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Abstract

Large scale, quantitative proteomic studies have become essential for the analysis of clinical 

cohorts, large perturbation experiments and systems biology studies. While next-generation mass 

spectrometric techniques such as SWATH-MS have substantially increased throughput and 

reproducibility, ensuring consistent quantification of thousands of peptide analytes across multiple 

LC-MS/MS runs remains a challenging and laborious manual process. To produce highly 

consistent and quantitatively accurate proteomics data matrices in an automated fashion, we have 

developed the TRIC software which utilizes fragment ion data to perform cross-run alignment, 

consistent peak-picking and quantification for high throughput targeted proteomics. TRIC uses a 

graph-based alignment strategy based on non-linear retention time correction to integrate peak 

elution information from all LC-MS/MS runs acquired in a study. When compared to state-of-the-

art SWATH-MS data analysis, the algorithm was able to reduce the identification error by more 

than 3-fold at constant recall, while correcting for highly non-linear chromatographic effects. On a 
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pulsed-SILAC experiment performed on human induced pluripotent stem (iPS) cells, TRIC was 

able to automatically align and quantify thousands of light and heavy isotopic peak groups and 

substantially increased the quantitative completeness and biological information in the data, 

providing insights into protein dynamics of iPS cells. Overall, this study demonstrates the 

importance of consistent quantification in highly challenging experimental setups, and proposes an 

algorithm to automate this task, constituting the last missing piece in a pipeline for automated 

analysis of massively parallel targeted proteomics datasets.

Introduction

Molecular biology is increasingly becoming a data-driven science which enables researches 

in biology and medicine to investigate large numbers of biological systems on a genome-

wide scale. Underlying this transition is the ability to generate robust, comprehensive and 

fully quantitative “data matrices” capturing measurements across many samples (first 

dimension) in a genome-wide fashion (second dimension). In nucleic acid sequencing-based 

fields, this transition has advanced enough to allow for large-scale inference from thousands 

of samples in a reproducible and comparable manner [1, 2, 3, 4, 5].

In contrast, in the field of proteomics the transition to high-throughput measurements across 

large numbers of samples has proven challenging (Supplementary Note 1 and Röst et al. 

[6]). While discovery-oriented techniques, such as data-dependent acquisition (DDA) [7, 8, 

9, 10], have recently allowed the identification of a large part of the human proteome [11, 

12], it has become apparent that these methods suffer from poor reproducibility in large 

scale experiments. Particularly when applied in high throughput to complex protein 

mixtures, e.g. whole proteomes, the resulting data matrices contain many missing values. To 

improve reproducibility, alternative approaches based on targeted proteomics were 

developed which provide high consistency and quantitative accuracy across many 

experimental conditions due to their deterministic acquisition strategy. Specifically, selected 

reaction monitoring (SRM) proved to be invaluable for large-scale measurements geared 

towards systems biology [13] or biomarker discovery [14, 15, 16, 17]. However, while 

SRM-based targeted proteomics produces highly consistent data matrices, it is limited by 

low throughput, resulting in output matrices with typically only few tens of quantified 

proteins per study (Supplementary Note 1, Fig. S1).

Recently, we developed SWATH-MS based on the principle of targeted analysis of data-

independent acquisition (DIA) data as a method for massively parallel targeted proteomics 

[18]. Our targeted analysis of DIA data based on OpenSWATH was able to increase the 

throughput of targeted proteomics by several orders of magnitude compared to SRM-based 

approaches, and is, in principle, able to to generate proteome-wide data matrices [19, 6]. 

However, obtaining consistent and accurate matrices from targeted proteomics data is 

challenging as most current software was developed for low-throughput SRM data and 

focused on manual analysis and visualization of the data [20, 21, 22, 23, 24, 25, 26]. Even 

fully automated software solutions for peak picking and error rate estimation [27, 28, 19] 

generally only operate on a single MS run at a time and are unable to efficiently integrate 

experimental information from multiple targeted MS runs. However, a single MS run may 
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not contain sufficient information to confidently select the correct peptide elution time point 

among multiple detected peak groups of similar quality in a given chromatogram (Fig. 1 a). 

Analyzing single MS runs in isolation, therefore, cannot ensure consistent peak picking 

across all the measurements constituting a whole experiment (Supplementary Note 2).

Here we describe the TRIC (TRansfer of Identification Confidence) algorithm, an automated 

method which integrates all information from a targeted proteomics experiment to accurately 

and consistently determine the correct elution peak in each MS run. The software is 

designed to exploit the particular structure of chromatographic fragment ion-based peak data 

found in targeted proteomics, providing quantification and identification in the same 

algorithm. The TRIC algorithm uses a reference-free alignment approach based on 

individual, pairwise non-linear retention time (RT) de-warping which allows it to scale to 

hundreds of targeted proteomics LC-MS/MS runs. Together with the OpenSWATH 

framework [19], TRIC allows fully automated analysis of next-generation targeted 

proteomics datasets with high throughput. The software is vendor-independent and provided 

as an open-source package (Modified BSD Licence) at https://pypi.python.org/pypi/

msproteomicstools.

