1 × 10−5. We 
identified EA-specific GWAS associations8 and brain mQTL (n = 
543) and eQTL (n = 534) associations accessed via http:// 
mostafavilab.stat.ubc.ca/xqtl/.57 If PPFC is >0.7, we considered the 
gene is significantly co-localized with CpG and WMH burden. 
Moloc analysis was performed using the R package ‘moloc’.58

Epigenetic regulation of known GWAS loci

We next investigated the role of DNAm at established WMH GWAS 
loci, which may not have been detectable at the genome-wide sig-
nificance threshold. Among 26 loci reported in the latest WMH 
GWAS,8 we mapped 450 K-array CpGs to 21 loci. EWAS associations 
at each of these 21 loci were pooled using the Brown’s method (im-
plemented in the package ‘poolr’) adjusting for dependence among 
CpGs.59 For dependency information, we calculated correlation 
among CpGs in the GWAS loci using ARIC methylation data (906 
European ancestry and 639 African ancestry subjects). A GWAS lo-
cus with combined P was considered significant if P was smaller 
than Bonferroni-adjusted threshold (0.05/number of loci tested).

Alternatively, we performed a moloc analysis at the 21 GWAS 
loci, again using the GWAS and brain QTL data.8,57 With the priors 
of 1 × 10−5, we considered genes with a PPFC >70% as convincingly 
co-localized with DNAm and WMH burden.

Identification of biological pathways using 
multi-dimensional data integration

Integrating multi-omics associations for WMH may boost power 
to identify novel genes influencing WMH burden. We integrated 
genetic,8 transcriptomic60 and epigenetic GWAS of WMH using 
the R package ‘mergeomics’ (version 1.2).61 To reduce noise in 
the GWAS data, the top 50% of genetic associations8 were in-
cluded and pruned at r2 < 0.5 based on HapMap3 linkage disequi-
librium information as recommended.61 For transcriptomic 
associations, we used the recent WMH transcriptome-wide associ-
ation study (TWAS) results.60 For epigenetic associations, we used 
our discovery EWAS. Markers were primarily mapped to the nearest 
genes. For CpGs, cis-acting genes reported in the MesaEpiGenomics 
study62 were additionally annotated. For each GWAS, EWAS and 
TWAS, we tested marker-level enrichment with hierarchical per-
mutation size of 20 000 on the basis of biological pathways from pre- 
defined public databases: KEGG,45 REACTOME,63 Biocarta64 and the 

http://www.cerebrovascularportal.org/
https://www.ebi.ac.uk/eqtl/
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gene ontology knowledgebase.65,66 Then, we meta-analysed the en-
riched gene sets from association studies and identified the 
WMH-associated gene sets (FDR-adjusted P < 0.05).

To describe the regulatory network of the identified gene sets 
and identify its local hub genes, we performed a weighted key dri-
ver analysis (wKDA) using the web-based software Mergeomics ver-
sion 2.0.67 Gene regulatory network was constructed using in-house 
brain-specific Bayesian network (minimum hub overlap 0.33 and 
directed edge type)68 and visualized via Cytoscape version 3.8.2.69

We also conducted an overlap-based drug-repositioning ana-
lysis ‘PharmOmics’ based on the identified key driver genes (FDR 
< 0.05) to predict potential drugs or small molecules targeting 
WMH.70 PharmOmics comprises a curated drug signature database 
covering 941 drugs, constructed from transcriptomic data across 
>20 tissues from rat, human and mouse. For our analysis, we se-
lected drug signatures from relevant tissues (in vivo human tran-
scriptome data in cardiovascular and nervous system, and in vitro 
transcriptome data from murine oligodendroglial precursor cells), 
and examined the overlap between these drug signature genes and 
key driver genes from our identified WMH-associated gene sets.

Data availability

The data that support the findings of this study are included in this 
paper. Full EWAS summary statistics are available in dbGaP at 
phs000930.v9.p1.

