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A B S T R A C T   

Tamarindus indica is a multipurpose dry land species in sub-Saharan that is traditionally used to 
build resilience into the farming system. The species is highly threatened and listed on the IUCN 
Red List. However, information on how climatic condition locally influences its ecological dis
tribution is limited. This study investigates the current and future suitable habitat for the species 
in the Tigray region, in northern Ethiopia. A total of 220 species presence points and the number 
of T. indica within a 50 m × 50 m plot were collected. In addition, 19 bioclimatic variables, 3 
topographic variables and soil data were used to model the impact of future climate conditions 
under two Representative Concentration Path Ways (RCP4.5 and RCP 8.5). MaxEnt-v-3.3.3 k, 
Diva-GIS-7.5, and GIS10.6 were used to model the current and future distribution. SPSSv-26 was 
also utilized to analyze the relationship between the species’ abundance and environmental 
variables. Results showed that the environmental variables determining most for the distribution 
of T. indica were mean diurnal range (Bio2 (56.9%)); temperature seasonality (Bio4 (10.3%)) and 
temperature annual range (Bio7 (9.2%)). The model suggested that the current distribution of 
T. indica covers an area of 9209 km2 (14.04%). This would have increased to 29,363 km2 

(44.78%) and 11,046 km2 (16.85%) by 2070 under RCP4.5 and RCP8.5, respectively. Compared 
to the high-impact areas, new gains of suitable areas (net 25,081 km2) for the future distribution 
of the species were predicted in 2070-RCP4.5. Altitude, rainfall, temperature, silt contents of soils 
and soil pH have significant contributions (P-value<0.05) to the abundance of T. indica. However, 
altitude has a negative relationship with the abundance of T. indica. Additional studies to un
derstand population trends and other threats are recommended.   
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1. Introduction 

Forests and woodlands provide a wide range of ecosystem services to people living in both developed and low-income countries [1]. 
Despite such profound benefits they are being threatened because of various anthropogenic factors. Deforestation resulting from 
agricultural expansion and climate change are putting the distribution and coverage of forests and woodlands at risk [2,3]. The in
crease of world’s temperature over time leads to an increment in desert-like dry conditions that will affect not only the survival of 
certain species, but also pose major challenges to global food security and rural livelihoods [3,4]. African dry forests, the largest 
vegetation formation are among those affected by climate change problems. Since, the majority (>70%) of the Ethiopian land masses 
are dry land, characterized by erratic rainfall, extreme drought, and flash floods, the impact seems particularly intense [1]. 

Farmers residing in many drought-prone regions seek to improve their life through growing of multipurpose trees that provide 
food, fodder, nutrients, timber, firewood, and mitigating the climate change impact [5,6]. Tamarindus indica L. (hereafter T. indica) is 
one of the multipurpose trees in sub-Saharan zones and traditionally builds resilience to the farming systems [7,8]. Beyond main
taining ecological sustainability [9,10], T. indica is an indigenous semi-evergreen tree species of the Fabaceae family, widely 
distributed across the sub- and semi-arid tropics [7,11] and is preferred for its wild edible fruit and timber [7], fodder for animals [12], 
medicinal value [13–18], food [18,19] and improve soil fertility [9,10]. 

In several parts of the tropics, T. indica is an agroforestry tree species due to its multiple uses [7,9,20,21]. However, current studies 
have remarked poor recruitment [22,23] and low densities. Similarly, this species is highly threatened and limited only in the river 
basin of Ethiopia, particularly in the study area. Moreover, T. indica is listed on the IUCN Red List of Threatened Species [24]. Many 
species are being threatened by climate change [3,25]. Scholars have confirmed that dry land forests and woodlands are under pressure 
risk of extinction and shifts to pole wards and/or a higher elevation [3,26,27]. For instance, Balanites aegyptiaca [28], Adosania digitata 
[29], Hagenia abyssinica [30], Ethiopian wolves [31], Dracaena ombet [32], Ethiopian endemic birds species [33] and Juniperus procera 
[34] are among those species that are to declining in their distribution or at risk of extinction from their natural habitats in Ethiopia. 
However, the distribution and fate of T. indica is not investigated, particularly in the study area. There is no evidence on how the 
distribution and what suitable habitat might happen to the species under different greenhouse gas emission baselines. There is no or 
little information available on how climatic conditions locally influence its ecological distribution, abundance and productivity in 

Fig. 1. Location map of the study region.  
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Africa [8,23], particularly in the study area. Previous studies have provided information on morphological and genetic diversity, 
potential productivity, and nutritional and medicinal properties [12,13,16,35]. Therefore, our aim is to fill the knowledge gaps about 
the species by investigating the impacts of climate change on its future distribution and abundance. 