Results

Design and Structure of the TRIC Algorithm

The TRIC algorithm was developed to perform integrative analyses of a large number of 

targeted MS injections with a focus on robustness, scalability and performance 

(Supplementary Note 3 and 4). Inherently, the algorithm was designed to correct for non-

linear chromatographic distortion between the runs, minimize the effect of outlier runs, and 

be scalable to hundreds of MS runs. This is achieved through a guidance tree learned from 

the data which removes the need for a reference run in alignment and by using a locally 

adaptive retention time tolerance for each pairwise alignment (Supplementary Note 5) [29, 

30]. The algorithm does not rely on MS1 measurements but works directly on 

chromatographic peak identifications from primary identification tools, such as 

OpenSWATH [19] or PeakView, which usually identify multiple potential peakgroups in an 

extracted fragment ion chromatogram. Using the fragment ion data, the algorithm is able to 

boost identification confidence for peaks consistently detected across multiple runs and can 

provide improved peak boundaries for analyte quantification. Starting from a typical targeted 

proteomics dataset with a number of individually analyzed and scored runs containing 

multiple potential peak group candidates for identification (Fig. 1 a), the algorithm performs 

the following steps:

(a) Alignment: Using a set of high-confidence endogenous peptides, an estimate of 

the pairwise chromatographic distance between all MS runs is obtained (Fig. 1 

b) and used to generate a guidance tree. Then, for each edge in the tree, a 

pairwise non-linear transformation between the RT domains of the two MS 

runs (nodes) is computed (Fig. 1 c; step I). Note that TRIC does not rely on 

spike-in peptides and that the alignment using a guidance tree removes the 

need for a reference run, leading to an optimal alignment strategy which 
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prevents direct alignment of chromatographically dissimilar runs 

(Supplementary Note 5, Figs. S10 and S11).

(b) Confidence transfer: Traversal of the global guidance tree starts for each 

measured peptide (targeted proteomics assay) from a suitable “seed” (Fig. 1 c; 

step II). During traversal, each node (LC-MS/MS run) of the tree is visited 

sequentially (step III, iterations 2 and 3) and a confident identification is 

mapped from one node (run n) to an adjacent node (run m), where our choice 

of guidance tree ensures that the mapping only occurs between 

chromatographically similar runs (Supplementary Note 3). During confidence 

transfer (Fig. 1 d), the identification confidence of all peakgroups in run m 
within the adaptive retention time window (area indicated in gray) is increased; 

if the confidence score of the best peakgroup passes the user-defined threshold, 

it gets added to the final result matrix. The approach automatically adopts the 

retention time window for different parts of the tree, depending on the quality 

of the pair-wise alignment, thus increasing robustness and decreasing the 

influence of outlier runs (Supplementary Note 5, Figs. S12 and S13).

(c) Re-quantification: In the last (optional) step, runs in the guidance tree where no 

peakgroup passed the confidence filter can be re-visited for re-quantification. 

In these cases, the software can infer the peak boundaries from the closest 

neighboring run (node) and quantify the fragment ion signal within those 

boundaries. These imputed values, however, are not substitutes for 

quantification events, but merely serve as upper bounds of the analyte signal 

for the run in question (orange circles, step IV).

In order to control the false discovery rate (FDR), our software also offers the option to 

perform an error-rate correction based on known false signals (“decoy signals”) at the assay 

level [31], preventing the accumulation of false positive identifications when analyzing 

multiple runs. This step can remove individual rows from the data matrix if they do not pass 

the filter criteria (see Methods). This is achieved by requiring a more stringent quality 

threshold for the “seed” identification, similar to the way the Mayu software [32] operates.

Technical Validation

To validate the alignment and FDR control approach implemented in TRIC, we created a 

manually validated data set of 7,232 chromatograms which were extracted from the 

Streptococcus pyogenes dataset of Röst et al. [19] (Supplementary Note 4). First, 452 

peptides were randomly selected from the data, giving rise to 7,232 chromatograms that 

were loaded into the Skyline software where the correct elution peak, if present, was 

identified by visual inspection (Supplementary Table 1). In parallel, we analyzed the same 

data with TRIC and compared its performance to the current state-of-the-art, that is applying 

a fixed q-value cutoff in each run individually (“naïve approach”). We found that the TRIC 

algorithm decreased the error rate substantially compared to the naïve approach, while 

maintaining high recall for peakgroups across all runs (see FDR-Recall behavior in Fig. 2 a 

and Supplementary Note 4, Figs. S2–S5). At the same FDR cutoff, TRIC was able to reduce 

the error rate by more than 3-fold from 1.8 % to 0.5 % (better than the expected 1 %, Fig. 2 
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a,b). Running TRIC with non-linear RT alignment substantially outperformed linear 

alignment strategies as well as the naïve approach (Fig. 2 b).

Next, we evaluated the accuracy of the fragment ion peak boundaries reported by TRIC in 

the “re-quantification” step. From a dataset of eight S. pyogenes runs with large 

chromatographic differences, we removed 506 high-confidence peakgroups to test whether 

TRIC could recover them. We observed clear non-linearities in the retention times which 

TRIC was able to correct satisfactorily (Figure 2 c top versus bottom panel). After 

correction, over 96.6 % of all data fell within ±30 s (that is within 2 chromatographic peak 

widths and less than 1 % of the chromatographic gradient) around the true retention time, 

compared to 82 % and 47 % for linear or no alignment (Fig. 2 d and Supplementary Note 4, 

Fig. S8). Similarly, we found that 80 % of all reported intensity values deviated less than 

25 % from the true intensity value (Supplementary Note 4, Fig. S8). We conclude that the 

alignment and confidence transfer procedure performed by TRIC improves accuracy, 

reduces the error rate and correctly accounts for large non-linear chromatographic effects.