Results
Identification of epigenetic changes associated with 
WMH burden

Study sample characteristics

In the discovery sample, the mean age ranges from 49.7 years in 
SHIP to 74.6 in CHS. Sex ratios are balanced in all studies except 
for GENOA study, which has 72.8% female. ARIC, CARDIA and 
CHS have both European ancestry and African ancestry subjects, 
other studies consist of single ancestry subjects (African or 
European ancestry). In the primary replication sample, subjects 
from FHS third generation and Rhineland Study (mean age 47.1 
and 54.1 years, respectively), which compose 86.2% of the replica-
tion study, are younger than most discovery studies and show rela-
tively smaller median WMH burden (0.34 in the FHS third 
generation study and 0.40 in the Rhineland Study). All subjects in 
the replication studies are of European ancestry. Demographic 
characteristics of participating cohorts are shown in 
Supplementary Table 1.

Novel DNAm loci are associated with WMH burden

In the discovery sample, we identified a novel epigenome-wide sig-
nificant association between WMH burden and level of DNAm at 
cg24202936 (Z = 5.38, P = 7.58 × 10−8) in SEPTIN7P11. Associations at 
cg24202936 in each study are presented in a forest plot 
(Supplementary Fig. 1) and regional associations within 50 kb are 
presented with annotations (Supplementary Fig. 2). At the suggest-
ive significance threshold of 1 × 10−5, we identified 11 additional loci 
(Table 1). The associations remained significant (P < 0.05/12 = 4.17 × 
10−3) after adjusting for BMI, smoking status and SBP and DBP. 
Quantile–quantile and Miami plots are presented in Supplementary 
Figs 3 and 4. All subsequent analyses focus on these 12 CpGs, which 
are referred to as ‘target CpGs’. None of the target CpGs associations 

were replicated in independent samples and a meta-analysis of the 
discovery and replication samples showed significant heterogeneity 
in many of the resulting associations, which was not present in the 
discovery cohorts (Supplementary Table 2). Target CpGs showed con-
sistent associations with WMH in subgroup analyses by ancestry and 
hypertension status (Supplementary Tables 3 and 4). Cg06450373 in 
CDH18 (P = 6.48 × 10−8) was identified in normotensive subjects 
(Supplementary Table 5); but not replicated. In a gene set enrichment 
analysis on discovered CpGs (P < 1.0 × 10−5), ‘cell–cell junction organ-
ization’ was identified as the top pathway [P = 1.32 × 10−3, false discov-
ery rate (FDR) = 0.32].

Annotated regulatory functions of target CpGs

We found significant regulatory features from RegulomeDB at the 
genomic positions of cg24202936 (rank 2b and score 0.93), and 
cg06809326 (rank 2b and score 0.91) (Supplementary Table 6). 
Cg24202936 resides near a transcriptional starting site (0.2 kb up-
stream), and identified as a transcriptional factor binding site com-
putationally annotated with 20 genes (Supplementary Table 6). 
Previously reported EWAS traits associated with target CpGs are 
presented in Supplementary Table 7. In particular, cg24202936 
was previously reported associated with HIV infection.71

Cg06450373, cg031161214, cg01506471 and cg14547240 were corre-
lated each other in both ancestries with weak to moderate r (0.23 
to 0.55) (Supplementary Fig. 5). In African ancestry, cg23586595 
showed weak but significant correlations with cg13476133 (r = 
0.32), cg03116124 (r = −0.42) and cg14547240 (r = −0.36). No corre-
lated CpG (|r| > 0.3) was identified for our top CpG, cg24202936, in 
both ancestries.

WMH-associated DMRs are enriched in immune 
response-related pathways

We identified 46 DMRs in associations with WMH burden 
(Supplementary Table 8). Notably, one DMR was in SH3PXD2A, 
previously identified in GWAS.8,72–74 Identified DMRs were en-
riched in several gene ontologies, including signal transducer 
and activator of transcription family protein binding (FDR = 4.91 
× 10−3) and defence response to virus (FDR = 5.68 × 10−3), which 
are related to the immune response (Supplementary Table 9). 
Of the 46 identified DMRs, PRMT1, ABAT, BHMT2, C11orf21, 
IZUMO1, C5orf66, ENPEP, SLC35F3, FBXO47, SLC45A4, KCTD16, 
KITLG and UCN3 were replicated (Supplementary Table 8). Of 
note, ENPEP, SLC35F3 and SLC45A4 were previously reported in 
BP GWAS.75–81

