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Abstract: As international food trade increases, consumers are becoming increasingly interested in
food safety and authenticity, which are linked to geographical origin. Adzuki beans (Vigna angularis)
are cultivated worldwide, but there are no tools for accurately discriminating their geographical
origin. Thus, our study aims to develop a method for discriminating the geographical origin of
adzuki beans through targeted and non-targeted metabolite profiling with gas chromatography
time-of-flight mass spectrometry combined with multivariate analysis. Orthogonal partial least
squares discriminant analysis showed clear discrimination between adzuki beans cultivated in Korea
and China. Non-targeted metabolite profiling showed better separation than targeted profiling.
Furthermore, citric acid and malic acid were the most notable metabolites for discriminating adzuki
beans cultivated in Korea and China. The geographical discrimination method combining non-targeted
metabolite profiling and pareto-scaling showed excellent predictability (Q2 = 0.812). Therefore, it is a
suitable prediction tool for the discrimination of geographical origin and is expected to be applicable
to the geographical authentication of adzuki beans.

Keywords: adzuki bean; geographical origin; metabolomics; multivariate analysis; non-targeted
metabolite profiling

1. Introduction

The adzuki bean (Vigna angularis), which contains starch, nutritious proteins, and vitamins and
has a sweet taste, has been used as an ingredient in traditional dessert foods, particularly in East Asian
countries such as Korea, China, and Japan [1–3]. Adzuki beans have been extensively cultivated in more
than 30 countries worldwide [4–6]. Additionally, international food trade has dramatically increased
owing to the development of food storage and transportation technologies. Therefore, consumers are
exposed to foods with foreign geographical origins through imports and have consequently become
interested in the safety and authenticity of their food, which are linked to geographical origin [7]. Thus,
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European countries have placed country-of-origin labels on agricultural foods since September 2000 [8].
The adzuki bean is cooked together with glutinous rice to produce red rice dishes in Korea. Due to the
mass cultivation of adzuki bean in China, large quantities of adzuki bean have been imported from
China to Korea [9,10]. More than 80% of adzuki beans consumed in Korea are imported from China.
Identification of the geographical origin of adzuki bean is critical because some local vendors deceive
customers regarding cultivation origin for economic reasons. Tools for the validation of food safety and
authenticity have become essential and have been developed using various analytical and genomic
methods for the discrimination of geographical origin [1,7,11–13]. Although the genomic method is
highly accurate, it cannot discriminate against the geographical origins of the same plant variety [14].
On the other hand, analytical methods such as liquid chromatography (LC)–mass spectrometry (MS)
and gas chromatography (GC)–MS allow for accurate determination of the geographical origins of
the same variety by analysing differences in chemical composition. However, there are currently
no analytical methods based on metabolomics for the precise and accurate discrimination of the
geographical origin of adzuki beans.

Metabolomics has been performed to differentiate the geographical origins of many foods, such
as green tea, grape berry, wine, Angelica gigas, tobacco, cabbage, olive oil, wheat, pork, tomato, and
coffee [15–24]. Several techniques, including GC–MS, LC–MS, capillary electrophoresis (CE)–MS, and
nuclear magnetic resonance (NMR) spectroscopy, allow for accurate determination of the geographical
origins of the same variety by analysing differences in chemical composition. Among these techniques,
GC–MS represents a relatively robust and inexpensive analytical system. Previously, we used
GC–time-of-flight (TOF) MS to investigate the possibility for metabolic discrimination between Tagetes
cultivars [25]. Putri et al. [21] reported an application of non-targeted GC–MS metabolomics for the
discrimination analysis of the geographical origin of coffee samples. Recent analytical techniques for
non-targeted metabolite profiling are essential for generating large-scale data to obtain a comprehensive
understanding of samples. Targeted metabolite profiling is used to identify and quantitate metabolites,
which have already been confirmed using standard compounds, for example, to provide information
towards understanding specific metabolic pathways and quality assessment [26,27]. Non-targeted
metabolite profiling is used more globally, for example, to discover biomarkers [28,29]. To perform
targeted metabolite profiling, the retention time and mass spectral information of the metabolites
from standard compounds are required for identification and quantitation. Non-targeted metabolite
profiling uses global libraries (such as NIST, Wiley, and HMDB) to identify peaks but cannot provide
accurate quantification. However, non-targeted metabolite profiling can distinguish both known and
unknown metabolites and quickly and reliably identify the peaks. Thus, the non-targeted approach can
provide more comprehensive metabolite profile data than targeted profiling, but the data from targeted
metabolite profiling are more accurate, sensitive, and quantitative. Non-targeted metabolomics has
been performed using LC–TOFMS and GC–TOFMS [28,30–33]. GC–TOFMS commonly provides
profiles of primary metabolites with good reproducibility. An advantage of GC–TOFMS is the use of
standardised metabolome libraries to identify metabolites [32,34,35]. GC–TOFMS results can be directly
matched with spectral libraries, whereas LC–TOFMS requires further validation for definite metabolite
identification. Previously, we determined primary metabolism interplay using GC–TOFMS-based
metabolite profiling in oval- and rectangular-shaped Chinese cabbage [22]. Furthermore, Zhao et al. [20]
successfully used GC–MS metabolomics for the investigation of geographical location-associated
primary metabolic changes in tobacco plants.

