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Abstract

The human brain contains ~60 billion cerebellar granule cells1, which outnumber all other neurons 

combined. Classical theories posit that a large, diverse population of granule cells allows for 

highly detailed representations of sensorimotor context, enabling downstream Purkinje cells to 

sense fine contextual changes2–6. Although evidence suggests a role for cerebellum in 

cognition7–10, granule cells are known to encode only sensory11–13 and motor14 context. Using 

two-photon calcium imaging in behaving mice, here we show that granule cells convey 

information about the expectation of reward. Mice initiated voluntary forelimb movements for 

delayed water reward. Some granule cells responded preferentially to reward or reward omission, 

whereas others selectively encoded reward anticipation. Reward responses were not restricted to 

forelimb movement, as a Pavlovian task evoked similar responses. Compared to predictable 

rewards, unexpected rewards elicited markedly different granule cell activity despite identical 

stimuli and licking responses. In both tasks, reward signals were widespread throughout multiple 

cerebellar lobules. Tracking the same granule cells over several days of learning revealed that cells 

with reward-anticipating responses emerged from those that responded at the start of learning to 

reward delivery, whereas reward omission responses grew stronger as learning progressed. The 

discovery of predictive, non-sensorimotor encoding in granule cells is a major departure from 

current understanding of these neurons and dramatically enriches contextual information available 

to postsynaptic Purkinje cells, with important implications for cognitive processing in the 

cerebellum.

Mice voluntarily grasped the handle of a manipulandum (Methods) and pushed it forward 

~8 mm for delayed receipt of a sucrose water reward (Fig. 1a). Highly trained mice made 
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many forelimb movements per session (191 ± 13 movements, mean ± s.e.m., across 20 

experiments in 10 mice). To record neural activity, we used mice that expressed the 

genetically-encoded Ca2+ indicator GCaMP6f selectively in cerebellar granule cells (Fig. 1b, 

Extended Data Fig. 1a). We developed a chronic imaging preparation to visualize 

fluorescence responses in granule cell somas during behavior (Video S1; Fig. 1c,d; Extended 

Data Fig. 1b,c; Supplementary Note 1; n = 43 ± 4 neurons per session). Mice began licking 

robustly during the delay period following a forelimb movement in anticipation of reward 

(Fig. 1e,f). Following reward delivery, the handle returned after a delay to permit the mouse 

to initiate the next movement.

The times of peak Ca2+ activity were heterogeneous and collectively spanned the task 

duration in highly trained mice (Fig. 1g). 85% of all recorded neurons exhibited significant 

task modulation (n = 561 total neurons from 6 mice). Some neurons exhibited maximal 

fluorescence during the forelimb movement (Fig. 1g example cells ~50–90; Extended Data 

Fig. 2a). Others were inhibited during movement (example cells ~1–40; Extended Data Fig. 

2b). Consistent with the traditional role of sensorimotor representation in the cerebellum15, 

neural response magnitude covaried significantly with peak movement velocity in 20% of 

granule cells (Extended Data Fig. 2c,d). Intriguingly, many other neurons exhibited response 

peaks during the delay period before the reward (example cells ~90–140) or during reward 

consumption (example cells ~140–170; Extended Data Fig. 2a).

Given the prominence of sensorimotor signals in the cerebellum, neural activity near the 

time of reward delivery could represent body movement or reward sensing. To discern its 

origins, we examined Ca2+ responses when omitting reward delivery on a randomly 

interspersed 1/6–1/4 of trials. We observed that some granule cells responded preferentially 

following reward delivery, as compared to instances of omitted reward (Fig. 2a top; 

Extended Data Fig. 3a–c). In principle, these could result from differences in overt motor 

output such as licking, which was substantially prolonged following reward compared to 

omitted reward (Fig. 2a; Extended Data Fig. 2e,f). We therefore compared rewarded trials 

with exceptionally high or low amounts of licking during reward consumption and found 

that reward-selective neurons were not modulated by licking (Fig. 2a bottom). Nevertheless, 

this does not exclude the possibility that reward-selective cells simply encode water-related 

sensory stimulus.

Surprisingly, many other granule cells exhibited larger responses following omitted reward 

than rewarded trials. Responses to omitted reward occurred without unique sensory input, 

and so cannot be a sensory response. We divided these responses in two types (Methods). 

The first type (“reward omission”) became active following the omitted reward (Fig. 2b top; 

Extended Data Fig. 3d). The second type (“reward anticipation”) became active before 

expected reward delivery and ceased to be active when the mouse received reward (Fig. 2c 

top, blue curve). But if expected reward was omitted, the neurons continued to be active for 

longer (Fig. 2c top, red curve; Extended Data Fig. 3e). Reward omission and reward 

anticipation neurons were also insensitive to licking during reward consumption (Fig. 2b,c 

second row). Thus, reward omission responses are not due to sensory input or reduced 

licking.

Wagner et al. Page 2

Nature. Author manuscript; available in PMC 2017 September 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We hypothesized that reward anticipation neurons encoded a cognitive state of expectant 

waiting. As anticipatory licking is a behavioral readout of anticipation16, we reasoned that it 

should influence the activity of reward anticipation neurons. Indeed, these neurons exhibited 

more anticipatory activity on trials with more anticipatory licking (Fig. 2c third row), and 

these quantities covaried on single trials (Fig. 2c bottom). On the other hand, when we 

omitted reward, mice stopped licking when they concluded no reward would be received, 

and therefore ceased anticipating. Therefore, activity of these neurons following omitted 

reward also covaried with the amount of licking following omitted reward (Fig. 2c bottom). 

By contrast, following reward delivery, licking exerted no effect on these neurons’ responses 

(Fig. 2c bottom). Thus, reward anticipation cells track licking only when it represents 

anticipation, but not during reward consumption.

Three additional lines of evidence argue against body movement as a cause of reward-related 

responses. First, we leveraged natural variability in mouse body motion to determine its 

effect on reward signaling. Via video tracking, we identified sets of rewarded trials with 

body motion most similar or most dissimilar to body motion on omitted reward trials, and 

found that reward-related responses were similar on both sets of trials (Extended Data Fig. 

4; Video S2). Second, inter-trial interval analyses revealed that reward omission cells do not 

encode preparation for the next trial (Extended Data Fig. 5). Third, to decouple movement 

and reward, we trained mice to alternate push-for-reward with pull-for-reward trials (Fig. 2d, 

black curves). Mice developed anticipatory licking in both conditions (Fig. 2d, colored 

curves). Reward anticipation neurons identified solely from activity on pushing trials (Fig. 

2e top) exhibited highly conserved reward anticipation responses on pulling trials (Fig. 2e 

bottom). Thus, reward anticipation cells generalize across sensorimotor context. Both reward 

and reward omission responses were similarly generalized (Extended Data Fig. 6a,b). By 

contrast, pushing or pulling movement-encoding cells exhibited substantially different 

responses (Extended Data Fig. 6c,d). Although we cannot exclude the possibility that 

smaller covert motion unaccounted for by these analyses could contribute to apparent 

reward-related signaling, these results suggest that granule cells can signal reward 

expectation independent of body movement.

To quantify the prevalence of reward responses in all recorded cerebellar lobules (Fig. 2f), 

we computed each cell’s response preference for reward vs. omitted reward and compared it 

to its response to high vs. low reward licking (Fig. 2g). We classified 5.5% of neurons as 

reward cells and 12.3% as reward omission cells, both with minimal sensitivity to licking. 

Reward anticipation cells contributed an additional 8.9% of neurons (Fig. 2h; Extended Data 

Fig. 3h). Consistent with the prominence of reward signals, granule cell ensembles linearly 

discriminated reward outcome on single-trials with 93 ± 2% accuracy (Extended Data Fig. 

7a–e). In addition, linear decoding of granule cell ensembles accounted for 44 ± 3% of the 

fine moment-by-moment fluctuations in a behavioral estimate of reward anticipation 

(Extended Data Fig. 7f–h).

