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Abstract

Background: Shotgun metagenomics provides powerful insights into microbial community biodiversity and function. Yet,
inferences from metagenomic studies are often limited by dataset size and complexity and are restricted by the availability
and completeness of existing databases. De novo comparative metagenomics enables the comparison of metagenomes
based on their total genetic content. Results: We developed a tool called Libra that performs an all-vs-all comparison of
metagenomes for precise clustering based on their k-mer content. Libra uses a scalable Hadoop framework for massive
metagenome comparisons, Cosine Similarity for calculating the distance using sequence composition and abundance
while normalizing for sequencing depth, and a web-based implementation in iMicrobe (http://imicrobe.us) that uses the
CyVerse advanced cyberinfrastructure to promote broad use of the tool by the scientific community. Conclusions: A
comparison of Libra to equivalent tools using both simulated and real metagenomic datasets, ranging from 80 million to 4.2
billion reads, reveals that methods commonly implemented to reduce compute time for large datasets, such as data
reduction, read count normalization, and presence/absence distance metrics, greatly diminish the resolution of large-scale
comparative analyses. In contrast, Libra uses all of the reads to calculate k-mer abundance in a Hadoop architecture that
can scale to any size dataset to enable global-scale analyses and link microbial signatures to biological processes.
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Introduction

Over the last decade, scientists have generated petabytes of ge-
nomic data to uncover the role of microbes in dynamic living
systems. Yet, to understand the underlying biological principles
that guide the distribution of microbial communities, massive
‘omics datasets need to be compared with environmental fac-
tors to find linkages across space and time. One of the greatest
challenges in these endeavors has been in documenting and an-
alyzing unexplored genetic diversity in wild microbial commu-
nities. For example, fewer than 60% of 40 million non-redundant

genes from the Global Ocean Survey and the Tara Oceans Expe-
ditions match known proteins in bacteria [1, 2]. Other microor-
ganisms such as viruses or pico-eukaryotes that are important
to ocean ecosystems are even less well defined (e.g., <7% of
reads from viromes match known proteins [3]). This is largely
due to the fact that these organisms are unculturable and ref-
erence genomes do not exist in public data repositories. Thus,
genome sequences from metagenomic data await better taxo-
nomic and functional definition. Consequently, even advanced
tools such as k-mer–based classifiers that rapidly assign metage-
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nomic reads to known microbes miss “microbial dark matter”
that comprises a significant proportion of metagenomes [4–6].

De novo comparative metagenomics offers a path
forward

In order to examine the complete genomic content, metage-
nomic samples can be compared using their sequence signa-
ture (or frequency of k-mers) (list of tools available in Supple-
mentary Table S1A). This approach relies on three core tenets of
k-mer–based analytics: (i) closely related organisms share k-mer
profiles and cluster together, making taxonomic assignment un-
necessary [7, 8]; (ii) k-mer frequency is correlated with the abun-
dance of an organism [9]; and (iii) k-mers of sufficient length can
be used to distinguish specific organisms [10]. In 2012, the Com-
pareads [11] method was proposed, followed by Commet [12].
Both of these tools compute the number of shared reads be-
tween metagenomes using a k-mer–based read similarity mea-
sure. The number of shared reads between datasets is then used
to compute a Jaccard distance between samples.

Given the computational intensity of all-vs-all sequence
analysis, several other methods have been employed to reduce
the dimensionality of metagenomes and speed up analyses by
creating unique k-mer sets and computing the genetic distance
between pairs of metagenomes, such as MetaFast [13] and Mash
[14]. The fastest of these methods, Mash [15], indexes samples
by unique k-mers to create size-reduced sketches and compares
these sketches using the MinHash algorithm [16] for computing
a genetic distance using Jaccard similarity. Yet, the tradeoff for
speed is that samples are reduced to a subset of unique k-mers (1
k by default) that may lead to an unrepresentative k-mer profile
of the samples. Further, given that Mash uses Jaccard similarity,
only the genetic distance between samples is accounted for (or
genetic content in microbial communities) without considering
abundance (dominant vs rare organisms in the sample), which is
central to microbial ecology and ecosystem processes [17]. Sour-
mash [18], a toolkit for manipulating MinHash sketches, uses
the same underlying algorithm and distance metric as Mash and
therefore has the same limitations.