Species distribution models (SDMs) are ecological tools that help to predict species distribution by combining known occurrence 
records with digital layers of environmental data [36]. They can be used to assess climate change impacts and conservation man
agement issues [37–39]. Currently, Maximum Entropy (MaxEnt) modeling approach is widely used in many studies to investigate 
climate change impacts on species distribution [7,29,34,38,40,41] and detect suitable areas for species conservation and to avoid 
extinction [41–45]. Compared to other SDMs such as GLM, Bioclim and GARP, MaxEnt has been shown to perform well [46]. 
Therefore, we used MaxEnt model to examine the distribution and future suitable habitat for the species. Thus, by assuming that 
climate change is one of the most important factors to determine the future distribution of species [3,47], we hypothesize that (1) The 
expected temperature elevations and precipitation variation are the major environmental factors to change T. indica distribution in 
Tigray, Ethiopia (2) T. indica distribution range much decreases in the climate change scenario of RCP8.5 than the 4.5 and (3) Future 
climate change shifts the altitudinal range of suitable habitats for T. indica in Tigray, Ethiopia. 

2. Materials and methods 

2.1. Description of the study area 

The study was carried out in Tigray region, northern Ethiopia, (Fig. 1). Tigray is geographically located at 12◦15ʹN to 14◦57ʹN 
latitude and 36◦27ʹE to 39◦59ʹE longitude. It obtains an annual temperature ranging from 8.10c and 370c and annual rainfall ranging 
between 308 and 1054 mm [41]. It inhibits an altitude of 500–4000 m.a.s.l. The region covers 53,000 square kilometers (km2) [41]. 
The dominant soil groups in the region are Leptosols, Vertisols, Fluvisols, Cambisols, Regosols, Luvisols, Arenosols, Calcisols, Xerosols, 
and Phaeozems [48–53]. 

2.2. Data collection and sampling procedures 

In the north-western and western zones of the Tigray Region, 220 species locations points with a distance between points larger 
than or equal to 1 km were gathered. The data, in decimal degrees, were collected using Garmin 72H GPS from the identified T. indica 
occurrence sites. Besides, number of T. indica within a 50 m × 50 m (2500 m2) plot in each selected plot (point locations) was collected. 
Apart from that, soil types/properties, slope and aspect were used as predictor variables to run the model [54]. The 19 bioclimatic data 
with a 1 km resolution and altitude (Supplementary information, Table 1) were downloaded from WorldClim-Global data. The soil 
data of Tigray were taken from the UNESCO soil map (http://www.fao.org/soils-portal/en/) while the slope and aspect were derived 
from the Digital Elevation Model (http://ned.usgs.gov). All the data were clipped down to the map of the study area using ArcGIS10.6. 
Baldwin [55] indicates that more than 30 presence points are sufficient to predict the existing and future potential distribution of a 
species. However, in order to increase the predicting power of the model, we intentionally increased the number of species occurrence 
points to 220 points. 

2.3. Data analysis and modeling procedures 

To estimate the impacts of reasonable future climate conditions on T. indica and considering the availability of the data, we used 
Representative Concentration Pathways (RCPs) under the General Circulation Model (GCM) called Climate Community System Model 
version four (CCSM4) from the Coupled Model Inter-comparison Project-phase 5 (CMIP5). The GCM was selected based on its 
consistent use across regions, particularly within sub-Saharan Africa [56,57]. In addition, as compared to the three GCMs (ACC
CESS1-0, CCSM4 & MIROC5) proposed for sub-Saharan Africa, CCSM4 was selected for the specific study areas [34,58]. 