Shared epigenetic loci between WMH and BP

At the Bonferroni-corrected threshold (P < 8.33 × 10−3), we identified 
six CpGs associated with both WMH burden and BP (Supplementary 
Table 10). For WMH-DBP, cg23291754 in MOBKL1A (P = 2.38 × 10−7) 
and cg24372586 in GNL1 (P = 7.84 × 10−7) were identified. For 
WMH-SBP, cg00711496 in CDC42BPB (P = 1.99 × 10−7), cg04987734 in 
C19orf76; PRMT1 (P = 3.09 × 10−7), cg00934987 in SEPT4 (P = 1.07 × 
10−6) and cg18770635 in KLHDC7B (P = 1.68 × 10−6) were identified.

Heritability of the WMH-associated CpGs

Significant h2
meth was estimated for cg17417856 (40.4%, P = 1.37 × 

10−8), cg06809326 (26.5%, P = 1.03 × 10−4), cg23586595 (24.2%, P = 
1.47 × 10−3), cg17577122 (14.3%, P = 2.80 × 10−2) and cg24202936 
(15.5%, P = 1.34 × 10−2) (Table 2). Additional adjustment for BMI 
and smoking status did not significantly modify these estimates. 

http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac290#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac290#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac290#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac290#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac290#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac290#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac290#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac290#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac290#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac290#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac290#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac290#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac290#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac290#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac290#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac290#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac290#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac290#supplementary-data
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In GWAS of the target CpGs in the ARIC European ancestry sam-
ple, we observed significant cis-genetic influence on cg06809326, 
cg13476133 and cg24202936 (Supplementary Fig. 6). This result 
agrees with a previous publication that included the same 
dataset.53

Mendelian randomization analyses between target CpGs 
and WMH burden

Forward two-sample multiple IV MR analysis was performed 
for two target CpGs, cg06809326 and cg24202936, which have 
at least three independent cis-mQTL IVs in Huan et al.53

(Supplementary Table 11). We found a marginally significant causal 
relationship from cg06809326 to WMH burden (P = 2.91 × 10−2). 
Higher methylation level at the locus is associated with greater 
WMH burden {odds ratio (OR) [95% confidence interval (CI)] = 1.39 
(1.03, 1.87)}. Evidence was lacking for horizontal pleiotropy (P = 
0.41) or heterogeneity (P = 0.42) (Supplementary Table 12). In 
reverse-MR analysis, evidence that WMH causally influence methy-
lation levels at any of the target CpGs was lacking (Supplementary 
Tables 12 and 13).

Using the same three IVs, we also investigated whether 
cg6809326 is causally associated with expression of nearby genes 
(step one). Two cis transcripts were annotated to this CpG in GTEx 
version eight data.82 They both encode a long non-coding RNA de-
signated as CCDC144NL and CCDC144NL-AS1, and we identified one 
IV for both transcripts. In all five brain tissues, we found evidence of 
causal association between cg06809326 and both CCDC144NL and 
CCDC144NL-AS1 (Supplementary Table 14). In step two, a marginal 
association between CCDC144NL and WMH burden was observed in 
caudate basal ganglia and cortex (step one P = 1.11 × 10−3 and step 
two P = 3.94 × 10−2 in caudate basal ganglia; step one P = 1.21 × 10−3 

and step two P = 4.28 × 10−2 in cortex).