Application to microbial virulence

We then applied the TRIC algorithm to the full 12 SWATH-MS runs described in Röst et al. 

[19], comparing cultures of strain SF370 grown in 0 % and 10 % human plasma to study 

proteomic changes that occur upon vascular invasion of S. pyogenes. TRIC substantially 

lowered the overall number of missing values as well as the number of incomplete rows 

generated with each newly added run in the label-free, quantitative proteomics data matrix 

(Fig. 3 a). The guidance tree created by the alignment mostly reflected the biological 

condition (case versus control) and not the acquisition order, while chromatographically 

dissimilar runs were correctly placed at the periphery of the tree, decreasing their influence 

on the alignment process (Fig. 3 b).

The final assay-level data matrix (Supplementary Note 6, Fig. S14) was to 87 % populated 

with quantified peakgroups, compared to 69 % using a “naïve approach” with a fixed q-

value cutoff of 0.0015 (Fig. 3 a and Supplementary Note 6). Using the aligned data matrices, 

we identified 130 S. pyogenes proteins that significantly change upon exposure to human 

plasma (adjusted p <0.01 and effect size larger than 1.5), up by 37 % from 95 proteins 

without alignment (Supplementary Tables 2 and 3). The number of assays quantified in all 

12 runs increased by 39 % from 4971 to 6914 (Fig. 3 c,d) and substantially fewer peptides 

were identified in a single run only (down by over 15-fold, compare Fig. 3 c,d); TRIC thus 

added additional quantitation events to singleton peptides (Supplementary Note 6, Fig. S15).

We then investigated whether our algorithm was able to improve the identification 

consistency and error rate control across the whole experiment. We found that TRIC 

increased identification consistency across all runs, and the cumulative number of peptide 

identifications shows early saturation (Fig. 3 e, f; see Supplementary Note 6, Figs. S16–S18 

for data on assay level and protein level). This is consistent with a complete mapping of the 

expressed peptides, while a continuing increase in cumulative identifications, as seen 

without alignment, would be consistent with an accumulation of false positive 

identifications.
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Protein turnover analysis using TRIC

Protein degradation rates vary substantially across the proteome, and together with 

transcription rates are the main determinant of the amount of protein in a cell [33, 34]. 

Protein degradation plays an important role in many cellular processes including cell-cycle, 

DNA repair, growth and differentiation, and it has been linked to several diseases [35]. To 

study protein degradation using targeted proteomics, we performed a pulsed-SILAC 

experiment on induced pluripotent stem cells (iPSCs) obtained from a healthy human donor, 

allowing us to measure in vitro protein turnover rates in a personalized fashion: After 

growing the iPSCs in biological duplicates, we replaced the light medium with heavy 

labeled medium at timepoint zero, harvested samples after 1.5, 4.5 and 13.5 hours and 

analyzed their proteomes on an AB Sciex 5600 plus TripleTOF system in SWATH mode 

(Fig. 4 b). Using a matching spectral library, OpenSWATH quantified 5,484 heavy-light 

pairs mapping to 1,427 proteins (achieving 87 % library coverage for the light precursors).

We reasoned that this dataset would allow us to evaluate our algorithm on a highly 

heterogeneous time-course dataset with interesting biological applications. First, this setup 

allowed us to directly test whether TRIC over-annotated the resulting data-matrices, i.e. by 

falsely aligning heavy species at time point zero (before heavy amino acids were added). 

Furthermore, it provided a straight-forward metric to assess the quality of the data by 

checking the elution time difference error between corresponding heavy and light peptides 

(the two channels were treated completely independently for the purpose of this analysis). 

Third, as heavy lysine and arginine get incorporated into the proteome starting from time 

point zero, the algorithm would have to accurately quantify very low abundant heavy peptide 

species, as expected in the early time points–a very challenging task.

Applying TRIC increased the number of quantified SILAC pairs by 62 % and 40 % in the 

time points 1.5 h and 4.5 h, respectively, while only adding few false positive heavy 

identifications at time point zero (Fig. 4 d and Supplementary Note 7). Similarly, the number 

of quantified proteins detected in fewer than three samples decreased by a factor of 1.9, 

while the number of quantified proteins identified in five or more samples increased by 

59 %. The additional quantification events reported by TRIC increased the error in heavy/

light elution only slightly (Fig. 4 c). When matched within their respective intensity range, 

the error distributions are very similar (Fig. 4 a, top distribution). Thus, by applying TRIC to 

a data structure typically encountered in time-course experiments, the number of 

quantification events increased by up to 60 % without any significant impact on accuracy.