Metabolomics, combined with multivariate statistical analysis, has been used for many analyses,
such as the discrimination of metabolic phenotype and geographical origin and the analysis of
relationships between samples and metabolites [27,30,32]. To extract notable information from
large-scale metabolite profile datasets, appropriate multivariate statistical analysis is essential. Before
performing multivariate statistical analysis of complex metabolite profile data, the data should be
pre-treated according to the intended purpose [32,36]. For example, principal component analysis
(PCA) focuses on explaining as much of the variation in the data as possible. The discrimination of
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phenotype or geographical origin usually uses PCA, although the analysis should focus on differences
among samples. Therefore, with the use of unit variance (UV)-scaling, which sets the standard
deviation of all variables to 1 and thus makes all variables equally important, the transformed data may
enhance the PCA results, whereas discriminant analysis may make the contribution of variables to the
discrimination unclear. Thus, the choice of pre-treatment methods, such as UV-scaling, pareto-scaling,
and range-scaling, is important to enhance the results of multivariate statistical analysis.

The objective of the present study is to discriminate the geographical origin of adzuki beans.
For this purpose, multivariate statistical analysis (PCA, orthogonal partial least squares discriminant
analysis (OPLS–DA)) was performed with targeted and non-targeted metabolite profiling using
GC–TOFMS. To enhance the results of multivariate statistical analysis, UV-scaling and pareto-scaling
were compared as pre-treatment methods. The final goal is the development of the first reliable
geographical origin discrimination method for adzuki beans.

2. Results

2.1. Comparison of Targeted and Non-Targeted Metabolite Profiling Using GC–TOFMS

To discriminate the geographical origin of adzuki beans, we analysed hydrophilic adzuki bean
components using targeted and non-targeted metabolite profiling. First, targeted metabolite profiling
was performed with GC–TOFMS. We detected 36 hydrophilic compounds in 13 different adzuki bean
cultivars. The compounds were confirmed using standards and the in-house libraries NIST 11 and
Wiley 9. Furthermore, the same data files obtained from targeted metabolite profiling were analysed
using non-targeted metabolite profiling, and we identified 111 compounds. For the non-targeted
approach, we used the statistical compare package of ChromaTOF software (LECO, St. Joseph, USA),
and the data processing cut-offs were S/N (signal-to-noise ratio) =10 and mass spectral minimum
similarity match =700.

The retention times obtained from non-targeted metabolite profiling were compared with those
from targeted profiling to assess the accuracy of peak identification (Figure 1). The targeted
and non-targeted metabolite profiling approaches identified 19 compounds in common with the
same retention times. Despite the automatic identification of results using the statistical compare
package for the non-targeted metabolite profiling platform, correlation of the retention times of
both platforms showed a correlation coefficient of 1.000 (Figure 2). Furthermore, comparing adzuki
bean chromatograms between targeted and non-targeted platforms showed the same retention times.
The integration results of both platforms were also calculated to be almost the same (Tables S1–S4).
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spectrometry (MS). 
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2.2. Geographical Discrimination of Adzuki Beans Using Multivariate Statistical Analysis with UV-Scaling 

To discriminate the geographical origin of adzuki beans, the obtained data matrices from 
targeted and non-targeted metabolite profiling were subjected to multivariate statistical analysis 
(PCA and OPLS–DA), which was used to identify the features of samples occurring in each data 
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The x-axis shows the retention times (s) of 19 compounds detected by the targeted metabolite profiling
method, and the y-axis shows those by the non-targeted metabolite profiling method.