DNAm at established GWAS loci and WMH burden

We estimated the combined effect of DNAm at each locus from our 
EWAS results at the 21 established GWAS loci.8 Consistent with our 
DMR results, CpGs at the GWAS locus SH3PXD2A were jointly asso-
ciated with WMH (P = 8.48 × 10−3), but evidence of DNAm effects on 
WMH at other loci was lacking (Supplementary Table 15). We also 
conducted a multiple-trait co-localization analysis (moloc)58 of 

Table 1 Single-CpG associations with WMH burden in the discovery sample (P < 1 × 10–5)

CpG Chr:Position (hg19) Nearest gene Reduced model Full model

n Z P Q FDR n Z P

cg24202936 11:50257256 SEPTIN7P11 5359 5.38 7.58 × 10–8 0.03 0.04 4930 5.28 1.30 × 10–7

cg17417856 19:50191637 PRMT1;ADM5 4917 –4.95 7.42 × 10–7 0.15 0.28 4526 –4.40 1.11 × 10–5

cg01506471 7:3990479 SDK1 5359 –4.81 1.52 × 10–6 0.21 0.3 4930 –4.00 6.41 × 10–5

cg14547240 4:15428750 C1QTNF7 5359 –4.71 2.48 × 10–6 0.25 0.3 4930 –4.17 3.10 × 10–5

cg21547371 3:52869521 MUSTN1 5359 –4.65 3.30 × 10–6 0.25 0.3 4930 –4.06 4.95 × 10–5

cg03116124 1:231293208 TRIM67 5129 –4.64 3.54 × 10–6 0.25 0.31 4700 –4.58 4.63 × 10–6

cg06809326 17:20799526 CCDC144NL-AS1 5359 4.57 4.80 × 10–6 0.28 0.34 4930 3.44 5.88 × 10–4

cg13476133 7:44185646 GCK 5359 4.55 5.46 × 10–6 0.28 0.36 4930 4.03 5.65 × 10–5

cg14133539 9:104568 FOXD4 4917 –4.53 5.98 × 10–6 0.28 0.38 4526 –4.45 8.41 × 10–6

cg17577122 22:19511967 CLDN5 5359 4.50 6.88 × 10–6 0.29 0.4 4930 4.79 1.68 × 10–6

cg23586595 4:84034390 PLAC8 5359 4.45 8.45 × 10–6 0.32 0.43 4930 3.93 8.36 × 10–5

cg23054394 3:140784675 SPSB4 5359 –4.42 9.88 × 10–6 0.34 0.45 4930 –4.01 6.07 × 10–5

The reduced model is adjusted for age, sex, study site (if applicable), total (intra)cranial volume (cm3), white blood cell proportion (%), technical covariates and genetic principal 

components. The full model is additionally adjusted for BMI, smoking status and systolic and diastolic blood pressure measures. Chr = chromosome; EA =  European ancestry; 
FDR = local false discovery rate value; n = number of subjects tested for the CpG; P = P-value; Q = Q-value; SE = standard error;  Z = Z-score.

Table 2 Heritability estimates of WMH-associated CpGs

CpG Nearest gene Reduced model Full model

h2
meth SE P h2

meth SE P

cg0150647 SDK1 0.02 0.07 0.38 0.01 0.07 0.42
cg03116124 TRIM67 0.01 0.07 0.45 0.01 0.07 0.47
cg06809326 CCDC144NL 0.26 0.07 1.03 × 10–4a 0.27 0.07 9.51 × 10–5a

cg13476133 GCK 0.09 0.07 0.11 0.09 0.07 0.12
cg14133539 FO × D4 0.08 0.07 0.14 0.07 0.07 0.17
cg14547240 C1QTNF7 0.06 0.07 0.20 0.06 0.07 0.18
cg17417856 PRMT1;ADM5 0.40 0.08 1.37 × 10–8a 0.40 0.08 3.06 × 10–8a

cg17577122 CLDN5 0.14 0.08 2.80 × 10–2 0.15 0.08 2.27 × 10–2

cg21547371 MUSTN1 0.00 – 0.50 0.00 0.50
cg23054394 SPSB4 0.00 – 0.50 0.00 0.50
cg23586595 PLAC8 0.24 0.08 1.47 × 10–3a 0.23 0.08 2.51 × 10–3a

cg24202936 LOC441601 0.15 0.07 1.34 × 10–2 0.16 0.07 1.17 × 10–2

h2
meth = the narrow-sense heritability; SE = standard error. Reduced model is adjusted for age, sex, blood cell counts, principal components of the ancestry and technical 

covariates. Full model is additionally adjusted for BMI and smoking. 
aSignificant after adjustment for multiple testing burden.

http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac290#supplementary-data
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brain mQTL and expression QTL (eQTL),57 and WMH-associated 
single nucleotide polymorphisms (SNPs). At 17 out of the 21 
GWAS loci, we identified significant co-localization evidence 
(PPFC > 0.7) (Supplementary Table 16 and Supplementary Fig. 7). 
At eight loci, the SNPs with the highest PPFC were the sentinel 
SNPs in the GWAS.