We then used the SILAC ratios to compute the relative isotopic abundance (RIA) for each 

peptide over time and fitted an exponential decay model as described by Pratt et al. [36] (see 

Methods). After filtering and correction for dilution, we obtained the median kloss, the rate 

of loss of light isotope over time, for 1075 proteins (Fig. 5 a). The computed protein-level 

turnover rates ranged from less than 10 h to several hundred hours with a median protein 

turnover time of 39.0 h (Fig. 5 b and Supplementary Table 4 and 5). A gene ontology (GO) 

enrichment analysis on the proteins with the highest and lowest turnover rates using 

GORILLA [37] identified 20 significantly (q-value <0.05) enriched terms (Supplementary 

Table 6); with an enrichment of 3.44-fold, the “cell adhesion” GO term was significantly (p 

<10−7) enriched in the set of proteins with high turnover (Fig. 5 c and Supplementary Note 
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7, Fig. S19). The enrichment in cell adhesion molecules is both consistent with the 

hypothesis of a generally faster turnover of these molecules in human cells as well as with 

the critical involvement of this class of molecules in the regulation of pluripotency 

(Supplementary Note 7). Thus, TRIC enables the accurate identification of protein turnover 

rates in human iPSCs in a highly challenging time-series experiment.

Discussion

The availability of accurate, consistent and complete protein quantification data matrices is 

crucial for systems biology investigations in the field of proteomics. They are the basic 

currency of data-driven experiments and their accuracy largely determines the success of 

downstream analyses [6]. The TRIC algorithm described here is capable of creating 

consistent targeted proteomics data matrices by performing retention time alignment of 

fragment ion chromatograms and subsequent identification and quantification. The 

algorithm is specifically designed for targeted proteomics data and works directly with 

chromatographic peaks identified by upstream tools on MS2 level [19, 38, 27]. By relying 

on fragment ion-based identification in all runs, TRIC omits the error-prone step of mapping 

unidentified MS1 features across runs commonly performed in MS1-based alignment 

software (Supplementary Note 2) [29, 39, 30, 40, 41, 42]. Instead, the TRIC algorithm 

employs a “confidence transfer” step where identification confidence (and not the 

identification itself) is transferred across runs.

The chosen alignment strategy using a globally optimal guidance tree results in minimal 

alignment error since every alignment step is local and performed between two highly 

similar runs (as opposed to aligning all runs against a more distant reference run). This 

makes TRIC scalable to a large number of samples, tolerant to outlier runs and applicable to 

heterogeneous experimental conditions; which we demonstrate in Supplementary Note 5 

using a dataset with over two hundred blood plasma samples [43]. On this dataset, our 

reference-free strategy has better precision-recall characteristics than a reference-based 

approach and the data indicate direct benefits of the adaptive retention time windows 

(Supplementary Note 5, Figs. S10-S13).

Using a validation dataset of 7,232 manually curated ion chromatograms, we find that our 

algorithm can reach high recall rates while reducing the error rate by a factor of three or 

more compared to state-of-the-art per-run analyses. TRIC also compares favorably to 

untargeted data analysis tools such as DIA-Umpire [44], which performs orthogonal peptide 

identification using demultiplexed pseudo-spectra and subsequent RT alignment 

(Supplementary Note 4). TRIC achieves higher recall (85 % versus 59 %) at lower error rate 

(0.3 % versus 3.8 %) than DIA-Umpire, thus highlighting the benefits of using targeted 

fragment ion information for identification and alignment (Supplementary Note 4, Figs. S6 

and S7). Furthermore, when applying TRIC to large-scale microbial and human targeted 

proteomics datasets, the number of quantified values consistently increases by 30-60 %, 

which directly leads to an improvement of statistical power and biological information 

(Supplementary Notes 5, 6 and 7). When applying TRIC to small and large scale data sets 

(hundreds of injections), we observe consistent performance and scalability to large sample 
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numbers, thus making SWATH-MS amenable to multi-center studies and, through TRIC, 

achieve consistent and reproducible research data across labs.

Online Methods

Experimental procedures

Cell culture—The iPSC line used in this study (CTL1R-1) was derived and initially 

cultured as described in Adamo et al. [45]. Cells were growing in single-cell condition in 

mTeSR-1 and then adapted for 2 passages in a custom medium, composed as follows: 

DMEM, Knockout Serum Replacement 15 % (Sigma), Pen-Strep 1 %, Non-essential 

aminoacids 1 %, Glutamine 1 %, Probumin 0.5 % (Millipore), beta-meracptoethnaol 0.1 

mM, L-Proline 500 mg/l (Sigma), FGF2 10 ng/ml (Peprotech). The medium was 

conditioned for 24 hours on a mouse embryonic fibroblast layer inactivated with mitomycin-

C and filtered before use. In the SILAC version of the medium a custom DMEM (Lonza) 

without arginine and lysine was complemented with 84 mg/l 13C6 15N4 Arg10 (Sigma) and 

146 mg/l 13C6 15N2 Lys8 (Sigma). Cells were scraped and washed in cold PBS upon 

reaching 70 % confluence approximately for protein harvest.

Cells were counted using a Bürker chamber with Trypan blue counting 5 fields and 

averaging. Each count was done in duplicate.

MTS assay—20 µl of CellTiter 96 AQueous One Solution reagent (Promega) was added 

into each well of a 96 multiwell plate containing 5×103 cells in 100 µl of mTeSR. Plates 

were incubated for 1 hour at 37 °C and 490 nm absorbance was recorded using Glomax 

Multi Detection System (Promega).