To examine whether cerebellar granule cells encode reward expectations in disparate reward 

contexts, we retrained 5 mice that had performed the operant task for a Pavlovian task in 

which reward was delivered at a fixed delay following a tone. Tone was separated from the 

prior trial’s reward by a random delay. Among normal trials we randomly interspersed three 
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types of probe trials on which we omitted the reward after a tone, delivered a large reward 

after a tone, or delivered a reward without a preceding tone (n = 241 ± 3 total trials per each 

of 11 sessions in 5 mice). After training on this task, mice also began licking before reward 

delivery as in the forelimb movement task (Fig. 3a). Reward-related Ca2+ responses in the 

Pavlovian task resembled those in the operant task: reward responding, omitted reward 

responding, and reward anticipation (Fig. 3b–d top; Extended Data Fig. 8a–c). These cells 

occurred in all imaged lobules in proportions similar to those seen in the forelimb movement 

task (Extended Data Fig. 8d; 5.1% reward, 9.3% reward omission, 5.6% reward 

anticipation). Reward anticipation neurons were again sensitive to anticipatory licking but 

not reward licking (Extended Data Fig. 8e), indicating signaling of expectation rather than 

licking.

Unexpected reward trials further supported that granule cells encode reward expectation. 

Sensory reward stimulus and licking response on these trials were the same as on normal 

trials (Fig. 3a; p = 0.75, n = 11 experiments, Wilcoxon rank-sum test for time of 50% 

decline in licking during reward consumption). Some reward cells were also found to encode 

expectation rather than only sensory input, as they exhibited larger responses to unexpected 

than expected reward (Fig. 3b bottom). Reward omission neurons did not distinguish 

expected from unexpected reward (Fig. 3c bottom; Extended Data Fig. 8b), suggesting a 

selective sensitivity to reward omission. Furthermore, the cognitive state of anticipation 

should be absent during unexpected reward, despite sensorimotor input identical to expected 

reward. Indeed, we found that reward anticipation neurons were silent following unexpected 

reward (Fig. 3d bottom; Extended Data Fig. 8c). Thus, these cells selectively encode 

anticipation but not reward or reward consumption. Comparing reward preference to 

unexpected reward preference across mice revealed that 12% of neurons preferred 

unexpected reward whereas 9% preferred expected reward (Fig. 3e, Methods). In addition, 

some neurons distinguished normal rewards from large rewards, with minimal sensitivity to 

licking (Extended Data Fig. 8g–i). The Pavlovian task thus confirmed the reward signaling 

observed during forelimb movements, while uncovering additional encoding of reward 

expectation and reward magnitude.

To investigate how reward anticipation signals develop during the training phase of our 

tasks, we tracked activity of the same granule cells each day while mice learned the forelimb 

pushing task (Fig. 4a, Extended Data Fig. 9a–g). Comparing population responses during the 

task late versus early in learning revealed a substantial decrease in neurons responding 

robustly to reward, and a substantial increase in neurons responding robustly during the 

delay period in anticipation of reward (Fig. 4b). Following the same neurons across days 

over the course of learning (Fig. 4c; Extended Data Fig. 9h), we found that neurons active 

during forelimb movement (example cells ~20–50) appeared to be more stable than neurons 

active around the reward period (example cells ~60–80). Comparing responses on the first 

and fifth day of exposure to omitted rewards, we observed many more neurons with reward 

omission responses (Fig. 4d; example cells ~60–90).

To quantify these observations, we performed retrospective analyses of neurons whose 

responses were strongest on the last day of imaging. Interestingly, neurons with strong 

anticipatory responses on day 6 primarily responded only after reward earlier in learning 
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(Fig. 4e top). For neurons with the strongest day-6 preference for omitted reward compared 

to reward (Fig. 4f top), responses to reward omission became stronger over days. By 

contrast, neurons with the strongest day-6 forelimb movement response also responded to 

forelimb movement on all previous days (Fig. 4g top). These differences were also evident 

when we quantified the responses across all recorded neurons (Fig. 4e–g, bottom). Over the 

same period, changes in licking and in forelimb motion were modest (Extended Data Fig. 

9i,j) and were therefore unlikely to account for neural response changes. Thus, reward-

related responses are highly dynamic during learning, with reward responses becoming 

progressively more anticipatory and omitted reward response preferences growing in 

magnitude over days. Given the importance of granule cell signaling in learning17, the 

adaptive changes we observe are well placed to impact downstream cerebellar learning 

processes.

To our knowledge, this is the first in vivo recording of cerebellar granule cells during the 

execution and learning of goal-directed behavior. Besides movement-encoding granule cells 

as predicted from previous studies18,19,14, we found that granule cells signal reward 

expectation in multiple contexts (Supplementary Table 1) and in all cerebellar lobules 

imaged. Reward omission cells substantially outnumbered reward cells, even though reward 

is a sensory stimulus that elicits a larger licking response. This discrepancy may be related to 

our finding that omitted reward responses increase while reward responses decrease during 

learning. The abundance of reward omission granule cells could relate to cerebellar signaling 

of unexpected events20.

Reward signals have been best studied in the ventral tegmental area (VTA)21,22 but also 

documented in other brain regions such as the ventral striatum23, orbitofrontal cortex 

(OFC)24, and dorsal raphe nucleus (DRN)25. Most VTA dopamine neurons respond 

selectively to unexpected rewards or reward-predicting stimuli and are suppressed by 

omitted rewards. Thus, reward anticipation granule cells do not resemble VTA responses. 

Rather, they are reminiscent of responses in striatum23, OFC24, and DRN25 during goal-

directed behavior. Reward omission signals are found mainly in anterior cingulate cortex and 

the lateral habenula26,27. Granule cell reward signals could thus arise from many places 

although unlikely from a direct VTA→cerebellum projection (Extended Data Fig. 10). 

Neocortex provides an especially large mossy fiber input8 via the pons and thus merits 

further study.

An outstanding question is how reward context contributes to cerebellar function. Classical 

models posit that granule cells signal sensorimotor context. The incorporation of reward, 

reward omission, and reward anticipation signals should allow the cerebellar cortex to 

integrate sensorimotor information with signals reflecting internal brain state, drive, and 

affective status, and in so doing drastically expanding its function as a learning machine 

(Supplementary Note 2). Studying the causal role of these cells will require future technical 

advances to specifically manipulate reward-related granule cells without disrupting those 

essential for sensorimotor functions. Nevertheless, that granule cells can encode reward 

expectation clearly indicates that the contextual information available to downstream 

Purkinje cells is far richer than previously described, and provides a means for cerebellar 

involvement in a wide variety of cognitive computations.
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Methods

Mice

To express the Ca2+ indicator GCaMP6f28 in cerebellar granule cells, we used cre- and tTA-

dependent GCaMP6f transgenic mouse line Ai93 (TRE-lox-stop-lox-GCaMP6f )29. We 

crossed the Ai93 mouse to a cre-dependent tTA mouse ztTA (CAG-lox-stop-lox-tTA)30. We 

then crossed Ai93/ztTA mice to Math1-cre31 which in the cerebellum is expressed 

selectively in granule cell progenitors32. We used a total of ten Ai93/ztTA/Math1-cre triple 

transgenic mice (4 female and 6 male) for all experiments. Six contributed to the main 

pushing operant task data in Fig. 1–2 and Extended Data Fig. 1–3 and 7, five of those mice 

contributed to the Pavlovian task data in Fig. 3 and Extended Data Fig. 8, and three of them 

contributed to the operant learning data in Fig. 4 and Extended Data Fig. 9. The remaining 

four mice contributed to the push-pull operant task data in Fig. 2d,e and Extended Data Fig. 

6, and three of those also contributed to the video tracking data in Extended Data Fig. 4. 