Candidate genes implicated by gene-expression 
associations with the target CpGs

At the Bonferroni threshold (6.93 × 10−5 = 0.05/722 cis genes in ±5 Mb 
of the target CpGs), we identified significant associations between 
cg23586595 and PLAC8 (P = 2.98 × 10−7) and between cg24202936 
and F2 (P = 6.39 × 10−5) (Table 3). Adjusting for additional covariates 
(smoking status and BMI) did not change these associations.

Cg24202936, cg01506471 and cg06809326 showed significant cor-
relation estimates (|r| > 0.3) between blood and brain (r = 0.33, 0.87 
and 0.57, respectively) (Supplementary Table 17) and, thus, were 
tested for co-localization. We found that mQTLs for cg24202936 
and WMH GWAS SNPs colocalize with FOLH1 expression in dorso-
lateral prefrontal cortex (DLPFC) (PPFC = 0.75) (Supplementary 
Table 18). Also, suggestive evidence existed for co-localization 
of cg06809326 mQTLs, CCDC144NL-AS1 eQTLs and WMH SNPs 
(PPFC = 0.69).

Integrative cross-omics analysis

Integrative cross-omics analysis identifies novel gene 
regulatory networks

At FDR <0.05, we identified 576 WMH-associated gene sets enriched 
from the integrated data of GWAS, EWAS and TWAS out of 12 303 
gene sets from curated databases.45,63–66 Top associated gene sets 
includes ‘regulation of actin cytoskeleton’ (P = 1.14 × 10−45, 211 
genes), ‘telomeres, telomerase, cellular ageing and immortality’ 
(P = 1.10 × 10−35, 18 genes), ‘integrin-mediated cell surface interac-
tions’ (P = 3.17 × 10−34, 84 genes), ‘thrombin signalling through pro-
teinase activated receptors’ (P = 1.41 × 10−33, 32 genes) and ‘Nef 
protein mediated CD4 down-regulation’ (P = 4.70 × 10−32, nine 
genes). All enriched pathways with FDR P < 0.05 are listed in 
Supplementary Table 19.

We derived two WMH burden-associated gene networks in 
brain. The first network is comprised of four subnetworks. Five 
key driver genes (FMOD, COL3A1, SERPING1, SLC13A4 and ISLR) re-
present a subnetwork of ‘extracellular matrix (ECM) organization, 
ECM–receptor interaction, focal adhesion and collagen formation’. 
Additionally, three related subnetworks, ‘smooth muscle contrac-
tion’ with key driver TAGLN; ‘G-protein-coupled receptor ligand 
binding’ with key drivers GAL, ECEL1, ESR1 and NTS; and ‘cytokine 
signalling in immune system’ with key drivers IFIT1 and RTP4, 
make up the network (Fig. 2 and Supplementary Table 20). We 
also identified an independent second network associated with ‘li-
pid and lipoprotein metabolism’, with key driver gene KNG1. Genes 
included in each subnetwork are presented in Supplementary 
Table 21.

Overlap-based drug-repositioning analysis of 
WMH-associated genes

Using drug signatures derived from in vivo cardiovascular and ner-
vous system data, we predicted antihyperlipidaemic drugs, includ-
ing PPAR-α (peroxisome proliferator-activated receptor-alpha) 
agonist ‘fenofibrate’, as the top therapeutic target. Using drug sig-
natures derived from murine oligodendroglial precursor cells 
data, we predicted several small molecules, including a glycogen 
synthase kinase inhibitor and a phenylalanyl tRNA synthetase in-
hibitor that may have therapeutic potential for Alzheimer’s dis-
ease83 and autoimmune diseases,84 respectively (Supplementary 
Table 22).