Protein extraction and in-solution digestion

The iPSC cell pellets were lysed on ice by using a lysis buffer containing 8 M urea 

(EuroBio), 40 mM Tris-base (Sigma-Aldrich), 10 mM DTT (AppliChem) and complete 

protease inhibitor cocktail (Roche). The resulted mixture were sonicated in 4 °C for 5 mins 

using a VialTweeter device (Hielscher-Ultrasound Technology) and centrifuged at 21,130 g 

and 4 °C for 1 hr to remove the insoluble material. The supernatant protein mixtures were 

transferred and the protein amount was determined with a Bradford assay (Bio-Rad, 

Hercules, CA, USA). The protein mixtures were reduced by 5 mM 

tris(carboxyethyl)phosphine (Sigma-Aldrich) and alkylated by 30 mM iodoacetamide 

(Sigma-Aldrich). Then 5 volumes of precooled precipitation solution containing 50 % 

acetone, 50 % ethanol, and 0.1 % acetic acid was added to the protein mixture and kept at 

-20 °C overnight. The mixture was centrifuged at 20,400 g for 40 min. The pellets were 

washed with 100 % acetone and 70 % ethanol with centrifugation at 20,400 g for 40 min. 

The samples were then redissolved by 100 mM NH4HCO3 and were digested with 

sequencing-grade porcine trypsin (Promega) at a protease/protein ratio of 1:40 overnight at 

37 °C [46]. Digests were purified with Vydac C18 Silica MicroSpin columns (The Nest 

Group Inc.). Peptide amount was determined by using Nanodrop ND-1000 (Thermo 

Scientific) and about 0.7 µg peptide mixtures were analyzed in each LC-MS run. An aliquot 

of retention time calibration peptides from iRT-Kit (Biognosys) was spiked into each sample 
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before all LC-MS analysis at a ratio of 1:20 (v/v) for linear RT correction in OpenSWATH 

[47].

Shotgun measurement

The peptides digested from two biological replicates of iPSC cells at time zero (cells in light 

medium) were both measured on an AB SCIEX 5600 plus TripleTOF mass spectrometer 

operated in DDA mode. The mass spectrometer was interfaced with an Eksigent NanoLC 

Ultra 2D Plus HPLC system as previously described [48, 49]. Peptides were directly injected 

onto a 20-cm PicoFrit emitter (New Objective, self-packed to 20 cm with Magic C18 AQ 3-

µm 200-Å material), and then separated using a 120-min linear gradient of 2 % buffer B to 

35 % buffer B (buffer A 0.1 % (v/v) formic acid, 2 % (v/v) acetonitrile, buffer B 0.1 % (v/v) 

formic acid, 90 % (v/v) acetonitrile) at a flow rate of 300 nL/min. MS1 spectra were 

collected in the range 360–1,460 m/z. The 20 most intense precursors with charge state 2–5 

which exceeded 250 counts per second were selected for fragmentation, and MS2 spectra 

were collected in the range 50–2,000 m/z for 100 ms. The precursor ions were dynamically 

excluded from reselection for 20 s.

SWATH-MS measurement

The same LC-MS/MS systems used for shotgun measurements above was also used for 

SWATH analysis [48, 49]. Specifically, in the present SWATH-MS mode, the AB SCIEX 

5600 plus TripleTOF instrument was specifically tuned to optimize the quadrupole settings 

for the selection of 64 variable wide precursor ion selection windows. The 64-variable 

window schema was optimized based on a Cal-51 human cell tryptic digest sample, covering 

the precursor mass range of 400–1,200 m/z. The effective isolation windows can be 

considered as being 399.5 to 408.2, 407.2 to 415.8, 414.8 to 422.7, 421.7 to 429.7, 428.7 to 

437.3, 436.3 to 444.8, 443.8 to 451.7, 450.7 to 458.7, 457.7 to 466.7, 465.7 to 473.4, 472.4 

to 478.3, 477.3 to 485.4, 484.4 to 491.2, 490.2 to 497.7, 496.7 to 504.3, 503.3 to 511.2, 

510.2 to 518.2, 517.2 to 525.3, 524.3 to 533.3, 532.3 to 540.3, 539.3 to 546.8, 545.8 to 

554.5, 553.5 to 561.8, 560.8 to 568.3, 567.3 to 575.7, 574.7 to 582.3, 581.3 to 588.8, 587.8 

to 595.8, 594.8 to 601.8, 600.8 to 608.9, 607.9 to 616.9, 615.9 to 624.8, 623.8 to 632.2, 

631.2 to 640.8, 639.8 to 647.9, 646.9 to 654.8, 653.8 to 661.5, 660.5 to 670.3, 669.3 to 

678.8, 677.8 to 687.8, 686.8 to 696.9, 695.9 to 706.9, 705.9 to 715.9, 714.9 to 726.2, 725.2 

to 737.4, 736.4 to 746.6, 745.6 to 757.5, 756.5 to 767.9, 766.9 to 779.5, 778.5 to 792.9, 

791.9 to 807, 806 to 820, 819 to 834.2, 833.2 to 849.4, 848.4 to 866, 865 to 884.4, 883.4 to 

899.9, 898.9 to 919, 918 to 942.1, 941.1 to 971.6, 970.6 to 1006, 1005 to 1053, 1052 to 

1110.6, 1109.6 to 1200.5 (containing 1 m/z for the window overlap). SWATH MS2 spectra 

were collected from 50 to 2,000 m/z. The collision energy (CE) was optimized for each 

window according to the calculation for a charge 2+ ion centered upon the window with a 

spread of 15 eV (equation: slope = 0.0625, intercept= -3.5 eV). An accumulation time (dwell 

time) of 50 ms was used for all fragment ion scans in high-sensitivity mode and for each 

