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Abstract

Susceptibility to primary biliary cirrhosis (PBC) is strongly associated with HLA region 

polymorphisms. To determine if associations can be explained by classical HLA determinants we 

studied Italian 676 cases and 1440 controls with genotyped with dense single nucleotide 

polymorphisms (SNPs) for which classical HLA alleles and amino acids were imputed. Although 

previous genome-wide association studies and our results show stronger SNP associations near 

DQB1, we demonstrate that the HLA signals can be attributed to classical DRB1 and DPB1 genes. 

Strong support for the predominant role of DRB1 is provided by our conditional analyses. We also 

demonstrate an independent association of DPB1. Specific HLA-DRB1 genes (*08, *11 and *14) 

account for most of the DRB1 association signal. Consistent with previous studies, DRB1*08 (p = 

1.59 × 10−11) was the strongest predisposing allele where as DRB1*11 (p = 1.42 × 10−10) was 

protective. Additionally DRB1*14 and the DPB1 association (DPB1*03:01) (p = 9.18 × 10−7) 

were predisposing risk alleles. No signal was observed in the HLA class 1 or class 3 regions. 

These findings better define the association of PBC with HLA and specifically support the role of 

classical HLA-DRB1 and DPB1 genes and alleles in susceptibility to PBC.
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Introduction

The human major histocompatibility complex, HLA, has been implicated in the 

etiopathogenesis of primary biliary cirrhosis (PBC), similar to many other autoimmune 

diseases. Genome-wide association studies (GWAS) of PBC including our own find the 

strongest association with single nucleotide polymorphisms (SNPs) within the HLA 

region1–3. In these studies the peak association signal is between HLA-DQA1 and HLA-

DQB1. Multiple studies of PBC also show association with particular classical HLA alleles 

in PBC (reviewed in Invernizzi4). These studies have variably implicated different DRB1 

alleles in European populations with most studies including all larger cohorts showing 

association of DRB1*085, 6. Our previous studies in an Italian cohort with PBC showed the 

association of DRB1*08 as predisposing, and DRB1*11 and DRB1*13 as protective 

alleles6. A study using a small cohort (32 German PBC cases and 47 controls) suggest that 

DPB1 associations may also be present in Europeans7. However, a comprehensive study of 

HLA region associations has not been performed and like other autoimmune diseases it is 

unclear which determinants are actually causally related to pathogenesis.

To further study HLA associations in PBC, in the current study we used the most recent 

advances in imputation algorithms and sequence information resources including the 1000 

genome database to accurately impute missing SNPs, and importantly HLA classical alleles. 

Specifically, our investigation rests on recent development and resources for imputing HLA 

classical alleles including a reference set of European subjects8. For our study we used an 

inference set of SNP genotypes from both GWAS and a designed chip array, the 

Immunochip9 that contains a set of SNPs that have been used in multiple studies of HLA10. 

We perform a series of conditioning analyses that clarify which HLA genes and alleles 

underlie the major component of the genetic associations of PBC.

Results

Analyses Show Strong Association of Imputed SNPs and HLA Determinants

To further define PBC - HLA region associations we analyzed association using imputed 

genotypes with high probabilities and information scores (see Materials and Methods). 

These studies utilized genotypes from both GWAS and Immunochip arrays that contained 

large numbers of SNPs in the MHC region (Table 1 Supporting Table 1 and see Materials 
and Methods). Strong association was observed with the peak association (p = 9.83 × 

10−17) with rs115721871 at position 32653792 distal to DQB1 (Fig. 1A, Table 2 and 

Supporting Table 2). Although the strongest associations were with non-coding SNPs, 

multiple classical genes in HLA show strong association with PBC (Table 2). For the 

classical HLA genes the strongest association was with DRB*08 (p = 1.59 × 10−11). The 