Discussion
This first EWAS of WMH burden in 9732 middle-aged to older adults 
from 14 community-based cohorts identified several novel epigen-
etic loci. Although we could not independently replicate the associ-
ation of single CpGs with WMH, probably due to a limited sample 
size and differences between the discovery and replication sample, 
functional annotation and bioinformatic analyses provided strong 
supportive evidence. Moreover, powerful DMR analyses identified 
46 DMRs of which 13 were replicated. Integrative analyses of 
multi-omics information also suggested novel gene networks 
with key drivers and potential drug targets for WMH.

We identified a novel epigenetic locus, cg24204936, mapping to a 
pseudogene SEPTIN7P11. Functional integration revealed two can-
didate genes whose expression may be influenced by variation in 
DNAm at this locus: F2 in blood and FOLH1 in DLPFC. Prothrombin 
encoded by F2 plays an essential role in blood clot formation, angio-
genesis, tissue repair and vascular integrity. A prothrombotic state 
or circulating prothrombin has been reported for symptomatic 
cSVD,85,86 WMH and stroke.87,88 However, it remains unclear 
whether coagulation plays a major role in the aetiology of WMH 
or is secondary to injury to the cerebral small vessels and white 
matter.89 FOLH1 encodes glutamate carboxypeptidase II that cata-
lyses the hydrolysis of N-acetylaspartylglutamate. An elevated le-
vel of N-acetylaspartylglutamate in the CSF has been reported in 
two patients with almost complete absence of myelin in the 
CNS90 and has been proposed as a diagnostic biomarker for rare dis-
eases of the white matter.91

An epigenetic locus mapping to PRMT1, which encodes a protein 
arginine N-methylase, was identified in single-CpG and DMR ana-
lyses and also as a shared epigenetics locus with BP. The biological 
link between DNAm at PRMT1 and WMH burden may involve path-
ways related to endothelial dysfunction, which have previously 
been implicated in WMH aetiology.92 PRMT1, a predominant mem-
ber of the PRMT family, methylates histone and non-histone pro-
teins to regulate various cellular functions.93 PRMT1 is essential 
for the development of neurons, astrocytes and oligodendrocytes 
and is critical for myelin formation.94 PRMTs also catalyse the for-
mation of ADMA (asymmetric dimethylarginine), which reduces ni-
tric oxide production, promotes endothelial dysfunction in the BBB 

Table 3 Cis genes (±5 Mb) whose expression is significantly associated with identified CpGs

CpG Gene Region (hg19) n Zreduced Preduced Zfull Pfull

cg23586595 PLAC8 4:84011211–84138405 2687 −5.13 2.98 × 10–7 −5.11 3.27 × 10–7

cg24202936 F2 11:46740749–46761054 1963 −4.00 6.39 × 10–5 −4.01 6.04 × 10–5

Z-scores and P-values from the reduced and full model are presented. Reduced model is adjusted for age, sex, blood cell counts, principal components of the ancestry and 
technical covariates. Full model is additionally adjusted for BMI and smoking. PLAC8 = placenta-associated 8; F2 = coagulation factor II.
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and triggers the immune response in atherosclerosis.92,95,96 Higher 
ADMA levels have been repeatedly associated with cSVD and its 
monogenic form, cerebral autosomal dominant arteriopathy with 
subcortical infarcts and leukoencephalopathy.97–103

Single-CpG association combined with functional genomic ana-
lyses and DMR analyses identified a novel epigenetic locus near 
CCDC144NL;CCDC144NL-AS1 (coiled-coil domain containing 144 
family and its antisense RNA1). Cg06809326 is under strong 
cis-genetic control and brain expression of its nearest gene, 
CCDC144NL;CCDC144NL-AS1, may mediate the association between 
DNAm and WMH burden (Supplementary Fig. 8). A TWAS of WMH 
using blood gene-expression data60 did not report a significant as-
sociation for CCDC144NL;CCDC144NL-AS1 expression, possibly due 
to its low expression in blood. CCDC144NL-AS1 encodes a long non- 
coding mRNA transcript that controls expression of target genes by 