SWATH-MS cycle a survey scan in high-resolution mode was also acquired for 250 ms, 

resulting in a duty cycle of circa 3.45 s.
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Peptide identification for shotgun proteomics

Profile-mode wiff files from shotgun data acquisition were centroided and converted to 

mzML format using the Sciex Data Converter v.1.3 and converted to mzXML format using 

msconvert v.3.0.4238 from the proteowizard package [50]. The MS2 spectra were queried 

against the reviewed canonical SwissProt complete proteome database for human 

(ex_sp_9606, August 2014) appended with reversed sequence decoys [31]. Two types of 

search engines, X!Tandem [51] and OMSSA [52], were used through iPortal interface for 

proteomic workflows [53]. The search parameters were: static modifications of 57.02146 Da 

for cysteines, variable modifications of 15.99491 Da for methionine oxidations. The parent 

mass tolerance was set to be 50 p.p.m and mono-isotopic fragment mass tolerance was 0.1 

Da (which was further filtered to be <0.05 Da for building the spectral library); fully-tryptic 

peptides and peptides with up to two missed cleavages were allowed. The identified peptides 

were processed and analyzed through Trans-Proteomic Pipeline 4.5.2 (TPP) [54] and were 

validated using PeptideProphet [55] (PeptideProphet parameter is –p0 –dDECOY_ –

OAPdlIw). All the peptides were filtered at a false discovery rate (FDR) of 1 % (iProphet 

probability > 0.8790) [56].

Spectral library generation

The raw spectral libraries were generated as described in Schubert et al. [57] from all valid 

peptide spectrum matches for the shotgun measurement of the light peptides, and then 

refined into non redundant consensus libraries [49] using SpectraST [58]. For each peptide, 

the retention time was mapped into the iRT space [47] with reference to a linear calibration 

constructed for each shotgun run, as previously described [49]. The light MS assays 

constructed from the 6 most intense y ions (all b ions and other ions removed) with Q1 range 

from 400 to 1200 m/z excluding the precursor SWATH window were used for targeted data 

analysis of SWATH maps. This library was subsequently used to generate corresponding 

assays for all heavy peptides by shifting the y ion transitions in mass corresponding to the 

number of lysine and arginine contained in the partial sequence. Decoy assay were appended 

to the final library as described previously [19].

SWATH-MS data analysis and q-value estimation

SWATH-MS raw data was converted from wiff files to mzXML using msconvert included in 

the open-source proteowizard package [50]. The OpenSWATH analysis workflow was 

essentially executed as described in Röst et al. [19] but the improved single executable 

OpenSwathWorkflow was used instead of the multi-step workflow to perform peak-picking 

and feature detection on all SWATH-MS runs [59]. The experimental data and the assay 

libraries for the S. pyogenes samples were obtained from previously published analyses 

(Röst et al. [19]) while the pulsed-SILAC data was analyzed with a sample-specific library 

as described above. Both libraries contained target assays as well as decoy assays and we 

used pyprophet [38], an open-source re-implementation of the mProphet algorithm [27], to 

perform q-value estimation on individual runs after feature detection. The algorithm uses 

semi-supervised machine learning techniques to optimally separate true target assays and 

known false “decoy” signals and estimate q-values based on their distributions [27]. The 
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reported features and their associated q-values (used as scores here) comprise the input for 

the TRIC algorithm.

Decoy based FDR control

In a separate step from the actual alignment, our approach allows for the adjustment of the 

false discovery rate based on a decoy model. This approach can be applied before or after 

alignment (for convenience, it has been integrated into the TRIC executable). The algorithm 

applies a q-value threshold based on the score of the best peakgroup per row (since 

quantification events are likely not independent, this is the most conservative approach). 

This approach attempts to control the number of decoy rows in the output matrix by using 

the estimate of r, the ratio of false positives to decoys as computed by the Storey-Tibshirani 

method implemented in mProphet and pyProphet [27, 38]. First, this ratio r is used to 

estimate the number of false positive rows nfp in the data matrix based on the number of 

decoy rows ndecoy in the matrix: nfp=r⋅ndecoy. The q-value threshold is lowered until the 

desired number of false positives rows (as estimated with the above formula) is reached, for 

example until nfp/ntot reaches 0.01 (where ntot represents the total number of target rows). 

Thus, a more stringent score-cutoff is chosen that limits the number of decoy rows in the 

final data matrix to the user-defined FDR value. In the examples described here, the q-value 

cutoffs used to achieve a 1 % FDR were 0.0015 for the S. pyogenes study, 0.0022 for the 

pulsed-SILAC study and 2.1×10−5 for the blood plasma dataset in the supplementary 

(generally, the more samples are analyzed, the lower the q-value threshold). When 

comparing the output of TRIC to the naïve approach with a fixed q-value cutoff, we use 

these value computed during the FDR procedure also for the naïve data matrix (unless 

otherwise indicated).

Validation dataset

A random subset of 452 peptides were chosen from the S. pyogenes data described in Röst 

et al. [19] and 7,232 chromatograms were extracted across 16 LC-MS/MS runs. These 7,232 

chromatograms were manually inspected using the Skyline software [20], the correct peak 

(if present) was marked for each of the 16 runs and then exported. An in-house script 

compared the results of the manual annotation and the TRIC-based annotation where the 

peak was considered correct either if its apex differed less than 20 seconds from the manual 

annotation or of its apex was contained within the manual peak boundaries.