The GCM was forced using two scenarios (RCP4.5 and RCP8.5) which are fed in three-time slices: current (i.e. 1950-2000), mid-of 
this century (2041–2060; average: 2050) and end-of the century (2061–2080; average: 2070) [54] to provide time-dependent pro
jections of atmospheric greenhouse gas concentrations [59]. The medium and high greenhouse gas emission baselines (RCP45 and 
RCP8.5) were chosen because of the future increase in the emission of greenhouse gases as suggested by Beaumont et al. [60]. 

ArcGIS10.6 was used for analysis by coupling the environmental variables and the presence data of the species. Maximum entropy 
(MaxEnt) software version 3.3.3 k was used to model the present and future distribution of T. indica in the region because MaxEnt is 
well suited for species distribution modeling, has a high projecting performance and has the most accurate distribution function 

Table 1 
Habitat suitability threshold.  

SN Threshold value Threshold description 

01 0.652–1.0000 The geographical ranges of the excellent area 
02 0.489–0.652 Optimum area 
03 0.326–0.489 Suitable area 
04 0.163–0.326 Less suitable area 
05 0.0000–0.163 Unsuitable area  
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compared to other models [61–64]. Before running the model, we randomly divided the occurrence points into two parts; 75% to train 
the model and 25% to test the model. The software’s settings were set to a maximum of 5000 iterations, 25% test percentage, and 10% 
training presence threshold. The remaining settings were taken as default. Making 5000 number of iterations allows the model to avoid 
over or under-predict [34,62,65]. As suggested for MaxEnt analysis, the environmental variables were converted to ASCII file format 
[66]. Finally, we run the SDM for 15 replicates and averaged the results to get superlative results [67]. 

Due to the absence of a universally valid single evaluation measure of model accuracy, we used both areas under the curve (AUC) of 
the receiver operating characteristic (ROC) and True skill statistics (TSS) to measure model performance. AUC is a single independent 
measure for model performance with values ranging from 0 (no better than random prediction) to 1 (perfect prediction) [62,68–71] and 
is considered an effective measure for model performance. The TSS is a relatively new measure for the predictive performance of a model and has 
the advantage of correcting the overall model accuracy [72]. It is defined based on the components of the confusion matrix representing 
matches and mismatches between observations and predictions [68,73]. Sensitivity and specificity are alternative techniques for model 
evaluation derived from the confusion matrix (Equation 1). Sensitivity measures omission errors as a percentage of predicted presences 
that are actually observed. Specificity measures commission error by the percentage of predicted observed absences [68,73]. Its value 
ranges from − 1 to 1; where values from − 1 to 0 indicate a performance no better than the random prediction, and a value of 1 indicate 
perfect prediction [68]. 

TSS= Sensitivity \ (true presence) + Specificity (true absence) − 1 … … … … … … (Eq1) 

The models were accepted after it met the principle that the area under the curve (AUC) value became greater than 0.88 for test 
records [64] and the TSS values > 0.5 [68]. We also used Jackknife tests, percent contribution and response curves to identify the 
importance of each environmental variable for the model [66]. In order to avoid the likely errors, a 10% of minimum threshold was 
utilized to define the minimum probability of suitable habitat. The rest 90% of the data was applied to determine the suitable habitat. 
After the continuous values (0–1) obtained from MaxEnt, suitability habitats were identified based on the following threshold category 
(Table 1) [41,74]. 

The future impact of climate change on the suitable areas for the species was identified in DIVA-GIS 7.5 by overlaying and 
reclassifying the binary raster of current and future potential distributions and thus defined in four levels of suitability ranging from 
unsuitable (high-impact areas) to highly suitable (new suitable areas) [75] as (i) high-impact areas: areas where a species potentially 
occurs in the present climate conditions but will not be suitable in the future climate conditions (ii) areas outside the realized niche: 
geographic areas not suitable in both present and future climate conditions (iii) low-impact areas: geographic ranges where the species 
can possibly occur under both the existing and future climates; (iv) new suitable areas: areas which are not suitable for the occurrence 
of the species under current conditions, but will potentially occur in the future. 