acting as a molecular sponge for various regulatory miRNAs.104–109

In vitro studies have uncovered several of its target genes with po-
tentially relevant function to cSVD. These include matrix metallo-
proteinases MMP2 and MMP9,108 F-actin and vimentin,110 and 
transforming growth factor beta (TGF-β)-activated kinase 1 
(TAK1).106 MMP2 and MMP9 can damage the BBB by triggering re-
cruitment of immune cells111 and have been implicated in white 
matter injury and cSVD.112 F-actin plays an important role in main-
taining the shape of endothelial cells and the integrity of the BBB.113

Disturbed TGF-β signalling has been implicated in the pathogenesis 
of several monogenic forms of cSVD.114–117 Deficiency of TAK1 in 
mouse brain endothelial cells resulted in endothelial cell death, 
small vessel rarefaction and disruption of the BBB.118

A central role of endothelial dysfunction, possibly resulting in a 
compromised BBB, in WMH burden119 is further suggested by 

Figure 2 WMH-associated gene networks. WMH-associated genes based on multi-molecular evidence are organized around the 19 key driver genes. 
(A) WMH-associated network consisting of four subnetworks—extracellular matrix (ECM) organization (FMOD, COL3A1, SEPING1, SLC13A4 and ISLR); 
smooth muscle contraction (TAGLN); G-protein-coupled receptor ligand binding (GAL, ECEL1, ESR1 and NTS) and cytokine signalling in immune system 
(IFIT1 and RTP4). (B) WMH-associated network of lipid and lipoprotein metabolism (KNG1). Key drivers and associated gene networks identified in the 
Mergeomics analysis are coloured in orange. Neighbouring genes are grouped into networks and labelled in random colours.

http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac290#supplementary-data
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identified DNAm associations in genes involved in cell junctions. 
Claudins are integral membrane proteins that comprise tight junc-
tions specifically in brain microvascular endothelial120 cells and that 
regulate BBB permeability.121 Claudin-5 mapped to cg17577122 is 
the most enriched tight junction protein in the BBB, and its dysfunc-
tion has been implicated in neurodegenerative and neuroinflamma-
tory diseases, and cSVD.122–126 A recent DMR analysis using DLPFC 
DNAm levels also identified CLDN5 to be associated with cognitive de-
cline.127 In normotensive subjects, we identified a CpG in cadherin 18 
(CDH18) that encodes an adherens junction protein, which mediates 
calcium-dependent cell–cell adhesion. CDH18 is also involved in cell 
junction organization process and in cell signalling pathways includ-
ing G-proteins signalling together with F2.128

Our DMR analysis, aggregated epigenetic associations using 
Brown’s method59 and moloc analysis using brain QTL data consist-
ently identified an epigenetic association at a known WMH GWAS 
locus, SH3PXD2A (SH3 and PX-domain-containing protein 2A).8,72–74

Several genome-wide associations with WMH-related traits have 
also been reported at SH3PXD2A, including white matter microstruc-
ture129 and stroke.130,131 SH3PXD2A encodes an adaptor protein 
(TKS5) involved in the formation of podosomes that act as sites of 
close contact to as well as degradation of ECM.132 Gene set enrich-
ment of identified DNAm loci and integrative cross-omics analyses 
collectively point to a central role of the ECM in WMH burden. One 
of the two WMH burden networks identified through the 
Mergeomics approach centred around key driver genes involved in 
ECM organization and function and the top associated module was 
‘regulation of actin cytoskeleton’. Notably, actin polymerization 
and disassembly of junctional proteins within microvascular endo-
thelial cells were shown to play a key role in early BBB disruption 
in a murine model.133