To study the correction of chromatographic distortion, a set of S. pyogenes runs acquired as 

part of a larger study was chosen for analysis and one run (hroest_K131126_005) was 

selected as the target and 7 additional runs from the same dataset (hroest_K131126_050 

to hroest_K131126_056) were selected for co-alignment (with about 45 other injections 

between the two acquisitions) to produce realistic alignment conditions. From the target run, 

half of all high confidence peakgroups (q-value <0.001, 506 peakgroups) were removed. 

Then the full algorithm was run with the standard settings but –alignment_score changed 

to 0.001 to allow for more “anchor points”. After running the algorithm on the “training” set, 

the result was compared to the retention times and intensities of the original 506 high 

confidence “test” peak groups that were set aside before.
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Parameters used

Unless otherwise indicated, the feature_alignment.py (available at https://

pypi.python.org/pypi/msproteomicstools) was run with the following settings: LocalMST for 

–method indicating the use of the MST, 0.0001 for the parameter –alignment_score only 

allowing highly confident peakgroups with q-value < 0.01 % as “anchor points”, lowess for 

–realign_method, 0.1 for –max_fdr_quality allowing for the transfer of confidence to 

peakgroups with a score cutoff of 0.1, a value of 0.01 for –target_fdr indicating 1 % FDR 

on the data matrix rows, True for –mst:useRTCorrection and 3.0 for –

mst:Stdev_multiplier indicating adaptive retention time windows. The optional noise 

imputation algorithm implemented in requantAlignedValues.py was run with the 

following settings: singleClosestRun for –method and lowess for –realign_method.

pulsed-SILAC analysis

For the pulsed-SILAC analysis of the iPS cells, TRIC was run as described earlier. The –

max_fdr_quality parameter was lowered to 0.05 (to only include higher quality peak 

groups) and TRIC calculated a m_score cutoff of 0.002198 for the whole dataset. The data 

was filtered by m_score at the calculated cutoff (0.002198) to produce the data for the 

“naïve” approach (simple FDR filter) and filtered at 0.025 for the TRIC alignment data. To 

compare the difference in error between SILAC pairs, only points with an error less than 30 

seconds were plotted in Figure 4 (148 high quality pairs and 165 aligned pairs were omitted 

as they fall outside the plotting window). At each time point, the amount of heavy (IH) and 

light (IL) precursor was extracted and used to calculated the relative isotopic abundance 

(RIAt):

(1)

analogous to Pratt et al .[36] (with heavy and light switched due to our experimental design 

being reversed). The value of RIAt is time dependent as unlabelled proteins are replaced 

with heavy-labelled proteins during the course of the experiment. This is due loss due to 

dilution of the cells as well as loss due to intracellular protein turnover, where the rate of 

loss can be modelled as an exponential decay process:

(2)

where RIA0 denotes the initial isotopic ratio and kloss the rate of (hourly) loss of unlabelled 

protein. We assumed RIA0=1 as no heavy isotope was present at t=0, thus the value of RIAt 

will decay exponentially from initially one to zero after infinite time. As discussed in Pratt et 

al. [36], these assumptions may reduce measurement error especially at the beginning of the 

experiment where isotopic ratios are more inaccurate due to the low absolute number of 

heavy precursor ions. Next, a linear model was fitted per peptide to the logarithmized data to 

obtain kloss values for all individual peptides. The kloss for each protein was computed as the 

median of all peptide-level rates. We excluded proteins quantified in a single timepoint only 
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(241 proteins), proteins without a significant correlation (p <0.25 of a linear model) between 

isotope ratio and time (90 proteins) and increasing isotope ratio over time (21 proteins). 

After filtering, 1075 proteins were used to compute turnover rates. In order to obtain the 

protein turnover rate kturnover, we subtracted the dilution ratio D which we obtained by MTS 

assay from independent experiments on the same cell line at comparable confluence:

(3)

Assuming the cells are in steady state and protein synthesis is equal to degradation, the 

computed kturnover is equal to the degradation rate: kturnover=kdegradation. Please note for the 

specific purpose of illustrating the TRIC alignment in this paper, we treated heavy and light 

channels separately, which could be further optimized (e.g., by combining heavy and light 

assays in the library generation step) for future SILAC experiments.

For gene ontology (GO) term enrichment, we used the Gene Ontology enrIchment analysis 

and visualization tool (GORILLA) at http://cbl-gorilla.cs.technion.ac.il as described in Eden 

et al. [37]. We selected the proteins with the highest and lowest turnover rates (10 % and 

25 % quantiles) and used all identified proteins as background in GORILLA. We identified 

20 significantly (q-value <0.05) enriched GO terms. Most terms enriched for proteins with 

high turnover (fast degradation) were related to cell signaling, radiation and light response, 

cell-cell adhesion, extracellular matrix and locomotion (Supplementary Table 6).

Code availability

All source code for TRIC is available at https://github.com/msproteomicstools/

msproteomicstools under the 3-clause BSD licence.