The altitudinal shift of the specie was determined by extracting elevation values for each point and calculating the area of occu
pancy of the species in the identified time slices [64,76,77]. The total area of the current and predicted habitat (suitable and un
suitable) was calculated using ArcGIS10.6 under the recognized RCPs and time slices. The relationship between the abundance of 

Fig. 2. The area under the curve (AUC) of the training and test data for the 15 replicate runs.  
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T. indica and environmental variables was conducted using multiple correlations using SPSS statistical analysis software (version 26). 
Before statistical analysis, the dependent variables (abundance of T. indica) were tested for normality using the Shapiro-Wilk test. 

3. Results and discussions 

3.1. Evaluation of model performance 

The training and test area under curves (AUC) and TSS values for the 15 replicate runs were 0.993 (±0.001) and 0.7951 (±0.0428), 
respectively. In the AUC results (Fig. 2) the red (training) line depicts how well the model fits the training data whereas, the blue 
(testing) line indicates how well the model fits the testing data, and is the real test of the model’s predictive power. Both the AUC and 
TSS results showed the MaxEnt-generated model of the training and test data fitted the model. Therefore, the Model is accepted as it fits 
the principles that AUC values greater than 0.88 [64] and TSS values greater than 0.5 [55,68,78] are the best performer model and 
have the ability to predict a higher probability of occurrence of the species. Other studies also showed that a model having AUC ≥90% 
is considered an excellent performing model [44,78–82]; therefore this MaxEnt-generated model fitted these principles. 

The test line was very far from the random line and approached the top left of the graph; therefore, according to Phillips [83] and 
Phillips et al. [62] the model is better at predicting presence contained in the test sample of the data. Therefore for T. indica, we realized 
that the model has reached the level of excellent performance indicating that suitable conditions are predicted to be highly probable 
through most of the western and northwestern lowland areas of the Tigray region (Fig. 4). 

3.2. Contribution of environmental variables to the distribution of T. indica 

The MaxEnt selected the most important predictor bioclimatic factors from the WorldClim data-sets for the potential distribution of 
T. indica based on their order of contributions (Table 2) and jackknife test (Supplementary information, Fig. S1). Average values for the 
15 replicate runs showed that the mean diurnal range (Bio 2) (56.9%) and temperature seasonality (standard deviation) (Bio4) (10.3%) 
had the highest percent contribution for the distribution of T. indica means MaxEnt used these variables more than other variables 
during modeling. In both the training gain and test gain of the jackknife outputs (Supplementary information, Fig. S1) the blue color 
bars indicated the contribution of each variable used for modeling the tree. Bio 2 was the most effective variable in both percent 
contribution and jackknife test outputs to predict the suitable habitat of T. indica in the region. The main environmental variables that 
determine the distribution of T. indica in their sequence of contributions (Table 2) were mean diurnal range (bio2), temperature 
seasonality (bio4), temperature annual range (bio7), precipitation seasonality (bio15), slope and precipitation of coldest quarter 
(bio19), which accounted for 88.7% of the modeling. Bio2 is the environmental variable that gave the highest gain when used alone. As 
such, it is considered to have the most useful information by itself. Therefore, bio2 is the best predictor single variable for the dis
tribution of T. indica. The variable that reduces the gain in performance the most when removed was bio19, which therefore appears to 
contain the most useful information that other variables lack. Important variables showed high percent contribution and high decrease 
in gain when removed from the model. MaxEnt, therefore, answered which environmental variables matter most for the species being 
modeled. Once the MaxEnt model is trained, we can track which environmental variables contribute the most to the model [83]. High 
percent contributing variables help MaxEnt to fit to the training data [83]. 

3.3. Response of T. indica to the main contributing environmental variables 

The response curves (Fig. 3) showed how each predictor variable affects the MaxEnt model projection. Each curve represents a 
unique model created by using the corresponding variable. The logistic output as indicated on the y-axis of each response curve is the 
anticipated suitable conditions for the species [83]. MaxEnt identified the mean diurnal temperature (bio2), temperature seasonality 
(bio4) and annual range in temperature (bo7) as the top three environmental variables that mattered most to the model performance. 
Areas that have optimum values of mean diurnal temperature of 16 ◦C–18.5 ◦C (Fig. 3a) and areas with temperature seasonality of 
15 ◦C–26 ◦C (Fig. 3b) are suitable habitats for the distribution of T. indica. And areas which have temperature annual range of greater 
than 23 ◦C (Fig. 3c) are also suitable for the distribution of the species. However, when the temperature annual range exceeds 27.5 ◦C, 

Table 2 
Relative contributions of environmental variable to the 
MaxEnt model.  