DQB1*04:02 and DQA1*04:01 in tight LD with DRB*08 (r2 = 0.84 and 0.89, respectively) 

showed nearly equivalent signals (1.38 × 10−10, 1.90 × 10−10, respectively). Very strong 

association was also observed for DRB1*11 (p = 1.42 × 10−10) with a weaker association 

with the DQB1 allele (DQB1*03:01, p = 6.10×10−9) that is in LD (r2 = 0.75) with 

DRB1*11. Less strong associations were observed with DRB1*14, DQB1*05:03 (6.89 × 

10−7 and 6.21 × 10−7, respectively), and DPB1*03:01 (p =9.18 × 10−7). DQB1*05:03 is in 

nearly complete LD with DRB1*14 (r2 = 0.97). DPB1*03:01 is not in LD with any of the 
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DRB1, DQB1 or DQA1 classical alleles or AAs (r2 < 0.01). There was no association (p > 

10−4) observed for classical alleles in HLA A, B, C or DPA1.

As expected from the analysis of classical HLA alleles, PBC also showed strong association 

with specific AAs in these genes. Most of the HLA AA showing association signals 

corresponded to the key residues that distinguish the specific classical alleles which for 

DRB1, included lysine (L) at AA74 in DRB1 (DRB*08), glutamate (E) at AA58 (DRB*11), 

alanine (A) at AA57 (DRB1*14), and histidine (H) at AA60 (DRB1*14). Similar results 

were observed for specific DQB1, and DQA1 AAs that are in strong LD with specific DRB1 

alleles and AAs (Supporting Table 2).

Conditioning Studies Using Classical HLA Genes

To examine whether these associations could be explained for by known coding differences 

in genes we next performed a series of conditional analyses. These studies were done by 

conditioning on a combination of the alleles from an HLA gene (e.g. DRB1) to control for 

the association that might be attributable to each gene, albeit some of the effect may not be 

directly attributed to that gene due to extensive LD across this region. The residual signals 

after controlling for the effect of various combinations of classical alleles and AA residues 

in these HLA genes show that both DRB1 and DQB1 could account for most of the 

association signal (Fig. 1 B-E, Table 2 and Supporting Table 3). In addition, the signal in the 

DPB1 region was only marginally decreased conditioning on DRB1, DQB1 or DQA1. 

Conditioning on DPB1 eliminated the signal in the DPB1 region and showed a modest 

increase in the signal in the across DRB1, DQA1 and DQB1.

To further assess these conditional analyses, we also examined the relative difference of the 

conditioning by different HLA genes by examining beta estimates and their differences. The 

beta estimate is the measure of the increase in log-odds that can be attributed to each copy of 

a given minor allele. The largest effect is from the composite of DRB1 alleles as shown by 

the residual beta estimates (and odds ratios) after conditioning and the mean change in the 

beta estimates (Table 3). This is most evident examining the SNPs with the strongest signals 

from association (original signal < 5 × 10−8). For example, the DRB1 conditioning had a 

much larger mean change in beta estimate (−0.424) compared with DQB1 (−0.236) (p value 

< 10−10, paired T test). Additional conditional analyses using combinations with DQA1 

demonstrated that DQA1 could not substitute for DRB1 or DPB1 in any of the combinations 

tested (data not shown).

Conditioning on Specific HLA alleles

We next examined the effect of conditioning on specific DRB1, DQA1, DQB1 and DPB1 

classical genes and AAs. A clear pattern emerged showing that the association of groups of 

SNPs was specifically controlled by different alleles. These results are highlighted in Table 

4 and in a more complete version Supporting Table 3. Individually, the specific SNPs 

conditioned a part of the association signal largely corresponding to those SNPs in moderate 

or strong LD (r2 > 0.5) with the particular classical specificity or AA. Similar effects were 

observed for specific alleles in one gene in strong LD with another gene. This is particularly 

evident for the DRB1*14 and DQB1*05:03 in which the effects of controlling for either of 
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these alleles was virtually indistinguishable (Supporting Table 3). Other pairs (e.g. 