Another network includes genes that function in lipid and lipo-
protein metabolism and our overlap-based drug-repositioning ana-
lyses suggested antihyperlipidaemic drugs as potential drug 
targets. A recent MR analysis showed that genetically increased 
high-density lipoprotein cholesterol level was associated with low-
er WMH volume and lower risk of small vessel stroke.134 Statin ther-
apy for cSVD has also been regarded as promising since individuals 
with high WMH burden typically carry higher vascular risk factors. 
Few randomized clinical trials assessing the effect of lipid lowering 
on WMH progression have been conducted and they have generally 
provided mixed results.135–137 While they suggest a possible role of 
statins, in particular rosuvastatin, in preventing WMH progression, 
the lack of high-quality data prevents strong evidence-based rec-
ommendation at this time.138 It has been postulated that statins im-
prove endothelial function and stabilize the BBB in cSVD.139,140

Studies that investigated membrane proteins including phospho-
lipid flippase (ATP11B) and aquaporin-4 showed that the loss of 
these proteins cause pathological features of cSVD including endo-
thelial cell dysfunction with reduced tight junctions, nitric oxide, 
oligodendrocyte progenitor cell maturation block and microglial 
activation.126,141

Finally, this study provides further emphasis concerning the 
long-observed perivascular inflammation as an additional crucial 
player in cSVD pathology and provides a possible explanation. 
Interestingly, gene set enrichment analyses identified a possible 
role of the defence response to viral infection with several 
DMR-associated genes related to interferon gamma signalling and 
the innate immune response (DTX3L-PARP9, BNIP3 and IFITM1). 
Our top associated CpG has been previously reported in an EWAS 
of chronic HIV infection71 and our drug-repositioning analysis 
also identified a HIV antiviral as a possible drug target. Several 

studies have reported that people with HIV are at higher risk of 
an increased burden of WMH compared to uninfected 
controls.142,143

Several limitations of our study must be acknowledged. First, 
many of our EWAS discoveries were not independently confirmed. 
Since a series of functional analyses showed biological relevance, 
we suspect that the lack of replication may stem from the limited 
size of the replication sample and from differences between the 
discovery and replication samples as hinted by the increased het-
erogeneity in the DNAm association observed in the meta-analysis 
(Supplementary Table 2). Indeed, variation in WMH burden was 
smaller in the replication studies than in the discovery studies per-
haps due to the younger age of the participants. The younger co-
horts, CARDIA (n = 277) with a mean age 53.9 years and SHIP (n = 
214) with a mean age 49.7 years, make up only 8.59% of the discov-
ery sample; whereas the Rhineland Study with a mean age 54.1 
years and FHS third generation cohort with a mean age of 47.1 
years, make up over 86% of the replication sample. Replication of 
several WMH-associated loci identified through more powerful 
DMR analyses further underscore an underpowered replication 
study for single-CpG associations. Additional studies are needed 
to confirm the findings presented here. Second, we conducted a 
subgroup analysis stratified by hypertension status, but statistical 
power in each stratum was limited. A more ideal design to study 
this and other modifiable risk factors of cSVD will be a longitudinal 
study or a stratified association study of a larger sample size. 
Similarly, our study was not sufficiently powered to examine 
ancestry-specific associations of DNAm with WMH and possible 
ancestry difference in epigenetic patterns could not be investi-
gated. Third, we did not adjust for additional lifestyle factors or co-
morbidities to maximize our sample size by minimizing the 
number of covariates in the models. Our primary goal was to iden-
tify novel DNAm loci associated with WMH burden and we cannot 
exclude the possibility that the identified loci may reflect, in part, 
variation in those risk factors. Fourth, the currently publicly avail-
able brain QTL data are limited to cis-regions of omics markers 
and, thus, our in silico bioinformatics analyses were restricted 
only to the CpGs with substantial cis-acting genetic influence. For 
example, cg17417856 in PRMT1 had a strong heritability estimate 
(h2 = 0.40, P = 1.37 × 10−8) but was not followed-up because it was un-
der polygenic control. Last, the study was conducted in blood and 
cell type-specific associations, most notably in brain, may have 
been missed. To extrapolate the findings in blood to brain, we as-
sessed the correlation with DNAm in brain, and used available 
brain QTL data. Due to the difficulties of getting both brain DNAm 
and MRI data from a large population-based sample, an EWAS of 
WMH burden using brain DNAm may not be easy to achieve. 
However, findings from this large blood-based study may provide 
a basis for an epigenetic candidate gene study in the brain.
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