Variable Percent contribution 

bio2 56.9 
bio4 10.3 
bio7 9.2 
bio15 5.6 
slope 4.1 
bio5 3.2 
bio19 2.6 
bio11 1.6 
bio1 1.3  

Y. Gufi et al.                                                                                                                                                                                                            



Heliyon 9 (2023) e17471

6

the distribution of T. indica keeps constant. 
A similar study on T. indica in Senegal have been reported that temperature seasonality (bio4) and annual range in temperature 

(bio7) are the top two (first and second) important environmental variables [7]; however, in our model, these two variables are the 
second and third important contributors to the model. The researcher also stated that the most important environmental variables to 
explain T. indica distribution in sequence are temperature seasonality (bio4), annual range in temperatures (bio7), maximum tem
perature of the warmest month (bio5), precipitation of the wettest month (bio13) and precipitation of the wettest quarter (bio16) 
which is slightly different from this study as mean diurnal temperature (bio2) is the most contributing variable in our model. Orwa 
et al. [84] and Rivers and Mark [24] also indicated T. indica prefers temperature-associated environmental conditions between 20 and 
33 ◦C, mean annual rain fall 350–2700 mm) and low altitude (0–1500 m). 

3.4. Potential distribution of T. indica under current and future climate conditions 

The ecological niche modeling suggested that the current distribution of T. indica in the study area is 9209 km2 (Table 3 and Fig. 4) 
which is 14.04% of the total area of the Tigray region. This would have increased to geographic range from 14.04% (current) to 11,073 
km2 (16.89%) and 10,629 km2 (16.21%) by the year 2050 under RCP4.5 and RCP8.5 radiative forcing scenarios respectively. By the 
end of the twenty-first century (2060–2080), the total suitable habitat will be increased to 29,363 km2 (44.78%) and 11,046 km2 

(16.85%) under RCP4.5 and RCP8.5 scenarios respectively. Similarly, the suitability maps (Fig. 4) also showed an increase in areas 
suitable for the distribution of this multipurpose tree species, especially in the medium emission scenario (RCP4.5). This means the 
MaxEnt model predicted that greater areas will be changed from unsuitable to suitable (new suitable areas) than suitable to unsuitable 
areas (high-impact areas) in 2070-RCP4.5. Our finding is also in line with the study of Bourou et al. [7] that indicated the suitable 
habitats for the distributions of T. indica in northern parts of Senegal were predicted to increase by 2050. 

Studies indicate that the distribution and suitable habitat of the tree species is likely to decline under future climate scenarios [26, 
85,86]. Unlike our assumption, this result showed that the potential distributions of T. indica in the study areas have a direct 

Fig. 3. Response curves of T. indica to the top three contributor variables. (a) Response of the species to bio2 (b) response of the species to bio4 and 
(c) response of the species to bio7. 
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relationship with future climate change. Though T. indica is listed on the IUCN Red List of Threaten Species [24], our study revealed 
that climate change does not negatively affect the future distribution of T. indica. There will rather be newly suitable areas created in 
response to future climate changes. Climate change especially an increase in temperature is not a reason for the species to be under 
threat. The factors threatening the distribution of the species in Tigray region might be due to illegal cutting, fuelwood collection, 
agricultural expansion, lack of replanting, timber harvest, deforestation in general, flooding, lack of management, and soil erosion 
[18]. 

A study in Benin by Fandohan et al. [8] also reported the current geographical distribution and tree density of T. indica in the 
Sudano-Guinean region is limited and will be fading out from some locations of the region and the major threats mentioned were 
abundant tree felling for construction and agricultural expansions, and other human activities like debarking for medicine, pruning for 
fodder and fruit harvest. 