DRB1*08 and DQB1*04:02) showed small but consistent differences in which the DRB1 

allele diminished more signal than when the DQB1 allele was used in the conditioning 

analyses (Supporting Table 3). Notably the strongest AA association was at position 74 that 

is in the antigen binding pocket of DRB111, 12.

Similar to when we conditioned on genes (“all” alleles at a particular gene), the DPB1 

region SNP signal was only substantially reduced when DPB1*03:01 (Table 4 and 

Supporting Table 3) or when specific DPB1 AA’s were used in conditioning. The strongest 

effects were observed for the lysine at AA position 11 and the methionine at AA position 76 

that are both members of the 16 AA in the putative antigen binding pocket of this gene11.

Thus, the vast majority of the HLA region association signal can be accounted individually 

by conditioning on one of four specific alleles, three in DRB1 (*08, *11, and *14), and one 

in DPB1 (*03:01). Combinations of these specific alleles accounted for most of the 

remaining signal (Supporting Table 3 and Fig. 1F) and are also reflected in the strong 

reduction in beta estimates (Table 3). However, there are signals from several SNPs in the 

DRB1-DQB1 region that are not accounted for by these conditioning studies. None of these 

SNPs with signals p <10−5 after conditioning on DRB*08, *11 and *14, and DPB1*03:01 

were among the stronger associated SNPs prior to conditioning (all with original association 

p values >10−6). In particular, the strongest associated SNP after conditioning (rs9268668, p 

= 1.67 × 10−7), showed no signal prior to conditioning (p = 0.40). Whether these residual or 

new signals are also due to other specific classical HLA genes is not clear, however, 

conditioning on “all” DRB1 and DPB1 alleles ablated all signals with resulting p-values > 

10−5 (Fig. 1F) suggesting that additional sequence differences (e.g. putative regulatory 

SNPs) do not have to be postulated.

Most of the signal observed for specific AAs was also specifically eliminated when 

conditioning on the DRB1 or DPB1 classical alleles. However, there were several 

exceptions in which the association signal was not readily decreased by controlling for 

single classical HLA alleles. These AAs included DRB1-AA47F, DRB1 AA74A, DQB1-

AA26G, and DQB1-AA74S. For these AAs the signal was ablated when conditioning on 

two DRB1 alleles (DRB1*08 and DRB1*11) (Supporting Table 3). Conversely, 

conditioning on these AA could not account for the association of the most of the other 

SNPs that were not ablated by single classical HLA alleles (Supporting Table 3). Therefore, 

it may be less likely that these particular AAs are critical to explaining the association 

patterns we observed. However, we cannot exclude a specific functional role for these AAs 

and it is notable that DRB1-AA47 and DRB1-AA74 are both in the antigen binding pocket 

of DRB111, 12 and that conditioning on DRB1-AA47F did ablate several of the association 

signals that were not controlled by individual DRB1 classical alleles.

Genotypic Associations

We also examined genotypic associations including combinations of susceptibility alleles 

and combinations of risk susceptibility and protective alleles. Examining individuals with 

combinations of risk alleles DRB1*08 combined with DPB1*03:01 or DRB1*14 combined 

with DPB1*03:01 we found higher odds ratios for disease association than when examining 
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only individuals with single susceptibility alleles (Supporting Table 4). There were 

insufficient numbers of DRB1*08/DRB1*14 (frequency <1%) to evaluate these 

heterozygote genotypes. The increased risk of the combining DPB1*03:01 with DRB1*08 

or DRB1*14 was observed whether DPB1*0301 was on the same or different haplotype as 

that of the DRB1 risk allele (Supporting Table 4). When risk alleles were combined with the 

DRB1*11 protective allele the odds ratios were near 1 and there was no significant 

association with disease.