These sample sizes permitted acquisition of hundreds of cells per data set with hundreds of 

trials, sufficient to make the statistical claims in the study. Mice were aged 6–12 weeks at 

the start of procedures. For Extended Data Fig. 10, we used 4 Ai14 mice (lox-stop-lox-
tdTomato)33 and one frt-stop-frt-lox-tdTomato mouse (derived from Ai65, frt-stop-frt-lox-
stop-lox-tdTomato29 by crossing to germline-cre; kindly provided by Andrew Shuster). 

Stanford University’s Administrative Panel on Laboratory Animal Care (APLAC) approved 

all procedures. All control conditions were internal to each animal and thus neither 

randomization nor blinding was performed.

Histology

We confirmed expression of GCaMP6f in cerebellar granule cells in fixed tissue from 

animals after performing experiments. We anesthetized mice using tribromethanol (Avertin) 

and transcardially perfused them with phosphate-buffered saline (PBS) followed by 4% 

paraformaldehyde (PFA). We extracted the brains into 4% PFA for 24 h of post-fixation, 

followed by at least 24 h in 30% sucrose solution. We cut 40 or 60 μm tissue sections on a 

cryotome (Leica). To label Purkinje neurons we used a monoclonal anti-calbindin mouse 

antibody at 1:1000 dilution in PBST (Sigma). To stain for GCaMP6f we used a polyclonal 

GFP chicken antibody at 1:2000 dilution in PBST (Aves Labs). We incubated both primary 

antibodies for 48 hours, followed by 3 hours in FITC donkey anti-chicken and Alexa-647 

goat anti-mouse secondary antibodies (Jackson Immunoresearch), both at 1:500 dilution in 

PBST. We then stained for DAPI at 1:20,000 dilution for 20 minutes. We imaged the 

sections using a confocal microscope (Zeiss) and a 40× 1.4 NA objective (Fig. 1b) or a 20× 

0.75 NA objective (Extended Data Fig. 1a). To stain for tyrosine hydroxylase (TH; Extended 

Data Fig. 10), we used a polyclonal rabbit anti-TH antibody (Millipore AB152) at 1:2000 

dilution followed by donkey anti-rabbit secondaries conjugated either to Alexa-488 or 

Alexa-647 (Jackson Immunoresearch) at 1:500 dilution.

Surgical procedures

We anesthetized mice using isoflurane (1.25–2.5 % in 0.7–1.3 L/min of O2) during 

surgeries. We removed hair from a small patch of skin, cleaned the skin, and made an 

incision and removed the patch of skin. We then peeled back connective tissue and muscle 
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and dried the skull. We then drilled a 3 mm diameter cranial window centered rostrocaudally 

over the post-lambda suture and centered 1.5 mm right of the midline. This positioned the 

window over cerebellar lobules VIA, VIB and simplex. To seal the skull opening, we affixed 

a #0 3 mm diameter glass cover slip (Warner Instruments) to the bottom of a 3 mm outer 

diameter, 2.7 mm inner diameter stainless steel tube (McMaster) cut to 1 mm height. We 

stereotaxically inserted the glass / tube combination into the opening in the skull at an angle 

of 45° from the vertical axis and 25° from the AP axis. We then fixed the window in place 

and sealed it using Metabond (Parkell). We next affixed a custom stainless steel head 

fixation plate to the skull using Metabond (Parkell) and dental cement (Coltene Whaledent). 

The 1.2 mm thickness fixation plate had a 5 mm opening to accommodate the stainless steel 

tube protruding from the window, and two lateral extensions to permit fixing the plate to 

stainless steel holding bars during imaging and behavior.

For viral surgeries (Extended Data Fig. 10), we drilled a small hole (~0.5 mm) in the 

cranium over the cerebellum, either over Lobule VI (−6.8 mm AP, 0.75 mm lateral, 0.35 mm 

below the brain surface; n = 4 mice) or over Lobule Crus I (−7.2 mm AP, 3 mm lateral, n = 1 

mouse). We injected 500 nL of either CAV2-cre into Ai14 animals (n = 4 mice) or 

AAVretro-EF1a-FLPo into frt-stop-frt-lox-tdTomato mouse (n = 1 mouse). Animals were 

sacrificed 1 – 2 weeks after viral infection.

Behavior

For all behavior, mice were water restricted to 1 mL of water per day. Mice were monitored 

daily for signs of distress, coat quality, eye closing, hunching, or lethargy to assure adequate 

water intake. During behavioral training and imaging, mice generally received all water 

during daily training sessions. For each task, mice trained for 7–14 days for ~30–60 minutes 

daily, depending on satiety. In both tasks, we recorded licking at 200 Hz sampling rate using 

a capacitive sensor coupled to the metal water port which delivered ~6 μL 4% sucrose water 

reward near the animal’s mouth. Raw binary lick traces were smoothed with a 2nd order 

Butterworth filter with 5 Hz cutoff frequency for all analyses except Extended Data Fig. 7f–

h, which used instantaneous lick rate as described below. For all experiments mice were 

head-fixed with their bodies from the torso down in a custom printed plastic tube. For video 

tracking experiments this tube was printed from optically transparent material.

Forelimb movement task

Mice learned to voluntarily initiate pushing the handle of a manipulandum. We custom 

designed the manipulandum in a double SCARA mechanical configuration34 to allow two-

dimensional planar motion with minimal inertia. The robot was constructed from custom 

printed plastic parts and actuated by two motors (Maxon RE-max 21) and monitored by two 

encoders (Gurley Precision Instruments R120B). Robotic control relied on nested feedback 

loops in FPGA (10 kHz; National Instruments LX50) and a real-time operating system 

computer (1 kHz; National Instruments cRIO-9024) both in a National Instruments cRIO 

chassis, as well as a Windows PC (200 Hz). The controllers were all programmed in 

Labview and permitted precise robotic positioning and application of forces to the handle to 

restrict motion as needed (Wagner et al., manuscript in preparation). The device recorded the 

handle position with a 200 Hz sampling rate and encoder resolution of 0.003 mm. The 

Wagner et al. Page 7

Nature. Author manuscript; available in PMC 2017 September 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



device permitted linear movements of maximum length 8 mm, after which the trial 

terminated. Following a delay (either 600 ms or 800 ms for 3 mice each), a solenoid released 

a drop of 4% sucrose water from a tube near the mouse’s mouth. Following another delay 

(either 500 ms or 2 s for 3 mice each) the handle began to return to the home position. This 

process completed either 2 s or 3.5 s (for 3 mice each) after the previous reward delivery, 

any time after which the mouse could initiate the next movement. For studies of omitted 

reward response, on a randomly interspersed minority of 1/6 to 1/4 of trials no reward was 

delivered.

For the body motion tracking in Extended Data Fig. 4, we used two cameras (The Imaging 

Source) to visualize the mouse’s right side directly, and the mouse’s underside via a mirror 

(Video S2). Behavioral video frame acquisition was synchronized to the two-photon frame 

acquisition at 29.9 Hz. We manually annotated the videos to track the x–y motion of the 

right forepaw and the base of the tail from the side view, and of the two hind paws from the 

underside view. For analysis in Extended Data Fig. 4, we computed for each rewarded trial 

the time-varying Euclidean distance to the average omitted reward trial body trajectory 

across the 8 body coordinates (x and y motion of forepaw, tail base and two hind paws). We 

then took the mean square of this distance from 0.1 to 1.5 s relative to reward to quantify 

each trial’s similarity to omitted reward body motion.

The alternating push-for-reward / pull-for-reward task followed a similar structure as above. 

After the mouse made a pushing movement and received reward, instead of returning to the 

home position, the robot released (following the same 3.5 s delay as above) to allow a 

pulling motion back to the prior home position. Mice were typically trained on this task for 

~2 weeks beyond the initial training needed to learn the push-only task.