Human subjects approval

Approval by the ethics committees of the Genomic and Genetic Disorder Biobank (Casa 

Sollievo della Sofferenza, San Giovanni Rotondo, Italy) and the University of Perugia 

(Azienda Ospedaliera–Universitaria “Santa Maria della Misericordia” Perugia, Italy).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. TRIC: Alignment algorithm for targeted proteomics data.
(a) In a targeted proteomics experiment, each run is typically analyzed individually, giving 

rise to multiple putative peak groups per run that may not be directly mappable due to 

chromatographic shifts. (b) The TRIC algorithm selects a set of high-confidence “anchor 

points” (peptides) for pairwise non-linear alignment and chromatographic distance 

estimation. (c) Based on the chromatographic distance, an optimal guidance tree (I) is 

computed (nodes are runs, edges are pairwise alignments). Next (II), the algorithm uses a 

starting point (1) to transfer identification confidence to nearby runs (iterations 2 and 3) 

using the guidance tree (III). In an optional last step (IV), runs without suitable peakgroups 

are re-visited to perform optional noise re-quantification (integration of all fragment ion 

signal at the aligned position is integrated; orange circles). (d) The confidence transfer step 

uses a starting peakgroup (top run) to select a narrow region in a neighboring run (gray 

region in second run) from which a peak gets selected. This procedure is repeated across all 

runs to identify the correct peak or establish peak boundaries in runs without any analyte 
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signal (bottom run). In a real application, the alignment order may not be linear but follow 

the guidance tree.
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Figure 2. Identification and alignment accuracy of TRIC on manually annotated data.
We used a set of over 7,000 manually validated peakgroups to validate the TRIC algorithm. 

(a) FDR-Recall plot displaying recall rate versus the false discovery rate allows evaluation 

of the performance of TRIC compared to the naïve approach of using a fixed q-value cutoff 

applied to each run individually. As mis-classified peaks cannot be recovered even at high 

score cutoffs, a recall of 100 % cannot be reached. (b) Error rates at reported FDR cutoffs of 

1 % for the naïve approach and TRIC without RT alignment (None), linear alignment 

(Linear) and non-linear k-nearest neighbor alignment (LLD). (c) The error of reported 

retention times are plotted without (top) and with (bottom) non-linear alignment on a sample 

run. (d) The cumulative fraction of peaks having less than a given error in retention time is 
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plotted. TRIC with k-nearest neighbor smoothing (LLD) achieves high peak counts at low 

RT errors and outperforms linear or no alignment.
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Figure 3. Analysis of a microbial dataset investigating S. pyogenes virulence.
A dataset of 12 runs of S. pyogenes exposed to human plasma was analyzed with TRIC. (a) 

The data matrix occupancy is higher after alignment with TRIC (fewer missing values are 

observed). (b) The computed guidance tree captures orthogonal information to injection 

order (root mean square deviation between runs is indicated for each edge). Control samples 

are in blue and plasma-exposed samples are in red (note that the tree is substantially 

different from injection order as samples were shot in three batches: R1, R2 and R3). (c) 

Number of precursors appearing in a specific number of runs before (left; N=95 685) and 
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after (right; N=120 348) running TRIC; fully aligned precursors increased by 39 % while 

precursors found in only a single run decreased by 93.7 %. (d) The cumulative number of 

the number of peptides quantified using a fixed 0.01 q-value cutoff without alignment (left) 

and after applying TRIC and a minimal q-value cutoff of 0.0015 (right). While TRIC 

decreased the variance of the number of identifications across runs, the cumulative number 

of peptides also saturates more quickly indicating less accumulation of false positive 

identifications.
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Figure 4. Pulsed-SILAC experiment performed on human iPSCs.
A human iPS cell line was exposed to a pulse of heavy amino acids and sampled at four time 

points in duplicates (see Panel b). (a) The RT difference between the light and heavy signal 

as a function of the intensity. Aligned values reported by TRIC (in red) have lower intensity 

and higher RT error (distribution on top only displays values below 104 in intensity) (c) 

Standard deviation of the RT difference between heavy and light pairs with and without 

TRIC alignment. For the analysis without alignment, a simple FDR cutoff was applied 

(naïve approach). Alignment increases the number of quantified SILAC pairs at the cost of 
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slightly higher variance. Pairs from both replicates are aggregated. No heavy-light pairs are 

expected at t=0 as heavy amino acids were added afterwards. (d) The number of isotopic 

SILAC pairs quantified per sample increases through the TRIC alignment, especially for the 

earlier time points with little heavy isotope signal. For each timepoint, average values across 

two replicates are shown with standard deviation.
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Figure 5. Protein turnover rates in human iPSCs.
Targeted proteomics analysis of protein turnover in human iPSCs. (a) Relative isotopic 

abundance (RIA) is plotted for an example protein, Importin Alpha, with 5 peptides (dashed 

lines). The median of all decay curves fitted through 1.0 at timepoint zero for all peptides 

estimates protein-level kloss. (b) Global protein turnover rates are estimated after correction 

for protein dilution. (c) Proteins in GO category “cell adhesion proteins” show significantly 

higher turnover than expected (p <10−7). All peptides of the respective proteins exhibit 

substantially higher degradation rates than the base distribution (shown on the very right). 

Only proteins with two or more peptides are shown (box indicates first and third quartile 

with median shown in black; whiskers extend to the most extreme data point which is no 

more than 1.5 times the length of the box away from the box).
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