2.2. Geographical Discrimination of Adzuki Beans Using Multivariate Statistical Analysis with UV-Scaling

To discriminate the geographical origin of adzuki beans, the obtained data matrices from targeted
and non-targeted metabolite profiling were subjected to multivariate statistical analysis (PCA and
OPLS–DA), which was used to identify the features of samples occurring in each data matrix. PCA, an
important tool for identifying overall patterns in complex data matrices, uses an orthogonal linear
transformation to convert the original data into a new set of variables called principal components
(PCs). The PC scores and loading are represented as a bi-dimensional plot and can indicate patterns in
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a dataset generated from samples. The data were normalised with UV-scaling. The PCA results of
both platforms showed no variances among the samples (Figures S1 and S2).

To optimise the separation among samples, we used OPLS–DA to determine differences in
metabolites arising from the geographical origin. OPLS–DA is an extension of the supervised partial
least squares regression method in which features (X variables) are divided to separate the systematic
variation into two parts, one that models the correlation between X and Y (prediction) and another that
models the orthogonal (uncorrelated to Y) components [37]. Thus, OPLS–DA has maximum separation
by classes of observations based on their variables and shows better interpretability compared with
PLS–DA. The geographical origins were set to 1 for Korea and 2 for China. To validate the model,
an internal validation method was used. The R2 and Q2 values of the validation results indicate the
quality of the model. R2, the goodness of fit, indicates what proportion of variation in the data is
explained by the model, and Q2, the goodness of prediction, indicates what proportion of variation
in the data is predictable by the model. Both R2 and Q2 have a minimum of zero and a maximum of
one. An R2 value closer to 1 is desirable; Q2 > 0.5 indicates a good prediction model, and Q2 > 0.9
indicates an excellent prediction model. The OPLS–DA projection models of both platforms showed
good separation. The prediction model from targeted metabolite profiling showed R2X of 0.359, R2Y of
0.774, and Q2 of 0.638. The Q2 above 0.50 indicates a good prediction model (Table 1). In addition, the
prediction model of non-targeted metabolite profiling platform showed R2X of 0.219, R2Y of 0.900,
and Q2 of 0.777; this model also had a good prediction ability. The score plots of the targeted and
non-targeted metabolite profiling data showed separation by geographical origin (Korea and China)
(Figure 3A,B). In addition, the R2Y and Q2 values of the non-targeted metabolite profiling platform
were higher than those of the targeted platform, but the R2X value was lower (Table 1). These results
mean that the classes (Y) had more influence on explanation and prediction in the model than the
variables (X) in the OPLS–DA results of the non-targeted metabolite profiling platform.

Table 1. Model validation results from multivariate statistical analysis (principal component analysis
(PCA) and orthogonal partial least squares discriminant analysis (OPLS–DA)) of targeted and
non-targeted metabolite profiling platforms with unit variance (UV)- and pareto-scaling.