For learning experiments in Fig. 4, we began imaging studies when mice had achieved 

sufficient basic competency on the task to produce enough forelimb movements for 

statistically meaningful analyses (> ~30 movements in a session). Thus initial learning of 

basic task performance preceded the imaging study, and mice had experienced the forelimb 

movement task for 4 – 6 days prior to imaging.

Pavlovian tone task

A computer played a 500-ms 8 kHz pure tone, followed by a fixed delay (1.2 s) before 

reward delivery. A randomized 2–6 s inter-trial interval separated reward from the tone of 

the succeeding trial. In addition, during imaging, 1/10 of trials consisted of an unexpected 

reward delivered 2 s after the preceding reward, with no tone, 1/10 of trials consisted of a 

tone followed by omitted reward, and 1/10 of trials consisted of a tone followed by a larger 

reward (2× volume for 2 mice, 3× volume for 3 mice). All mice imaged during the Pavlovian 

task were previously trained on the forelimb movement task.

Two-photon microscopy

We performed all Ca2+ imaging using a custom two-photon microscope with articulating 

objective arm35. We used a 40× 0.8 NA objective (LUMPlanFLN-W, Olympus) for all 

experiments. 920 nm laser excitation was delivered to the sample from a Ti:sapphire laser 

(MaiTai, Spectra Physics) at powers of ~50–65 mW. We used ScanImage software36 (Vidrio 
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Technologies) to control all image acquisition hardware. All data except Fig. 2d,e and 

Extended Data Fig. 4, 6 were acquired at 13.5 Hz and 150 μm field of view using 

galvanometer scanning mirrors. Those remaining data were collected were collected at 29.9 

Hz and 320 μm field of view using resonant scanning mirrors. We focused into the tissue 

~100–200 μm below the pia surface to reach the granule cell layer.

To ensure alignment of the articulating objective to the glass window on the brain, we 

performed a back-reflection procedure. We projected a low power visible red laser (CPS180, 

ThorLabs) co-aligned to the infrared beam onto the glass window. We then visualized the 

red back-reflection on an iris placed at the objective port. We positioned the mouse and 

objective angles to center the back-reflection into the iris aperture. This procedure was 

essential for tracking the same granule cells across days. Slight deviations in image angle 

result in a different two-photon sectioning angle and therefore a different set of granule cells, 

due to their extremely small size and high packing density. During image acquisition, we 

compensated slow axial drifts in real time by frequently comparing the acquired images to 

the initial image and using an objective z-piezo (P-725.4CD, Physik Instrumente).

To align imaging data to behavioral data, the behavioral computer acquired the microscope’s 

frame clock signal simultaneously with the mouse’s behavioral data.

For chronic imaging (Fig. 4, Extended Data Fig. 9), we recorded the coordinates of the field 

of view with respect to a landmark such as the intersection of blood vessels at the boundary 

between different lobules. We identified lobules based on vasculature patterns and confirmed 

the assignment in three mice by visualizing the entire cerebellum after extracting brains at 

the end of experiments.

Image preprocessing

We first corrected two-photon line scan artifacts to compensate for non-linear motion of the 

galvanometer mirror. We recorded the position feedback signal of the x (fast axis) scanning 

mirror and compared to the commanded waveform to determine deviations from the ideal 

scan pattern. We then inverted this scan error to assign pixels to their true location in the 

image and thereby compensated the resulting distortion from the nonlinear galvanometer 

motion. We then compensated rigid lateral brain motion using TurboReg37.

Extraction of granule cell Ca2+ signals

We identified individual active cerebellar granule cells in our imaging videos using 

automated cell sorting based on principal and independent component analyses (PCA/

ICA)38. Cells corresponded to a weighted sum of pixels forming a spatial filter. We used 

automated segmentation and thresholding to truncate these filters down to individual cell 

bodies by eliminating any spurious, disconnected components. We extracted each neuron’s 

time varying fluorescence trace by applying the spatial filter to the processed videos. We 

then removed high-frequency noise by low-pass filtering the resulting traces with a 2nd-order 

butterworth filter (−3 dB frequency: 4 Hz). We removed slow drifts from each trace by 

subtracting a 10th-percentile-filtered (15 s sliding window) version of the signal. Finally, we 

z-scored each neuron’s fluorescence trace to correct for differences in brightness between 

cells, and then reported all fluorescence values in the resulting s.d. units.
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Aligning granule cells across days

We used TurboReg to align the mean image of each day to the final day, used as the 

reference. For each day independently, we performed the cell sorting procedure outlined 

above. In general, this produced an only partially overlapping set of cells between days. We 

then manually took the union of all unique and spatially non-overlapping cells identified in 

all 6 days to produce a much larger set of cell spatial filters which we then back-applied to 

the original imaging data from each day. Thus, neuron counts in these datasets exceeded the 

standard single-day cell sorting results by factors of ~2x.

Fluorescence response analysis

For Fig. 1 and Extended Data Fig. 2, we aligned data to the midpoint of each forelimb 

movement. For all other figures and analyses, we aligned data in both the forelimb 

movement task and tone task to the time of reward delivery. For omitted reward trials, we 

aligned data to the time at which reward would have been delivered following movement 

termination or tone onset. For each neuron we averaged the reward-aligned fluorescence 

response to produce the triggered averages used in all figures.

Definition of granule cell response types

We identified forelimb speed sensitive cells (Extended Data Fig. 2c,d) by averaging their 

fluorescence from −0.1 to +0.3 s relative to reach midpoint on each trial. We then took the 

Spearman correlation of the single-trial fluorescence with the peak forelimb movement 

speed. Cells with p < 0.01 (permutation test) were tabulated as significant forelimb speed 

cells.

We defined reward neurons in both the forelimb and Pavlovian tasks as those whose mean 

fluorescence averaged from 0.1 to 1 s was > 0.3 s.d. higher than following reward omission. 

Reward omission neurons conversely had responses > 0.3 s.d. greater than following reward 

delivery; however, we excluded reward anticipation neurons from this tally, as defined 

below. To verify that our classified reward outcome selective cells were statistically 

meaningful, we employed a shuffle test in which we scrambled the “rewarded” and “omitted 

reward” trial labels (or big reward or unexpected reward for Pavlovian task data) randomly 

1,000 times. For each shuffle we computed the reward selectivity as described above. If < 50 

of 1,000 shuffles (p < 0.05) yielded a larger reward or omitted reward preference than was 

observed, we concluded the reward preference was significant. Across all data sets in both 

operant and Pavlovian tasks, 97% of reward omission cells and 98% of reward cells, as 

defined by activity differences above, fulfilled this criterion. By contrast, the shuffle test 

alone was less stringent, classifying 1.9 and 2.2 times more reward and reward omission 

cells respectively at the p < 0.05 level. We defined cells using the more conservative and 

analytically simpler response difference metric for ease of presentation and consistency with 

all other analyses in the study.

To exclude cells whose reward selectivity was driven by sensitivity to licking, we further 

required minimal licking sensitivity defined as < 0.2 s.d. absolute difference between 25 

highest and 25 lowest licking trials averaged from 0.1 to 1 s.
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We similarly defined neurons significantly discriminating expected from unexpected reward 

or normal from large reward (in the Pavlovian task) by response differences > 0.3 s.d. 

averaged from 0.1 to 1 s. 97% of cells sensitive to reward magnitude and 97% of those 

sensitive to reward expectation defined in this way fulfilled the shuffle test described above, 

whereas the shuffle test alone less stringently classified 1.8 and 1.4 times as many reward 

expectation sensitive and reward magnitude sensitive cells respectively at the p < 0.05 level.

To identify reward anticipation cells in both the forelimb and Pavlovian tasks, we used two 

criteria. We required a substantial rise in fluorescence during the delay period (> 0.3 s.d. 

difference between the mean fluorescence from −0.25 to −0.05 s and the mean fluorescence 

from −1.3 to −1 s relative to reward), as well as greater fluorescence following omitted 

reward than reward (> 0.3 s.d. difference in mean fluorescence from 0.1 to 0.6 s).