Finally, we also examined the cumulative combination of risk predisposing and protective 

alleles (Table 5 and Supporting Table 4). The count of predisposing alleles minus protective 

alleles showed a strong correspondence with the odds ratio for PBC. Individuals with an 

excess of one or two or more risk alleles showed an odds ratio (OR) of 3.05 and 5.25 

between cases and controls, and conversely individuals with an excess of one or two or more 

protective alleles had OR of 0.5 or 0.38, respectively (Table 5). All results were compatible 

with an additive model of action between each of the alleles similar to our previous 

observations6.

Discussion

The current study of PBC association with HLA differs from previous investigations by 

providing the most comprehensive analysis of the entire HLA region while correcting for 

multiple confounding factors. Our results are consistent with a predominant role for class II 

genes and we believe exclude any substantial effect from either HLA class I or class III 

genes (there were no residual signals for these genes with p <0.0005 after accounting for 

class II genes). This contrasts other autoimmune diseases in which HLA class I or class III 

plays a predominant role (e.g. myasthenia gravis13) or strong class I gene effects are 

observed independent of class II associations (e.g. type 1 diabetes14 and multiple 

sclerosis15, 16).

Our study strongly suggests that the major gene in HLA that underlies susceptibility to PBC 

is DRB1. Overall DRB1 alleles show the strongest associations and conditioning studies 

show that DRB1 could account for almost all (except DPB1 region) of the association 

signal. HLA-DQB1 shows association that is only marginally less than that observed for 

DRB1. However, several points suggest that these associations are secondary to the strong 

LD between DRB1 and DQB1: 1) the overall strength of association of particular DRB1 

alleles is stronger than the corresponding DQB1 allele; 2) conditioning on DRB1 could 

account for all DQB1 associations; and 3) residual beta-estimates after conditioning showed 

a substantially stronger DRB1 than DQB1 effect.

In addition, our study provides strong evidence for an independent effect of DPB1. Although 

previous studies have as indicated in the introduction suggested DPB1 associations in PBC, 

these were based on small subject sets and were difficult to evaluate. Our study 

demonstrates that the association of DPB1 cannot be accounted for by controlling for other 

HLA region genes. These results are also consistent with findings in some, but not other, 

autoimmune diseases in which an independent effect of DPB1 has been reported. These 
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include juvenile idiopathic arthritis17, type 1 diabetes18, multiple sclerosis16, 19 and 

particular autoantibodies in systemic lupus erythematosus20.

We note that our study does not directly address whether DRB3, DRB4, DRB5 or structural 

variations might have additional independent associations. At present such studies are 

challenging due to absence of reference sets for imputation and/or difficulty in assessing 

these polymorphisms including whether missing genotypes (excluded SNPs with call rates 

<0. 95) may have excluded analysis or inclusion of SNPs within these genes in available 

arrays.

This study has also addressed the association of specific HLA-gene alleles. Most of the HLA 

association with PBC can be attributed to specific associations with DRB1*08, DRB1*11, 

DRB1*14 and DPB1*03:01. DRB1*08 has the strongest association, followed by DRB1*11 

consistent with several previous studies6, 7. PBC associations with DRB1*14 has not been 

previously demonstrated, however, this weaker effect is supported by our conditioning 

studies that show that this classical allele can control for a set of associated SNPs and AAs 

that are not strongly influenced by other classical alleles (Table 3 and Supporting Table 3). 

The DPB1*0301 association is consistent with a previous study of a small German cohort7.

In a previous study we observed that DRB1*13 was a protective allele6. In the current study 

the association of DRB1*13 was weak (p = 4.9 × 10−3, OR= 0.69, 95% CL = 0.53 – 0.89) 

compared to the previous study (p = 3.6 × 10−6). This may be due to several factors: i) the 

previous study did not explicitly control for population substructure; ii) the overlap of 

subjects with the previous study is < 25% and the difference may reflect statistical noise; 

and iii) the previous study used DNA typing rather than the imputation used in the current 

study. It may be worth noting that DRB1*13 like DRB1*11 has an alanine at AA position 

74 and thus contributes to the protective effect observed for this AA (p = 1.33 × 10−11, 

Supporting Table 3). Similarly, our previous study6 showed only a marginal association of 

DRB1*14 (uncorrected p value = 0.004) compared with a strong association (p = 6.9 × 10−7) 

observed in our current study. Here, the conditioning study results including the effect of 

controlling SNPs with very strong associations (see group 3, Table 4) provide additional 

support for the role of DRB1*14.