Platform Scaling Model R2X R2Y Q2

Targeted

UV PCA 0.421 0.182
UV OPLS–DA 0.359 0.774 0.638

Pareto PCA 0.634 0.133
Pareto OPLS–DA 0.595 0.668 0.579

Non-targeted

UV PCA 0.328 0.130
UV OPLS–DA 0.219 0.900 0.777

Pareto PCA 0.491 0.167
Pareto OPLS–DA 0.374 0.869 0.812

Based on the above-discussed results, the non-targeted metabolite profiling score plot showed a
clearer separation by geographical origin than targeted metabolite profiling (Figure 3A,B). The loading
plots of both platforms had similar separation patterns. In the loading plots of both platforms, OPLS 1
and OPLS 2 resolved the separation of adzuki bean geographical origin. The significant metabolites of
OPLS 1 in the targeted loading plot were 26 (citric acid), 23 (phenylalanine), 19 (aspartic acid), and
25 (shikimic acid), for which the eigenvector values were −0.32861, −0.30755, −0.21853, and 0.25839,
respectively (Figure 3A and Figure S3A, Table S5). The important metabolites of the non-targeted OPLS
1 loading plot were A20 (analyte 20), 26 (citric acid), 23 (phenylalanine), A4 (analyte 4), A28 (analyte 28),
and 49 (d-(-)-erythrose), for which the eigenvector values were −0.22680, −0.19944, −0.16582, 0.16987,
0.19345, and 0.19569, respectively (Figure 3B and Figure S3B, Table S6). Especially, 23 (phenylalanine)
and 26 (citric acid) were the most important metabolites in OPLS 1 from both platforms and contributed
the most to the separation of Korean adzuki beans from Chinese adzuki beans. Furthermore, these
metabolites were also top-ranked in variable importance in projection (VIP) plots from both platforms
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(Figure S4A,B and Tables S5 and S6). The VIP values can be used to explain the contribution of
metabolites to the projection, where VIP values greater than 1 indicate the greatest influence on the
model. As a result, targeted and non-targeted metabolite profiling showed the same results from
multivariate statistical analysis, thereby validating the accuracy of non-targeted metabolite profiling as
equal to that of targeted profiling. In addition, non-targeted profiling had better R2 and Q2 values than
targeted profiling, making it more suitable for the discrimination of geographical origin.Metabolites 2018, 8, x FOR PEER REVIEW  7 of 17 
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2.3. Geographical Discrimination of Adzuki Beans Using Multivariate Statistical Analysis with Pareto-Scaling

The above-discussed PCA and OPLS–DA results were obtained with data normalised based on
UV-scaling. In UV-scaling, which is widely used for normalisation in machine learning algorithms and
can handle various types of data [36,37], the mean is subtracted from each feature, and each feature is
divided by its standard deviation. As a result, UV-scaling sets the standard deviation of all variables to
1 and all variables become equally important; however, this can emphasise noise in the data. Therefore,
UV-scaling is useful for comparing metabolites based on correlations. However, for discriminating
geographical origin, it is even more important to identify distinct metabolite differences between
origins, for which pareto-scaling could be more suitable than UV-scaling. The pareto-scaling method is
similar to UV-scaling but differs in that the scaling factor is the square root of the standard deviation.
Therefore, all variables remain closer to the original data than in UV-scaling (Figure 4). Figure 4 shows
the normalisation results of the non-targeted metabolite profiling data. The UV-normalised data did
not retain the original data structure, whereas pareto-scaling retained the structure (Figure 4). Thus,
prominent variables in the original data also have an impact on pareto-scaling normalised data.

To compare UV-scaling and pareto-scaling, PCA and OPLS–DA were performed on the targeted
and non-targeted metabolite profiling data using pareto-scaling normalisation (Figure S1C,D and
Figure 3C,D). The PCA score plot from pareto-scaling normalisation indicated no difference according
to geographical origin in both platforms. These results were the same as the PCA results for UV-scaling.
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The OPLS–DA score plot from pareto-scaling normalisation showed separation by geographical
origin for both platforms (Figure 3C,D). The prediction model from the targeted metabolite profiling
data using pareto-scaling normalisation had R2X of 0.595, R2Y of 0.668, and Q2 of 0.579 (Table 1).
Using the non-targeted profiling data, the prediction model had R2X of 0.374, R2Y of 0.869, and Q2 of
0.812. Based on the Q2 values, both models had good predictive capabilities. The score plots of the
OPLS-DA results from the targeted and non-targeted metabolite profiling data with pareto-scaling
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showed separation by geographical origin between Korea and China (Figure 3C,D). OPLS–DA of
the non-targeted platform had higher R2Y and Q2 values than the targeted platform and therefore
showed a clearer separation (Table 1). This result was the same as the OPLS–DA results of UV-scaling
(Figure 3A,B). The loading plots of both platforms with pareto-scaling showed almost the same
patterns (Figure 3C,D and Figure S3C,D). OPLS 1 and OPLS 2 resolved the separation of adzuki bean
geographical origin. The significant metabolites of OPLS 1 in the targeted loading plot were 26 (citric
acid), 18 (malic acid), and 36 (raffinose), for which the eigenvector values were −0.89757, −0.24132,
and 0.17323, respectively; the significant metabolites of OPLS 2 were 26 (citric acid), 18 (malic acid), 9
(phosphoric acid), and 35 (sucrose), for which the eigenvector values were −0.50135, 0.16589, 0.48967,
and 0.66463, respectively (Figure 3C and Figure S3C; Table S7). The important metabolites of OPLS 1 in
the non-targeted loading plot were 26 (citric acid), 18 (malic acid), 73 (D-galactose1), 8 (ethanolamine),
and A28 (analyte 28), for which the eigenvector values were −0.77563, −0.25134, −0.20828, 0.10923,
and 0.10447, respectively (Figure 3D and Figure S3D; Table S8); the significant metabolites for OPLS 2
were 26 (citric acid), 72 (d-glucopyranose), 18 (malic acid), and 35 (sucrose), for which the eigenvector
values were −0.57343, −0.18603, 0.14331, and 0.61216, respectively. Notably, in each platform, 18
(malic acid) and 26 (citric acid) contributed the most to the separation of Korean adzuki beans from
Chinese adzuki beans in both the OPLS 1 and 2 loading plots (Figure 3C,D; Tables S7 and S8). VIP plots
of each platform showed that these metabolites had the greatest influence on the projection model
(Figure S4C,D; Tables S7 and S8).