To identify cells responsive to pushing or pulling movements (Extended Data Fig. 6c,d), we 

averaged the fluorescence from −1.3 to −1 s relative to reward on each trial and then 

averaged across pushing trials and pulling trials separately. Cells with a > 0.3 s.d. rise in 

fluorescence on pushing trials were tabulated as pushing cells, while those with a > 0.3 s.d. 

rise on pulling trials were pulling cells, compared to mean activity prior to reaching, −1.8 to 

−1.3 s.

To identify cells inhibited following tone onset (Extended Data Fig. 8f), we subtracted the 

average fluorescence following the tone (−0.8 to −0.5 s) from the average fluorescence prior 

to the tone (−1.8 to −1.3 s). We included all cells with a decrease > 0.5 s.d.

For selectivity scatter plots (Fig. 2g, 3e, Extended Data Fig. 8d,h), each point was computed 

from all trials, and thus has an associated standard error which we excluded for visual clarity 

but which typically ranged from ~0.1–0.15 s.d.

Population decoding analysis

To linearly discriminate reward outcome from ensemble granule cell activity, for each 

experiment we constructed a vector of true reward outcomes (0 for reward omission, 1 for 

rewarded trials). We further constructed a matrix of predictor variables from each cell’s 

mean fluorescence between 0 to 1 s on each trial. We then determined the optimal weighting 

of all cells by fitting a lasso logistic regression from the ensemble activity matrix to the 

reward outcomes vector (MATLAB). The lasso performs a series of logistic regressions 

while varying a penalty that discourages non-zero weights on cells. With increasing penalty, 

the number of cells included in the regression decreases to the most informative set. For 

each penalty level, the regression computes the 10-fold cross-validated reward outcome 

classification accuracy (where 1/10th of trials were left out of the fitting procedure to use for 

testing). This allowed us to determine the minimal cell ensemble size with the highest 

classification accuracy, which we reported in Extended Data Fig. 7a.

To linearly decode reward anticipation from ensemble granule cell activity, we first defined 

the time-varying reward anticipation state as the amount of licking (lick rate binned at 200 

ms) from −1.5 s to +1.5 s relative to reward delivery. If reward was delivered, we defined 

anticipation to decline to zero at time +0.1 s following reward. If reward was withheld, 

Wagner et al. Page 11

Nature. Author manuscript; available in PMC 2017 September 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



licking continued to indicate anticipation, and licking declined as mice concluded no reward 

was forthcoming (Extended Data Fig. 7g bottom). We then convolved this signal with a 200-

ms exponential to simulate GCaMP6f Ca2+ unbinding kinetics28. Using this time-varying 

single trial metric of reward-anticipation, we then fit a lasso linear regression using the 

simultaneously acquired time-varying fluorescence traces of all neurons. This returned the 

weighted sum of neurons that optimally recapitulated the reward anticipation signal 

(Extended Data Fig. 7g top). We assessed the performance of this decoder with the 10-fold 

cross-validated fraction of variance accounted for by the decoder output (Extended Data Fig. 

7f). For each lasso regularization penalty level, we recorded the 10-fold cross validated 

fraction of variance accounted for by the decoder output (Extended Data Fig. 7h).

Statistical analysis

We used MATLAB (Mathworks) for all statistical tests. We compared medians of two 

groups using the Wilcoxon rank-sum test. We probed the median difference between groups 

of paired samples using the Wilcoxon signed-rank test. We also compared the median of a 

distribution to zero using the Wilcoxon signed-rank test. These nonparametric tests do not 

assume the data follow a particular statistical distribution. Spearman correlation coefficient 

significance was determined by permutation test. Histogram error bars were computed from 

counting statistics as , where N = number per bin and Ntotal = total elements.

To determine whether the modulation of an individual cell by forelimb movement was 

significant in Extended Data Fig. 2a,b, we used an exact permutation test via simulated 

random datasets. Whereas the observed traces derived from averaging trials aligned to reach 

midpoint, the simulated random dataset was constructed by averaging the same number of 

“trials” aligned to random times during the 20–30 minute imaging session. We constructed 

1,000 such random datasets. For each cell, on each randomization, we quantified the peak 

average fluorescence between −2 to 2 s relative to trial alignment. We then sorted all 

randomizations by peak average fluorescence and determined the p < 0.01 cutoff as the 10th 

largest of the 1,000 simulations. We then compared the observed peak average fluorescence 

to the p = 0.01 cutoff. Cells exceeding this cutoff were significant and tabulated in Extended 

Data Fig. 2a. We then performed the same analysis using the minimum average fluorescence 

in Extended Data Fig. 2b.

Data availability statement: Data and code are available from the author upon request.
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Extended Data

Extended Data Fig. 1. Ca2+ imaging in cerebellar granule cells
a, Parasagittal section of the cerebellum of a transgenic mouse (Math1-Cre / CAG-lox-stop-
lox-tTA / TRE-lox-stop-lox-GCaMP6f) used for in vivo two-photon Ca2+ imaging. 

GCaMP6f expression (green) is widespread throughout most granule cells. GCaMP-

expressing somas were not detected in the molecular layer, and only rarely coincided with 

Purkinje cells (red). For unknown reasons, granule cell expression is substantially reduced in 

lobules IX and X. A, anterior; P, posterior; D, dorsal; V, ventral. b, Mean two-photon 

fluorescence image for the session shown in Fig. 1c,d. c, Location of all identified active 

cerebellar granule cells in the field of view in b (n = 53 cells total). Numbered cells indicate 

the example cell traces shown in Fig. 1d, counting from the bottom to the top.
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Extended Data Fig. 2. Granule cells encode movement in a forelimb movement operant task
a, b, Distribution of times of peak (a) or minimum (b) trial-averaged fluorescence response 

relative to reach midpoint (blue histograms, n = 561 total neurons from 6 mice). Orange 

histograms denote the subset of cells whose peak (a) or minimum (b) trial-averaged 

fluorescence modulation was significant. 85% of cells exhibited significant positive 

modulation, while 90% of cells exhibited significant negative modulation, at a point between 

−2 to 2 s relative to forelimb movement. To compute significance we compared observed 

peak and minimum fluorescence, to fluorescence for randomized datasets (Methods). c, For 

each cell we computed the Spearman correlation coefficient between single-trial 

fluorescence (mean from −0.1 to +0.3 s relative to movement midpoint) and peak movement 

velocity. Histogram denotes distribution of Spearman coefficients across neurons (n = 561 

total neurons from 6 mice). Neurons correlated with p < 0.01 (permutation test) are shown in 

orange. d, Mean movement-aligned fluorescence of granule cells whose single-trial 

fluorescence correlated significantly with peak movement speed, shown in c (n = 111 

neurons with p < 0.01 for correlation coefficients, shown in orange in c). e, f, Two example 

granule cells that encode licking. For these cells, response differences between reward 

outcomes (top row, examples) can be explained by the encoding of the licking response on 

rewarded trials (bottom row, 25 trials with the most and least licking from 0.1 to 1 s), n = 

209 rewarded and 68 omitted reward trials. Dashed vertical lines denote average time of 
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forelimb movement midpoint, solid vertical line denotes time of reward. In this and all 

subsequent figures, shaded regions denote s.e.m.

Extended Data Fig. 3. Granule cell reward responses during the operant task
a, b, Fluorescence response of all granule cells recorded from three experiments in lobules 

VIa, VIb, and simplex from one example mouse on rewarded trials and omitted reward trials. 

Each row shows the trial-averaged response of a single neuron. Dashed vertical line denotes 

the average forelimb movement midpoint; solid vertical line denotes time of reward delivery. 

Many more neurons appear to respond preferentially following omitted reward than reward 

delivery (n = 188 neurons). c–e, Average reward-aligned fluorescence of all reward-

preferring cells (c), omitted reward-preferring cells (d), and reward anticipation cells (e), 

from all mice and lobules during forelimb movements (n = 31 reward cells, 69 reward 

omission cells, 50 reward anticipation cells from 13 forelimb movement sessions in 6 mice). 