Finally, we have also considered specific HLA AAs. Most of the associated AAs are both 

nearly unique to the specific HLA classical alleles discussed above and also correspond to 

critical residues for the antigen binding pocket. Thus, associated AAs in DRB1 at AA 

positions 37, 47, 57, 60, 67, 70 and 74; and DPB1 at AA positions 9, 11, 76, 84, 87 are 

antigen pocket AAs11, 12. Consistent with our results strong associations have been recently 

observed with serine at position 57 and leucine at position 74 in a Japanese PBC cohort21. 

We also note that many of the associated DQB1 AAs are also in critical residues for antigen 

binding (DQB1-AA13, 26, 70, 71, 74)11, 12. Of the DRB1 associated only AA58 is not 

among the AAs in this functional class, whereas for DQB1 several are not in this functional 

class (DQB1-AA45, 56, 75, 167, 185).

In conclusion, the most parsimonious explanation consistent with the current study is that 

classical HLA genes and the coding variations within these genes are responsible for the 
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HLA associations with PBC. Although we cannot exclude the possibility that other sequence 

variations affecting for example gene regulation could be important, our data indicates that a 

limited set of classical DRB1 and DPB1 alleles are sufficient to explain HLA associations 

with this disease. We believe the current data provides cogent information for understanding 

HLA-associations in PBC. Studies in other ethnic groups both within Europe and in other 

continental groups will also be important in further definition of the role of particular HLA 

genes and alleles. Lastly, our results provide additional rational for functional studies 

examining specific HLA genes and their relative binding to the putative disease associated 

epitopes of the PDC-E2 the immunodominant autoantigen epitopes of PBC22 23.

Materials and Methods

Study Population and design

The Italian PBC cases were obtained through a multi-center study and met internationally 

accepted criteria for the diagnosis of PBC as detailed in a previous study6. Each of the 

included cases also met ancestry criteria as defined below (see Ancestry). Controls were 

derived from several sources and this sample set information is detailed in Supporting Table 

1. After data filtering and ancestry analyses contained 676 Italian PBC cases and 1440 

Italian controls. All subjects enrolled in the study provided written informed consent and the 

study followed ethical guidelines of the most recent revision of the Declaration of Helsinki 

(Edinburgh, 2000).

All samples were genotyped with either Illumina (San Diego, CA 92121) genome-wide 

and/or Immunochip SNP platforms and the participants included the dataset from our 

previous GWAS as well as new samples (see Supporting Table 1). With the exception of 

ancestry information and assessment of relatedness the current study was restricted to 

genotypes in an ~4 megabase segment of human chromosome 6 (bps 28911802 – 33813043, 

HG19 map). This dataset comprised a minimum of 1548 and a maximum of 5489 genotyped 

SNPs in each individual (Supporting Table 1) and was used for the SNP and HLA 

imputations (see Imputation).

Data Filtering

We used stringent quality control criteria to ensure that high-quality data were included in 

the analyses. We excluded individuals who had >5% missing data and all individuals with 

cryptic relatedness and duplicate samples based on identity-by-descent status for genome-

wide SNPs (PI^ > 0.15) using PLINK24.