3. Discussion

For the first time, the geographical origin of adzuki beans (Korean and Chinese) was discriminated
using metabolomics and chemometrics. When comparing the OPLS-DA results of pareto-scaling with
UV-scaling for targeted metabolite profiling, the R2X of pareto-scaling was higher, whereas R2Y and Q2

were slightly lower (Table 1). On the other hand, non-targeted metabolite profiling with pareto-scaling
showed increased R2X and Q2 and slightly decreased R2Y compared with UV-scaling.

The R2X values of pareto-scaling were higher than those of UV-scaling for both metabolite profiling
platforms. An increase in R2X indicates that the explanatory power of the model by the variable (X)
increases, and a decrease in Q2 indicates a decrease in the predictive power of the model. Pareto-scaling
maintained the original data structure and spectral line shapes more effectively than UV-scaling, and
thus the explanatory power of the model by variables (X) was higher. The Q2 values of pareto-scaling
were higher than those of UV-scaling in the non-targeted metabolite profiling platform. On the other
hand, the Q2 value of the targeted metabolite profiling platform was lower. The targeted metabolite
profiling data matrix is smaller than that of non-targeted profiling to predict models by variables.
Pareto-scaling of the targeted profiling data matrix resulted in a lower Q2 value than UV-scaling. In
contrast, pareto-scaling of the non-targeted profiling data matrix had sufficient data, and therefore
the Q2 value was higher than that from UV-scaling owing to the increase in R2X. In addition, PCA
showed the same changes in R2X and Q2 between UV-scaling and pareto-scaling as those observed
with OPLS–DA.

In OPLS–DA, a decrease in R2Y indicates that the explanatory power of the model by the class (Y)
decreases. This also occurs because a few important data points significantly contributed to account
for the prediction of the model. However, the R2Y value of pareto-scaling was slightly lower in both
platforms than UV-scaling, and non-targeted metabolite profiling had higher R2Y values than targeted
metabolite profiling. This is because the non-targeted metabolite profiling had a larger dataset to
explain and predict the model by the class (Y) than the targeted platform. Recently, a non-targeted
GC-MS metabolic profiling method was used to classify specialty coffee from different geographical
origins, in which pareto-scaling gave the best sample clustering [21]. In agreement with the previous
study, the use of pareto-scaling and non-targeted metabolite profiling afforded the most predictable
method for geographical origin discrimination of adzuki beans.
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Moreover, to determine the accuracy of the OPLS–DA model of the non-targeted metabolite
profiling with pareto-scaling, an external validation test was conducted (Figure 5). The 39 samples
were divided into 27 training samples and 12 test samples. The Y class variables were set to 1 for Korea
and 2 for China. The OPLS predictive models were constructed using the 27 training samples, and
then the 12 test samples were projected on the established OPLS predictive model. The predicted
results of the OPLS model from the external validation test displayed good discrimination of the
geographical origin of adzuki beans with R2X = 0.371, R2Y = 0.868, and Q2 = 0.772. Furthermore, this
OPLS model showed a root mean square error of prediction (RMSEP) of 0.226, which indicates accurate
prediction since values closer to zero are desirable [38]. In addition, no adzuki bean samples cultivated
in Korea and China were found to be on the borderline of 1.5, the threshold level, in the external
validation test. Finally, in order to avoid the risk of over-fitting the OPLS model, a permutation test
and analysis of variance of the cross-validated residuals (CV–ANOVA) were performed for this model.
The permutation test was performed with 200 permuted models that were constructed with the use of
randomised classification (Y) for the samples and provided a reference distribution of Q2 value for
random data. This Q2 value was compared with the Q2 value of the original (unpermuted) OPLS
model. If the Q2 value from the permutation test was smaller than the Q2 value of the real OPLS model,
the model was regarded as a predictable model [39,40]. The result of the permutation test showed Q2