See Methods for cell identification criteria. f, g, Comparison of the cohort of mice that 

performed the operant task with briefer delay periods (f, n = 6 experiments in 3 mice with 

delay between the end of forelimb movement and reward delivery = 0.6 s and delay between 

reward delivery and manipulandum handle return = 2 s), or longer delay periods (g, n = 7 

experiments in 3 mice with reward delay = 0.8 s and post-reward delay = 3.5 s). Top, 

prevalence of reward response types as fraction of total neurons (error bars denote counting 

error). Bottom, average movement and licking behavior across mice on each task version. 

Results did not differ substantially between the two task versions and thus all data were 

pooled for all analyses aside from these figure panels. Across all mice, 50% of peak licking 

rise from baseline was reached in anticipation 0.8 ± 0.04 s before reward. Licking was 
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prolonged following reward compared to omitted reward (p = 4×10−4 Wilcoxon rank sum 

test, n = 6 mice; licking declined to half of its anticipatory level by 1.4 ± 0.14 s following 

reward compared to 0.7 ± 0.08 s following omitted reward). h, Venn diagram illustrating 

multiplexed representations in granule cells. Relative areas are true to observed cell 

proportions. Corresponding counting errors for reward-related cell classifications are 

provided in Fig. 2h. For forelimb speed cells, counting error was 1.7%. The prevalence of 

multiple representations in a granule cell matched predictions of independent probabilities of 

each representation (1.1% of cells encode reward and forelimb speed, 2% encode reward 

omission and forelimb speed, and 2.3% encode reward anticipation and forelimb speed, 

compared to the independence null hypothesis of 1.1%, 2.4%, and 1.8%, respectively).

Extended Data Fig. 4. Body movement does not explain reward signaling in granule cells
We placed mice (n = 3) in a clear tube during imaging experiments and recorded video of 

their body movement from the right side and from underneath the animal (Video S2). a, For 

an example mouse, we computed the average body trajectory for each trial type: omitted 

reward, and the 25 trials most similar or most dissimilar to omitted reward body motion 

(Methods). AP, anterior-posterior, DV, dorsal-ventral, ML, medial-lateral. Motion on 

reward-similar-to-omitted-reward trials more closely matched motion on omitted reward 

trials than did motion on reward-dissimilar-to-omitted-reward trials. b–g, For reward cells, 

reward omission cells, and reward anticipation cells, despite robust signaling of reward 
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outcome (b, d, f), higher similarity of body trajectory on rewarded trials to that on omitted 

reward trials did not result in cellular responses more similar to those on omitted reward 

trials (c, e, g), n = 21 reward cells, 41 reward omission cells, 10 reward anticipation cells 

(from n = 201 total granule cells analyzed from 3 mice). Therefore body movement is 

unlikely to be the cause of granule cell reward signaling. Dashed vertical lines denote 

average time of forelimb movement midpoint.

Extended Data Fig. 5. Inter-trial interval (ITI) analyses do not support that reward omission 
responses encode preparation for the next trial
One alternative explanation for the response of “reward omission” cells on omitted reward 

trials is that, following a trial in which the mouse does not receive a reward, the mouse is 

more anxious to begin the next trial and therefore quickly begins preparing for the next 

forelimb movement. If “reward omission” cells were actually just “next trial preparation 

cells,” then these putative earlier motor preparations on omitted reward trials would elicit a 

larger response. That these cells exhibit on average no response following rewarded trials 

could reflect mice choosing to wait before preparing the next trial following reward delivery 

compared to omitted reward. We tested two predictions of this hypothesis. First, we reasoned 

that if, following a rewarded trial, mice choose to initiate the next trial very quickly, putative 

“next trial preparation cells” should exhibit increased response, as they do following omitted 

reward. By contrast, on rewarded trials after which mice wait before initiating the next trial, 

the lack of motor preparations should result in a smaller response in “next trial preparation 

cells.” Second, if mice were substantially more anxious to initiate the next trial following 

omitted reward, ITIs following omitted reward trials should be shorter compared to ITIs 

following rewarded trials. a–d, To test the first prediction, we leveraged natural variability in 

mouse behavior to identify rewarded trials after which mice initiated the next movement 

very quickly and therefore had the shortest ITI (the earliest time that the robot returns to 

permit the mouse to initiate the next trial is 2 or 3.5 s following the previous reward, each in 

3 mice). For each imaging session, we identified groups of 25 rewarded trials with the 

longest ITIs and those with the shortest. These two groups of rewarded trials had 

substantially different ITIs, indicating that their next-trial-preparatory movements varied 

substantially (mean ITI for the “short” group was 3.6 s, for the “long” group 5.8 s, n = 13 

sessions). Each line in (a) represents one imaging session. Yet despite the large difference in 
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next-trial-preparations in these two groups of trials, reward omission cells remained silent in 

both cases, despite robust responses on omitted reward trials (two cells from two example 

mice in b, c; b is the example cell from Fig. 2B, n = 97 rewarded and 25 omitted reward 

trials; for c, n = 129 rewarded and 34 omitted reward trials). Across all 69 identified reward 

omission cells (d), there was no tendency for a stronger response when mice initiated the 

next trial quickly compared to when they waited before doing so. Thus the prediction that 

putative “next trial preparation cells” respond to earlier next trial preparations was not borne 

out. e, To test the second prediction that mice were preparing the next trial more quickly 

following omitted reward trials, thereby leading to greater preparatory movements encoded 

by putative “next trial preparation cells,” we grouped ITIs according to whether they 

followed rewarded or omitted reward trials within each imaging session (indicated by each 

line). We found no consistent difference in how long mice chose to wait before initiating the 

next trial following either reward or omitted reward trials (p = 0.93 Wilcoxon signed-rank 

test, n = 13 imaging sessions from 6 mice). Thus, the second prediction was also not borne 

out. Taken together, the selective response of reward omission cells to omitted reward trials 

is more likely to be related to reward than next-trial-preparations.

Extended Data Fig. 6. Granule cell responses in alternate push-for-reward and pull-for-reward 
trials
a,b, We identified reward (a) and reward omission cells (b) based only on push-for-reward 

trials and computed their average response (top). We then computed the average response of 

these same cells on pull-for-reward trials (bottom) and found they were highly preserved (n 
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= 23 reward omission and 30 reward cells from 4 mice). c,d, For comparison, we identified 

cells that responded to forelimb movement based only on push-for-reward trials (n = 25 

pushing cells) and computed their average response (c, top). We then compared this to the 

average response of these cells on pull-for-reward trials (c, bottom) and found it was 

substantially weaker. Similarly, when we identified cells responsive to forelimb motion 

based only on pulling trials (d, bottom, n = 42 pulling cells) the response of these cells on 

pushing trials (top) was substantially weaker. This indicates that movement responses (c,d) 
are substantially less generalized across sensorimotor contexts than reward signaling (a,b). 
Dashed vertical lines indicate average time of forelimb pushing or pulling movement 

midpoint, solid line denotes time of reward.