The MaxEnt predicted the future new suitable areas and high-impact areas (Table 4). The future new suitable habitats of the species 
(areas not suitable at the current time but will be suitable for the future) under 2050-RCP4.5 and 2070-RCP4.5 scenarios will be 4829 
km2 and 25257 km2 respectively. However, the high-impact areas (areas that will be changed to unsuitable) under 2050-RCP4.5 and 

Fig. 4. Environmental suitability and future distribution maps of T. indica in Tigray, northern Ethiopia.  

Table 3 
The current and future distribution of T. indica in Tigray, northern Ethiopia.  

Time slices Distribution in Km2 Percent 

Current 9209 14.04 
2050-RCP4.5 11,073 16.89 
2050-RCP8.5 10,629 16.21 
2070-RCP4.5 29,363 44.78 
2070-RCP8.5 11,046 16.85  

Table 4 
Future climate change impacts on T. indica distribution.  

Time slices High impact areas Areas outside of the realized niche Low impact areas New suitable areas 

2050-RCP4.5 3348 56462 933 4829 
2050-RCP8.5 2081 58883 2200 2408 
2070-RCP4.5 176 36034 4105 25257 
2070-RCP8.5 2807 55765 1474 5526  
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2070-RCP4.5 will be 3348 k m2 and 176 km2 respectively. 
In the RCP8.5 scenario, the high-impact areas under 2050-RCP8.5 and 2070-RCP8.5 will be 2081 km2, and 2807 km2 respectively. 

The new suitable areas under 2050-RCP8.5 and 2070-RCP8.5 will be 2408 km2 and 5526 km2 respectively. Therefore, this result 
explained that areas that will be changed into suitable habitats in the future are greater than areas that will be changed into unsuitable 
habitats, especially under the 2070_RCP4.5 scenario. 

3.5. Altitudinal shift of T. indica in response to the future climate changes 

The current geographic range of the suitable habitats for T. indica in the region is between the altitude of 630–1564 m.a.s.l. 
(average = 1097 m.a.s.l.) (Table 5); this result is comparable with reports of Orwa et al. [84] and Rivers and Mark [24] which state 
T. indica grows well at a wide range of climatic conditions (mean annual temperature of 20–33 ◦C, mean annual rainfall 350–2700 mm) 
and in low altitude (0–1500 m.a.s.l). The current suitable geographic range of the suitable habitats for the species will shift to an 
altitudinal range of 674–1924 m.a.s.l (average: 1097 m.a.s.l) and 578–2367 m.a.s.l (average: 1473 m.a.s.l) in 2050-RCP4.5 and 
2070-RCP4.5 climate scenarios respectively. While under the RCP8.5 scenario, the altitudinal range of the current suitable habitat will 
be shifted to a geographic range of 737–1550 m.a.s.l (average: 1144 m.a.s.l) and 778–1769 m.a.s.l (average1274 m.a.s.l) by the years 
2050 and 2070 respectively. In both scenarios, the projected altitudinal range where T. indica survives will be wider than the current. 
And the average altitude where T. indica survives will be changed from 1097 m.a.s.l. (current) to 1473 m.a.s.l. and 1274 m.a.s.l. at the 
end of the century under RCP4.5 and RCP8.5 respectively. 

In general, MaxEnt projected the probability of suitable habitats for T. indica to occur were in the lowland areas of the western, 
north-western and to some extent in the central parts of the Tigray region. Especially under the 2070-RCP4.5 scenario, the suitable 
habitat will become a wider range with the future rising temperature (Fig. 4). The limitations of this study in CMIP5 are primarily 
found in various climate scenarios and GCM outputs. This is because the RCP scenarios consider a large drop in atmospheric aerosol 
emissions as well as a wide range of model responses and climate sensitivities [87,88]. Hence, in the IPCC Sixth Assessment Report 
(AR6) the latest set of climate scenarios has been developed with many updated climate model outputs (CMIP6), based on the “Shared 
Socioeconomic Pathways” (SSPs) [89–94]. SSPs are considered more realistic future scenarios and make assumptions about how 
population, energy use, education and technology change over the next century, and combine them with the assumptions about the 
level of emission pathways [88,89]. Further, to incorporate the socio-economic development’s impact on the species distribution 
modeling using the recently introduced SSPs scenarios needs to be conducted. 