of −0.616; this was a lower value than the Q2 of the real OPLS model (Figure S5). The final validation
test was performed with the use of a CV–ANOVA test to verify the validity of the model. The model
was considered to be valid when the p-value was lower than 0.05 [37]. The p-value of the CV–ANOVA
test was 0.0000011942.
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A clear distinction in malic acid and citric acid concentration between Korea and China samples
was observed. Several investigations have reported that malic acid and citric acid in plants varied in
different cultivation regions [17–20,41]. The differences in environmental conditions might be the main
factors in the different metabolite levels of different geographical origins. Pereira et al. [42] reported that
malate content in grape berry was significantly related to light exposure. Malic enzyme activity increases
between 10 and 46 ◦C. A study concerning the metabolic responses of tobacco plants to the environment
has demonstrated that the intermediates of the TCA cycle display a clear negative correlation with
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environmental factors such as rainfall and temperature [20]. Therefore, this study suggests that
malic acid and citric acid could be key metabolites for regional discrimination. In addition, we
performed heat map visualisation of all the correlation coefficients with Pearson’s correlation analysis
for metabolite–metabolite correlation associated with the discrimination of geographical origin. Figure 6
shows the two clusters, one that clustered organic acids, sugars, and shikimic acid pathway–related
metabolites and another that grouped amino acids and sugar alcohols. The organic acids (such as citric
acid, malic acid, oxalic acid, and succinic acid) and sugars (sucrose, glucose, fructose, and galactose)
were important metabolites related to energy metabolism (glycolysis and the TCA cycle). Organic
acids related to the TCA cycle are produced during photosynthesis, and they serve as carbon skeletons
for amino acid biosynthesis and light-harvesting, respectively [18]. Thus, negative relationships were
observed between carbon-rich primary metabolites and nitrogen-containing metabolites.
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In conclusion, the OPLS–DA results of targeted and non-targeted metabolite profiling platforms
combined with UV-scaling and pareto-scaling showed clear separation of the geographical origin of
adzuki beans from Korea and China. In addition, the results showed that 18 (malic acid) and 26 (citric
acid) were the most notable metabolites for discriminating geographical origin and are thus potential
candidates as biomarkers for Korean adzuki beans. Furthermore, when comparing data normalisation
with UV-scaling and pareto-scaling, as well as targeted and non-targeted metabolite profiling platforms,
Q2 was the highest with non-targeted profiling and pareto-scaling. Therefore, multivariate statistical
analysis combined with non-targeted metabolite profiling and pareto-scaling is a suitable prediction
tool for discriminating geographical origin. This discrimination platform consisting of non-targeted
metabolite profiling combined with chemometrics based on pareto-scaling can potentially be applied
to discriminating the geographical origin of other crops and foods. The metabolite contents of plants
could be affected by genotype as well as environmental conditions. An interesting aspect of future
research is to clarify the genotype × environmental interactions on the phytochemical composition in
adzuki bean. Thus, future work involving a larger sample size from various production regions will be
very important for geographical discrimination of adzuki beans.