Extended Data Fig. 7. Granule cell ensembles discriminate reward outcome and decode behavior
a, We sought to discriminate reward from omitted reward trials by linearly decoding 

ensemble granule cell activity. We first used lasso logistic regression to identify the minimal 

set of neurons that achieve optimal decoding accuracy for each imaging session. For this 

minimal set, we fit a linear discriminant to the mean fluorescence from 0 to 1 s of each cell 

on each trial. We tabulated the discriminant’s cross-validated accuracy for each imaging 

session (dots). Red bars denote mean ± s.e.m. across sessions (n = 13 experiments in 6 mice; 

Methods). Dashed line denotes chance accuracy. Green dot denotes example session used in 

(b) and (d). b, For an example imaging session, we applied the discriminant weighting to the 

time-varying cellular responses on each trial and averaged the output across all rewarded and 

omitted reward trials (n = 56 neurons, 64 rewarded trials, 19 omitted reward trials). The 

large separation following reward vs reward omission reflects accurate neural decoding. c, In 

general, the lasso determined that optimal cross-validated decoding was achieved with a 

minority of recorded cells. d, For the example session shown in b, we examined how cross-

validated reward outcome decoding accuracy varied with the number of neurons included in 

the decoder, by varying the lasso penalty. We found that optimal performance was achieved 
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with a subset of cells, indicating that larger groups of cells resulted in some overfitting 

(Methods). Error bars indicate s.e.m. from cross-validation. e, To determine the importance 

of reward-selective cells in decoding, we fit linear discriminants while excluding reward-

selective cells (> 0.2 s.d. absolute fluorescence difference between reward conditions 

averaged from 0.1 to 1 s), as well as discriminants using only reward selective cells. We 

compared these decoders’ performance to the optimal subset determined from lasso 

regression, and found that reward-selective cells recover most of the optimal decoder 

performance. Each line represents one imaging session (n = 13 sessions). f, We reasoned that 

if granule cells can signal the mouse’s reward anticipation, it should be possible to use 

neuronal activity to decode this anticipation on a moment-by-moment basis. We therefore 

defined the mouse’s instantaneous anticipation state to be its lick rate (in 200 ms bins) until 

it received reward, in which case we defined anticipation to decline to zero (Methods). For 

each imaging session, we performed a linear regression to approximate the mouse’s time-

varying reward anticipation behavior by using the time-varying fluorescence of all cells. We 

quantified regression performance as the R2 fraction of variance in reward anticipation that 

was accounted for by the regression output (using cross-validation). Each dot denotes a 

single imaging session. Red bars denote average decoder performance. Green dot denotes 

example session used in (g, h). g, For one example session, concurrence between decoded 

anticipation (top) and observed anticipation according to the definition in f (bottom), from a 

single imaging session averaged across all rewarded (blue) and omitted reward trials (red) (n 
= 26 neurons, 171 rewarded trials, 54 omitted reward trials). h, For the example session in e, 

we performed a lasso regression that penalizes non-zero weights on cells, to restrict the 

number of cells used for decoding. We varied the penalty from zero to maximum in order to 

determine how accuracy scales with the number cells (Methods). Reward anticipation 

decoding accuracy (using cross-validation) reached nearly asymptotic levels with typically 

~10–20 included neurons. Error bars indicate s.e.m. from cross-validation.
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Extended Data Fig. 8. Granule cell reward responses during a Pavlovian tone–reward task
a–c, Average reward-aligned fluorescence of all reward preferring cells (a), reward omission 

cells (b), and reward anticipation cells (c), from all mice and lobules during the tone–reward 

task (n = 23 reward, 42 reward omission, and 25 reward anticipation cells from 11 

experiments in 5 mice). On average, reward anticipation neurons were silent following 

unexpected reward (p = 0.24 Wilcoxon signed-rank test; mean fluorescence change of −0.05 

± 0.05 s.d. comparing 0 – 1 s to −0.25 to −0.05 s relative to unexpected reward, n = 25 

neurons). Reward omission cells did not distinguish expected from unexpected reward (p = 

0.48 Wilcoxon signed-rank test comparing mean fluorescence from 0 to 1 s, n = 42 reward 

omission neurons). Dashed vertical lines indicate time of tone onset. d, Scatter of response 

properties of individual neurons (colored dots) showing reward preference (x-axis) versus 

licking sensitivity (y-axis) during the tone–reward task (n = 450 neurons). e, Single-trial 

correlation between licking and activity of each reward anticipation neuron either before 

reward delivery, after reward omission, or after reward delivery, averaged across all reward 

anticipation neurons during the Pavlovian task (n = 25 reward anticipation neurons from 11 

experiments in 5 mice; p = 0.02 pre-reward, p = 0.015 post-omitted reward, p = 0.72 post-

reward; Wilcoxon signed-rank test). As during forelimb movements, reward anticipation 

neurons correlate with licking only when licking represents anticipation. Following reward, 

when anticipation ceases, licking exerts no effect on activity. f, A subset of cells exhibited 

decreased fluorescence following the tone. To determine what these cells might be encoding, 

we identified all such neurons (Methods) and examined their response on the various trial 

types. We determined that these cells remain inhibited while the mouse is licking, beginning 
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with anticipatory licking through reward consumption (n = 20 cells from 5 mice). 

Importantly, on unexpected reward trials, these neurons are also inhibited. This is unlike 

reward anticipation cells in (c) that cease to be active following reward delivery and also 

remain silent on surprise reward trials. Thus cells inhibited by licking are more classically 

sensorimotor. g, First row compares trials with a normal sized reward to randomly 

interspersed trials with an larger reward. Second row compares normal reward trials with the 

most and least reward licking. h, Plot of each cell’s response difference between normal and 

large rewards (x-axis) and preference for licking on normal reward trials (y-axis). Dashed 

boxes indicate reward magnitude sensitive neurons without substantial licking sensitivity. 

Example cell from g is outlined. i, Each row shows the trial-averaged Ca2+ response of a 

single neuron. Cells in each panel (trial types indicated above) are ordered identically based 

on their response on rewarded trials (n = 135 neurons from three sessions in lobules VIa, 

VIb, and simplex from an example mouse).

Extended Data Fig. 9. Chronic imaging cell tracking and registration
a–c, Magnified view of mean two-photon image from the regions shown in Fig. 4a on Day 1 

(a), Day 4 (b), and Day 6 (c). d, Colorized overlay of the images in a–c in red, blue and 

green. We rigidly aligned the mean fluorescence image on each day to that of the final day 

using TurboReg37, resulting in unambiguous alignment of visible morphological features of 

individual granule cells. e, To quantify any ambiguity in the image registration we offset our 
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images from optimal alignment by small amounts. For one example session, we quantified 

the image concordance of Day 1 and Day 6, as a function of displacing the Day 1 image in 

the x and y directions relative to the registered optimum at zero (sum squared pixel 

differences between days, normalized to the registered optimum). There is a clear trough in 

the alignment error at the optimum, demonstrating that even slight, submicron 

misalignments are easily detected by image registration. Thus, there is little appreciable 

ambiguity in the alignment procedure. f, g, Average alignment error as a function of image 

displacement from the registered optimum, as in e, here averaged across all sessions and 

mice (n = 15 alignments from 3 mice). Error bars denote s.e.m. across alignments. Even the 

smallest, submicron, single pixel displacements result in significantly higher alignment error 

than the registered optimum (p = 4.4 × 10−6 and 5.8 × 10−5 for one-pixel x and y 
misalignments respectively, Wilcoxon signed-rank test). h, Mean fluorescence response of 

all neurons for the example mouse shown in Fig. 4c, here ordered by their Day 1 activity 

peak response time (n = 97 neurons). i–j, Change over the 6 days of the imaging study in 

licking behavior (i) and forelimb movement behavior (j) for the mouse in (h). Gross changes 

in motor behavior were relatively modest over the days of the imaging study (Methods).

Extended Data Fig. 10. Granule cell reward responses unlikely result from a direct midbrain 
dopaminergic projection to the cerebellar cortex
Previous literature on the topic of dopamine in the cerebellum has been controversial, with 

some anatomical tracing studies suggesting a projection to cerebellar cortex from ventral 

tegmental area (VTA)39,40, while others failed to find such a projection41. Some studies 

identified the presence of dopamine in the cerebellar cortex directly42–44, yet a major 

confound arises due to the large noradrenergic projection to the cerebellum from the locus 

coeruleus, as dopamine is a precursor to norepinephrine45. To determine whether our 

widespread reward-related signals were likely to be driven by a direct dopaminergic 

projection, we traced the inputs to the cerebellar cortex using viral methods. a, Schematic. 