We included only SNPs with <5% missing data, Hardy-Weinberg (H-W) equilibrium p 

values >10−4 in controls and >10−5 in combined cases and controls (to exclude most 

genotyping errors) applying these procedures in a stepwise approach separately for each 

dataset. For each of the separately derived control genotyping sets (Supporting Table 1), 

SNPs were excluded if they failed the above criteria within the individual control set or in 

combination with any of the other control groups, or in the complete data set. The H-W 

criteria were applied after exclusion of non-European individuals (see Ancestry). Finally, 
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SNPs were excluded if allele frequency differed by > 10% between different control subject 

groups.

Ancestry

European ancestry was determined using 883 genome-wide SNPs with minimal or no 

linkage disequilibrium (LD) (r2 < 0.1). SNPs analyzed using the STRUCTURE v2.1 

program25 and subjects of known European, Amerindian, East Asian and West African 

origin as previously described26. We used STRUCTURE to exclude non-European and 

admixed study participants since this method allows exclusion/inclusion criteria to be set 

using reference populations. Subjects with >15% non-European ancestry were excluded 

from further analysis.

Italian ancestry was defined using principal components analyses (PCA). For subjects with 

GWAS data, we used the same methods and criteria applied in a previous study with largely 

the same dataset. Briefly, PCA was performed using the EIGENSOFT statistical package27 

utilizing 34 thousand SNPs distributed throughout the genome (r2 < 0.1) that we have 

previously used to define population genetic substructure2. These analyses used an 

independent set of Italian subjects for establishing membership [+/− 2 standard deviations 

(sd) in first 4 principal components (PCs)]. In the current study, a substantial portion of the 

samples did not have GWAS data (Supporting Table 1). For these samples we used a set of 

12,579 SNPs from the Immunochip for which our empiric analyses demonstrated the ability 

of this set to discern Italian ancestry and exclude both other European ethnicities including 

Sardinian Italians (Supporting Fig. 1). Using the GWAS defined individuals, the 

Immunochip only genotyped samples were included using 2 sd in the first 4 PCs. In addition 

to the subject selection, we used the eigenvalues from the first four PCs (only the first four 

PCs were significant based on Tracy-Widom statistics) as covariates in our association 

analyses.

Imputation

We imputed SNPs, HLA classical alleles, and HLA gene amino acids (AAs) using phased 

reference genotypes from both the 1000 genome sequencing project (interim release June 

2011) (http://www.1000genomes.org/) and an HLA defined reference set8. For the 1000 

genome imputation we used IMPUTE version 228 under default parameters. The reference 

haplotypes for this imputation were from 1094 subjects including 381 European subjects and 

98 Tuscan Italians. The number of genotyped (inference) SNPs that overlapped with the 

1000 genome reference set ranged from 1435 SNPs (samples typed by GWAS), 4386 

(samples typed by Immunochip) to 4981 SNPs (samples typed by GWAS plus Immunochip) 

(Supporting Table 1). For subsequent data analyses we utilized only imputed genotypes with 

maximum posterior probability scores of > 0.90. Using this parameter our empiric testing 

(leave one-out analyses) indicated that the maximum error rate for genotype assignment was 

< 0.05 and the mean error rate was < 0.01. To impute classical HLA alleles and 

corresponding amino acids determinants we utilized a reference separate dataset of collected 

by the Type 1 Diabetes Genetics Consortium (T1DGC). This reference data contains 

genotype data for 2,537 SNPs, selected to tag the entire MHC, and classical types for HLA-

A, B, C, DRB1, DQA1, DQB1, DPA1 and DPB1 at 4-digit resolution in 2767 unrelated 
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individuals of European descent29. The Beagle software package30 was used for this 

imputation under default parameters. The number of inference SNPs that overlapped with 

this reference dataset ranged from 648 (samples typed by GWAS), 1444 SNPs (samples 

typed by Immunochip) to 1610 SNPs (GWAS plus Immunochip) (Supporting Table 1). 