4. Materials and Methods

4.1. Samples and Chemicals

Korean adzuki bean (V. angularis) sample cultivars (K1, Geomguseul; K2, Seona; K3, Yeonduchae;
K4, Hongeon; K5, Hongjin; K6, Whinguseul; K7, Whinnarae) were grown at the National Institute of
Crop Science, Rural Development Administration, Wanju-gun, Korea, during the 2018 growing season
(May to November; Figure 7). Chinese adzuki bean samples (C1–C6) harvested from two regions
(Harbin, Heilongjiang province and Yanji, Jilin province) in November 2017 were purchased from local
markets in Xinzhou and Jiangxia (Wuhan city) provinces, China. In total, 13 adzuki bean samples were
kept at −80 ◦C until required for analysis. Three biological replicates were prepared for each sample.
Ribitol, N-methyl-N-trimethylsilyl trifluoroacetamide (MSTFA), and pyridine were purchased from
Sigma-Aldrich (St. Louis, MO, USA). All other chemicals used in this study were reagent grade unless
otherwise stated.
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4.2. Extraction and Analysis of Hydrophilic Compounds

The extraction and analysis method used for hydrophilic compounds (amino acids, organic
acids, sugars, and sugar alcohols) was described in a previous study [43,44]. One millilitre of a
methanol:water:chloroform 2.5:1:1 (v/v/v) solution was added to a finely ground bean sample (0.01 g)
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for extraction. Ribitol (60 µL, 200 µg/mL) as an internal standard (IS) was added to the mixture and
incubated using a Thermomixer Comfort (model 5355, Eppendorf AG, Hamburg, Germany) at 37 ◦C
for 30 min at a mixing frequency of 1200 rpm. The mixed solution was centrifuged at 16,000× g for
3 min, after which 800 µL of the methanol/water phase was collected in a fresh tube and mixed with
400 µL of water. The methanol/water fraction was centrifuged at 16,000× g for 3 min, and 900 µL of
the upper layer was pipetted into a fresh tube. The aliquots were evaporated for 2 h in a centrifugal
concentrator (CC-105; TOMY, Tokyo, Japan), then freeze-dried for over 16 h. For derivatisation, 80 µL
of 2% methoxyamine hydrochloride in pyridine (w/v) was added, and the mixture was incubated
at 30 ◦C and 1200 rpm for 90 min using a thermomixer. Then, 80 µL of MSTFA was added, and
the mixture was incubated at 37 ◦C and 1200 rpm for 30 min. GC–TOFMS analysis was performed
using an Agilent 7890A gas chromatograph (Agilent, Atlanta, USA) coupled to a Pegasus HT TOF
mass spectrometer (LECO) with a CP-SIL 8 CB column (30 m length, 0.25 mm diameter, and 0.25 µm
thickness, Agilent). The split ratio, injector temperature, and helium gas flow were 1:25, 230 ◦C,
and 1.0 mL/min, respectively. The column temperature was held for 2 min at 80 ◦C, increased at
15 ◦C/min to 320 ◦C, and then maintained for 10 min. The temperatures of the transfer line and ion
source were 250 and 200 ◦C, respectively, and scan mode was used with a mass range of 85–600 m/z.
Targeted metabolite profiling was performed as follows. In-house libraries were used to identify the
metabolites using ChromaTOF software (LECO), the identities of which were also confirmed using
standards (Table S9). The Chroma TOF software package was used to extract raw peaks, filter and
calibrate data baselines, align peaks, perform deconvolution analysis, identify peaks, and integrate
peak areas. For relative quantification, we used ribitol as an IS, and ratios were calculated by the peak
area of each metabolite based on that of the IS. As a result, a total of 36 metabolites were identified
(i.e., Metabolomics Standards Initiative (MSI) level 1) and quantified [45–47] (see supplementary
information). A similarity index of 70% or more was chosen as the cut-off value because it afforded
100% accuracy in analyte identification based on our previous experience (confirmed by co-injection of
commercial standards) [45].

4.3. Non-Targeted Metabolite Profiling Data Processing

To compare targeted and non-targeted metabolite profiling, the same results obtained from
targeted metabolite profiling were processed by non-targeted profiling. Chromatographic alignment
and data processing for non-targeted metabolite profiling were performed using the statistical compare
package of the ChromaTOF software (LECO). The following conditions were used: (1) the baseline
was drawn just above the noise; (2) the signal-to-noise (S/N) cut-off for initial peak finding was set to
10 for a minimum of two apexing; (3) the maximum retention time difference was set to 2 s; (4) the
mass spectral match score was ≥700; (5) unique masses were used for area and height calculations;
(6) NIST 11, Wiley 9, and in-house libraries were used for searching. Relative quantification was
calculated using the same method as that used for targeted metabolite profiling. As a result, a total of
111 metabolites were identified (i.e., MSI levels 1 to 3) and quantified (see supplementary information).