3.6. Relationship between the abundance of T. indica and predictor variables 

The relationships between the abundance of T. indica and the environmental variables were analyzed using Spearman’s multiple 
correlations because the dependent data were not fit a normal distribution. Results showed that the mean abundance of T. indica in the 
50 m* 50 m plot was 3.02 ± 2.41 trees. The maximum number of trees found was 15 per plot; the minimum number was one tree per 
plot. The Spearman’s correlation result shows altitude, soil pH, temperature, percentage of silt (%silt) and rainfall have significant 
contributions to the abundance of the species while aspect, bulk density, cation exchange, percentage of sand (%sand) and soil organic 
carbon (SOC) content have not significant contribution (Table 6). Temperature, soil pH, percent of silt contents of soils and rainfall 
have a direct relationship. However, altitude has a negative correlation with the abundance of the species. This means as elevation 
increases the abundance of T. indica as well as the probability of finding suitable sites for the species decreases. This result is in line 
with reports by Orwa et al. [84] and Rivers and Mark [24] that stated T. indica grows well in low altitudinal range (0–1500 m.a.s.l) 
well-drained deep soils, warmer annual temperatures (20–33 ◦C) and a relatively higher annual rainfall (350–2700 mm). 

4. Conclusions 

This study investigated the top environmental variables that contribute most to the distribution of T. indica are mean diurnal range 
(bio2), temperature seasonality (bio4), temperature annual range (bio7), precipitation seasonality (bio15), slope and precipitation of 
coldest quarter (bio19) and these accounted for 88.7% of the modeling. 

The geographical range of T. indica, which is currently 9209 km2, would have increased to 29,363 km2 (44.78%) by 2070 under the 
RCP4.5 scenario. In contrast, the size of the suitable habitats will expand to 11,046 km2 (16.85%) by 2070 under the RCP8.5 scenario. 
Particularly in the context of the 2070-RCP4.5 scenario, the western and north-western lowlands as well as to some extent in the 

Table 5 
Altitudinal shift of T. indica in response to climate changes in 2050 and 
2070.  

Scenarios Altitude range (average) m.a.s.l 

Current 630-1564 (1097) 
2050-RCP 4.5 674-1928 (1301) 
2050-RCP 8.5 737-1550 (1144) 
2070-RCP 4.5 578-2367 (1473) 
2070-RCP 8.5 778-1769 (1274)  
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central parts of the region are identified as suitable habitats for T. indica to exist. 
Altitude, soil pH, temperature, percentage of silt (%_silt), and rainfall have significant positive contributions to the abundance of 

the tree. However, altitude shows a negative correlation with the abundance of the species. This means as elevation increases the 
probability of finding suitable sites for T. indica decreases. Therefore, in the two scenarios (RCP4.5 and RCP8.5), the future climate 
impact on the geographic distribution of T. indica is expected to be positive. However, it should be noted that the main reasons for the 
decline of the species as mentioned in other literatures might be attributed to human influence. Though the species is currently under 
threat and listed on the IUCN Red List of Threaten Species, the MaxEnt model predicts that suitable areas will become wider with future 
climate change. Therefore, conducting larger-scale studies worldwide, investigating the main reasons for the decline of suitable 
habitats for the species, integrating river networks with bioclimatic predictor variables and implementing conservation programs are 
recommended. 
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[72] J. Bedia, J. Busqué, J.M. Gutiérrez, Predicting plant species distribution across an alpine rangeland in northern Spain. A comparison of probabilistic methods, 

Appl. Veg. Sci. 14 (2011) 415–432, https://doi.org/10.1111/j.1654-109X.2011.01128.x. 
[73] A.H. Fielding, J.F. Bell, A review of methods for the assessment of prediction errors in conservation presence/absence models, Environ. Conserv. 24 (1997) 

38–49, https://doi.org/10.1017/S0376892997000088. 
[74] M.T. Reddy, H. Begum, N. Sunil, P.S. Rao, N. Sivaraj, Preliminary characterization and evaluation of landraces of Indian spinach (Basella spp . L.) for agro- 

economic and quality traits, plant Breed, Biotechnol. 2 (2014) 48–63. 
[75] X. Scheldeman, M. van Zonneveld, Training manual on spatial analysis of plant diversity and distribution, Biodivers, Int (2010) 1–179. 
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