Similar to the imputation using 1000 Genome data, only SNPs with posterior probabilities of 

>0.90 were included in our final analyses. For imputed SNPs that overlapped between the 

two imputation sets and algorithms used (Impute V2.0 and Beagle) there was a nearly 

complete concordance of the association testing results indicating similar performance of 

these algorithms for this dataset. After imputation and selecting only those markers meeting 

posterior probability criterion this region contained a total of 49,885 markers including the 

genotyped SNPs that were included in association test analyses.

Association and Conditional Association Tests of Imputed SNPs and HLA determinants

SNPTEST V2.028 (web) was used for the primary association analyses for the imputed 

genotypes. This software uses the genotype probabilities for the imputed SNPs or 

determinants and accounts for genotype uncertainty. The first four PC eigenvalue scores 

were used as continuous variables in the association test together with the gender covariate. 

Analyses were performed using the SNPTEST v2 Score test algorithm that enabled both the 

inclusion of the covariates and conditioning tests and all of our reported results used an 

additive model. To minimize potential spurious results we limited our main and conditioning 

analyses to markers with information scores (Inf) > 0.85. This parameter is a measure of the 

observed statistical information for the estimate of SNP allele frequency (for additional 

information see https://mathgen.stats.ox.ac.uk/genetics_software/snptest/snptest.v2.pdf).

Conditioning on multiple markers either separately or together was performed using an 

additive model. For the HLA region, over 150 conditional analyses were performed using 

the SNPs and HLA determinants including all HLA determinants with p values < 10−6.

Nominal p values after correction for covariates and conditioning are provided throughout 

the manuscript. The p-values <10−6 would remain significant after conservative 

(Bonferroni) correction for the number of markers (<50,000) tested after imputation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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LD linkage disequilibrium

OR odds ratio

PBC primary biliary cirrhosis

PC principal component

PCA principal components analysis

SNP single nucleotide polymorphism
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Figure 1. Analysis of the HLA region association signals in PBC
In each panel, the symbols show the strength of the association signal (ordinate) for the 

corresponding position (Mb, HG19) on chromosome 6 (abscissa). For panel A, the p value 

before conditioning is shown. For panels B-F the p values are shown after conditioning on 

the HLA determinant(s) indicated in the panel. The blue color coded symbols denotes the 

strongest associated marker with p value <10−6, and the other markers are color coded to 

indicate marker LD with the strongest associated marker: Markers with strong LD (r2 > 0.8) 

(red); moderate LD (r2 > 0.5) (orange), weak LD (r2 > 0.2) (yellow) and little or no LD 
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(open symbols) are shown. The SNPs with the strongest associations were rs115721871 at 

bp 32653792 (panels A and D), rs9277558 at bp 33056711 (panels B and C), and rs9268668 

at bp 32413889 (panel F).
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Table 5

Cumulative Effect of Risk and Protective Classical HLA Alleles for PBC Susceptibility

Categorya Controls
Number (%)b

Cases
Number (%)

Odds Ratio p-value

RISK - PROTECTIVE =/< −2 177 (12.3) 34 (5.0) 0.38 5.87E-08

RISK - PROTECTIVE =/< −1 682 (48.1) 185 (27.4) 0.50 2.03E-12

RISK - PROTECTIVE = 0 522 (36.3) 246 (36.4) 1.00 NS

RISK - PROTECTIVE =/> +1 226 (15.7) 245 (36.2) 3.05 6.94E-25

RISK - PRPTECTIVE =/> 2 32 (2.2) 72 (10.7) 5.25 1.37E-15

a
This table shows the results of categorizing each participant based on the sum of the each risk allele (positive number) and each protective allele 

(negative number). The risk alleles are DRB1*08, DRB1*14 and DPB1*03:01. The protective alleles are DRB1*11 and DRB1*13. The alleles 
were determined from the most probable allele after imputation and haplotype analyses (see Methods).

b
The number of subjects that are in each category are shown together with the % of total controls (1440) or percent of cases (676).

c
The two tailed Fisher exact p value from contingency table analyses comparing cases and controls in each category.
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