4.4. Statistical Analysis

All analyses were performed with three replicates. PCA and OPLS–DA (SIMCA-P version 13.0;
Umetrics, Umeå, Sweden) were performed with data obtained from GC–TOFMS to discriminate the
geographical origin of samples. To compare the effect of data normalisation in multivariate statistical
analysis, all the data were normalised with UV-scaling and pareto-scaling. For UV-scaling, the mean is
subtracted from each feature, and the values of each feature are divided by the standard deviation.
Pareto-scaling is similar to UV-scaling, but the scaling factor is the square root of the standard deviation.
PCA and OPLS–DA were based on the calculated eigenvectors and eigenvalues [34]. Score plots
of the PCA and OPLS–DA results were used to discriminate the geographical origin of samples,
and the loading and VIP plots demonstrated cluster separation of the samples in the score plots.
Graphs of normalisation results using UV-scaling and pareto-scaling and correlation analysis were
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constructed using MetaboAnalyst 4.0 (https://www.metaboanalyst.ca). For the external validation test,
the OPLS predictive models developed by OPLS–DA were used. The test set comprising approximately
30% (n = 12) of the entire samples was randomly chosen and was used for the external validation.
The emaining samples were used for a training set (Korea: n = 15; China: n = 12). In the validation
test, the response (Y) variable was set as 1 for Korean adzuki bean and 2 for Chinese adzuki bean,
respectively. The limit value for the geographical classification of adzuki bean was set at 1.5, which is
the average value between the response values of the respective groups (i.e., 1 and 2). The permutation
test and CV–ANOVA were conducted by SIMCA-P version 13.0 (Umetrics).

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/10/3/112/s1:
Figure S1: PCA score plots of targeted and non-targeted metabolite profiling with UV-scaling and pareto-scaling
normalisation. A (Targeted and UV-scaling), B (Targeted and pareto-scaling), C (Non-targeted and UV-scaling),
D (Non-targeted and pareto-scaling); Figure S2: PCA loading plots of targeted and non-targeted metabolite
profiling with UV-scaling and pareto-scaling normalisation. A (Targeted and UV-scaling), B (Targeted and
pareto-scaling), C (Non-targeted and UV-scaling), D (Non-targeted and pareto-scaling); Figure S3: OPLS–DA
loading plots of targeted and non-targeted metabolite profiling with UV-scaling and pareto-scaling normalisation.
A (Targeted and UV-scaling), B (Targeted and pareto-scaling), C (Non-targeted and UV-scaling), D (Non-targeted
and pareto-scaling); Figure S4: OPLS–DA VIP (variables importance in the projection) plot of targeted and
non-targeted metabolite profiling with UV-scaling and pareto-scaling normalisation. A (Targeted and UV-scaling),
B (Non-targeted and UV-scaling), C (Targeted and pareto-scaling), D (Non-targeted and pareto-scaling); Figure S5:
Permutation test of OPLS–DA of non-targeted metabolite profiling with pareto-scaling normalisation. The number
of permutations for the permutation test is 200; Table S1: Composition and content (ratio/g) of hydrophilic
compounds by using targeted metabolite profiling of adzuki bean (Vigna angularis) cultivated in Korea; Table S2:
Composition and content (ratio/g) of hydrophilic compounds by using targeted metabolite profiling of adzuki
bean (Vigna angularis) cultivated in China; Table S3: Composition and content (ratio/g) of hydrophilic compounds
by using non-targeted metabolite profiling, which matched with targeted metabolite profiling, of adzuki bean
(Vigna angularis) cultivated in Korea; Table S4: Composition and content (ratio/g) of hydrophilic compounds
by using non-targeted metabolite profiling, which matched with targeted metabolite profiling, of adzuki bean
(Vigna angularis) cultivated in China; Table S5: OPLS–DA loading and VIP of variables from targeted metabolite
profiling with UV-scaling; Table S6: OPLS–DA loading and VIP of variables from non-targeted metabolite profiling
with UV-scaling; Table S7: OPLS–DA loading and VIP of variables from targeted metabolite profiling with
pareto-scaling; Table S8: OPLS–DA loading and VIP of variables from non-targeted metabolite profiling with
pareto-scaling; and Table S9: Relative retention times (RRT) and mass spectral data of hydrophilic compounds as
trimethylsilyl derivatives.
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