We injected CAV2-cre, cre recombinase expressed from canine adenovirus-2 known to 

robustly infect axons and their terminals in many neuronal types46 including dopaminergic 

neurons specifically47,48, into the cerebellar cortex of a highly sensitive cre-reporter Ai14 

transgenic mouse. Thus any neuron in a region presynaptic to the cerebellar injection site 

infected by CAV2 will express tdTomato. We injected either the vermis of Lobule VI (n =3 

mice) or for comparison also the hemisphere lobule crus I (1 mouse). b, We stained serial 

coronal brain sections for tyrosine hydroxylase (TH, a marker for dopaminergic neurons) 
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and examined the distribution of input cells in the midbrain. In all 4 mice examined (sixty-

four 40- or 60-micron sections encompassing all midbrain dopamine neurons), we did not 

find any VTA or substantia nigra pars compacta (SNc) dopamine neurons projecting to the 

cerebellar cortex. As a positive control, we noted that all mice exhibited robust tdTomato 

expression in known inputs to the cerebellum such as the pontine nuclei shown above. To 

exclude the unlikely possibility that putative VTA dopamine neurons that project to the 

cerebellum cannot take up CAV2 efficiently, we also performed an experiment where we 

injected AAVretro-EF1a-FLPo, a virus that robustly infects axonal terminals49, into 

cerebellar lobule VI of a mouse that expresses FLP-dependent tdTomato, and again did not 

find tdTomato+ neurons in the VTA or SNc, but abundant tdTomato+ neurons in pontine 

nuclei (data not shown). Thus if a direct midbrain dopaminergic projection to the cerebellum 

exists, it must be very sparse, and therefore unlikely to drive the very large and widespread 

reward-related signals in our granule cell imaging data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Two-photon Ca2+ imaging of cerebellar granule cells during an operant task
a, Mice voluntarily pushed a manipulandum forward for sucrose water reward. We 

performed Ca2+ imaging while recording the paw position and the mouse’s licking. b, 
Confocal image of the cerebellar cortex of a transgenic mouse expressing GCaMP6f in 

granule cells. Calbindin immunostain for Purkinje cells in red. ML, molecular layer; PCL, 

Purkinje cell layer; GCL, granule cell layer. Two-photon imaging plane is schematized 

(dashed white box). c, Example in vivo two-photon images of cerebellar granule cells at rest 

and during a forelimb movement (500-ms average). Arrows denote example granule cells 

exhibiting fluorescence increases during this forelimb movement. Inset shows magnified 

view of mean fluorescence signals. d, Each row depicts the Ca2+ trace over time of one 

granule cell from the image in c. Blue triangles indicate forelimb movements. Red traces 

correspond to cells with red arrows in c. Red triangle denotes forelimb movement shown in 

c. Cells are ordered according to Extended Data Fig. 1c. e, Task structure. See Extended 

Data Fig. 3f for an alternative condition. f, Trial-averaged forelimb movement and licking 

(68 trials from an example mouse). Solid and dashed vertical lines denote midpoint of 

forelimb movement and average time of reward, respectively. g, Each row shows the trial-

averaged Ca2+ response of a single neuron, with colors representing fluorescence signal in 

the unit of standard deviation (s.d.) from the mean (188 cells from three sessions in lobules 

VIa, VIb, and simplex from the mouse in f.). In this and all subsequent figures, shaded 

regions denote s.e.m.
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Figure 2. Granule cells encode reward context during a forelimb movement operant task
a–c, Trial averaged Ca2+ response (solid traces) of three example granule cells, 

superimposed on licking traces (dashed). Solid and dashed vertical lines denote reward onset 

and midpoint of forelimb movement, respectively. First row compares rewarded trials and 

omitted reward trials (trial numbers in a–c, 228, 97, 171 rewarded and 77, 25, 54 omitted 

reward, respectively). Second row compares rewarded trials with the most or least licking in 

response to reward delivery (25 of each in the bracketed period). c, Third row compares 

trials with the most or least anticipatory licking (25 of each in the bracketed period). Fourth 

row shows the relationship between licking and activity of all reward anticipation neurons. 

Bars denote the Spearman correlation between fluorescence response and licking either prior 

to reward delivery (−1 to −0.05 s), or following omitted reward or reward delivery (0.1 to 0.6 

s). *** p = 8×10−6 pre-reward; ** p = 5×10−4 post-omitted reward; n.s. p = 0.59 post-reward 

(Wilcoxon signed-rank test; n = 50 reward anticipation neurons from 6 mice). d,e, In a 

modified task where mice alternated pushing-for-reward (top) with pulling-for-reward 

(bottom) trials, forelimb movement and licking responses are indicated as solid and dashed 

lines, respectively (d). Reward anticipation neurons classified on pushing trials (e, top) 

maintain similar responses on pulling trials (e, bottom), average of 41 neurons from 4 mice. 

f, Illustration of 3 mm cranial window. Grey lines represent cerebellar lobule boundaries. g, 
For each granule cell recorded during the (pushing only) operant task, we quantified the 

reward vs. reward omission response preference (x-axis; mean fluorescence response 

difference from 0.1 to 1 s), and the licking response preference (y-axis; mean response 

difference between trials with the most and least reward licking from 0.1 to 1 s; n = 6 mice, 

561 cells). Colors denote lobule origin of the cells. Dashed boxes indicate neurons we 

classified as selective for reward or omitted reward, with minimal licking sensitivity. 

Example cells from a–c are outlined. h, Prevalence of reward, reward omission, and reward 

anticipation neurons. Reward omission excludes reward anticipation neurons.
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Figure 3. Granule cells encode reward context during a Pavlovian tone–reward task
a, Top, task illustration. Bottom, average licking response (11 sessions in 5 mice). b–d, Trial 

averaged response of three example granule cells (solid traces) superimposed on licking 

response (dashed). Dashed and solid vertical lines indicate the time of tone onset and reward 

delivery, respectively. First row compares rewarded trials and randomly interspersed omitted 

reward trials. Second row compares rewarded trials to interspersed unexpected rewards not 

preceded by a tone (trial numbers in b–d: 178, 163, 163 rewarded, 26, 24, 24 omitted 

reward, and 26, 24, 24 unexpected reward, respectively). e, Plot of each cell’s response 

differences between rewarded and omitted reward trials (x-axis), and between unexpected 

and expected reward trials (y-axis). Colors denote lobule origin of the cells (450 cells). 

Example cells from b–d are outlined.
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Figure 4. Emergence of reward expectation responses during forelimb movement task learning
a, Example in vivo two-photon mean fluorescence images of the same granule cells acquired 

on different days, registered to the final day (magnified in Extended Data Fig. 9). Arrows 

indicate example corresponding neurons across days. b, Average responses of all detected 

granule cells on rewarded trials on Day 1 and Day 6 of imaging, sorted separately for each 

day by time of peak response (97 neurons from an example mouse). c, Average response of 

all granule cells on rewarded trials on all six days, sorted by their Day 6 activity, for the 

mouse in b. d, Average response to omitted reward on Day 2 and Day 6, ordered by time of 

peak response on rewarded trials on the same days. e–g, Top, For each day, average 

fluorescence of the top 10% of cells across mice (24 neurons) ranked by their Day 6: (e) 
anticipatory rise in fluorescence (mean fluorescence difference between −0.25 to −0.05 s 

and −1.3 to −1 s), (f) response preference for omitted reward over reward (mean difference 

over 0.1 to 1 s), or (g) forelimb movement response (fluorescence rise during movement, 

−1.3 to −1 s, compared to pre-movement, −1.8 to −1.3 s). Bottom, summary across all 

neurons of changes in anticipatory responsiveness (e), omitted reward preference (f), or 

forelimb movement responsiveness (g). (***p < 10−6; n.s. p = 0.76; n = 233 neurons from 3 

mice, Wilcoxon signed-rank test).
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