Recently, Simka [15] was developed to compute a distance
matrix between metagenomes by dividing the input datasets
into abundance vectors from subsets of k-mers, then rejoining
the resulting abundances in a cumulative distance matrix. The
methodology can be parallelized to execute the analyses on a
high-performance computing cluster (HPC). Simka also provides
various ecological distance metrics to let the user choose the
metric most relevant to their analysis. However, the computa-
tional time varies based on the distance metric, where some
distances scale linearly and other distances metrics, such as
Jensen-Shannon, scale quadratically as additional samples are
added [15]. Moreover, Simka normalizes datasets in an all-vs-all
comparison by reducing the depth of sequencing for all sam-
ples to the least common denominator, therefore, decreasing
the resolution of the datasets. Lastly, computing k-mer analyt-
ics using HPC is subject to reduced fault tolerance for massive
datasets. A framework to compare one metagenome to a set of
metagenomes on a high-performance computing system called
DSM [19] has also been proposed; however, this tool is limited to
retrieval tasks and does not provide an all-vs-all sequence anal-
ysis.

Scaling sequence analysis using big data analytics via
Hadoop

Hadoop is an attractive platform for performing large-scale se-
quence analysis because it provides a distributed file system and
distributed computation for analyzing massive amounts of data.
Hadoop clusters are comprised of commodity servers so that the
processing power increases as more computing resources are
added. Hadoop also offers a high-level programming abstrac-
tion, called MapReduce [20], that greatly simplifies the imple-
mentation of new analytical tools and a high-performance dis-
tributed file system (HDFS) for storing datasets. Programmers
do not need specialized training in distributed systems and net-
working to implement distributed programs using MapReduce.
Hadoop also provides fault-tolerance by default. When a Hadoop
node fails, Hadoop reassigns the failed node’s tasks to another
node containing a redundant copy of the data those tasks were
processing. This differs from HPC where schedulers track failed
nodes and either restart the failed computation from the most
recent checkpoint or from the beginning if checkpointing was
not used. Thus, using a Hadoop infrastructure ensures that com-
putations and data are protected even in the event of hardware
failures. These benefits have led to new analytic tools based on
Hadoop, making Hadoop a de facto standard in large-scale data
analysis. In metagenomics, the development of efficient and in-
expensive high-throughput sequencing technologies has led to
a rapid increase in the amount of sequence data for studying mi-
crobes in diverse environments. However, to date, only Hadoop-
enabled genomic or k-mer counting tools exist, and no com-
parative metagenomics tools are available (Supplementary Table
S1B).

Existing big data algorithms compare reads to limited
genomic reference data

Recent progress has been made in translating bioinformatics al-
gorithms to big data architectures to overcome scalability issues.
Thus far, these algorithms compare large-scale next-generation
sequence (NGS) datasets to reference genomic datasets and re-
place computationally intensive algorithms such as sequence
alignment [21], genetic variant detection [22, 23], ortholog detec-
tion [24], differential gene expression [25, 26], or short-read map-
ping [27–30] (Supplementary Table S1B). For example, BlastRe-
duce and CloudBurst are parallel sequence mapping tools based
on Hadoop MapReduce [28, 29]. These tools, however, implement
a query-to-a-reference approach that is inefficient for all-vs-all
analyses of reads from metagenomes. Other algorithms such as
BioPig [31] and Bloomfish [32] generate an index of sequence
data for later partial sequence search and k-mer counting us-
ing Hadoop [33] (Supplementary Table S1B). Also, some of these
tools adopt traditional sequence indexing techniques such as
a suffix array that is inefficient in reading and indexing data
in HDFS, thus reducing performance. Moreover, neither tool of-
fers an end-to-end solution for comparing metagenomes con-
sisting of data distribution on a Hadoop cluster, k-mer indexing
and counting, distance matrix computation, and visualization.
Finally, none of these tools are enabled in an advanced cyberin-
frastructure where users can compute analyses in a simple web-
based platform (Supplementary Table S1B).
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Libra: a tool for scalable all-vs-all sequence analysis in
an advanced cyberinfrastructure

Here, we describe a scalable algorithm called Libra that is ca-
pable of performing all-vs-all sequence analysis using Hadoop
MapReduce (SciCrunch.org tool reference ID SCR 016608). We
demonstrate for the first time that Hadoop MapReduce can
be applied to all-vs-all sequence comparisons of large-scale
metagenomic datasets comprised of mixed microbial commu-
nities. We demonstrate that Cosine Similarity, which is widely
used in document clustering and information retrieval, is a
good distance metric for comparing datasets to consider genetic
distance and microbial abundance simultaneously, along with
widely accepted distance metrics in biology such as Bray-Curtis
[34] and Jensen-Shannon [35]. We validate this distance metric
using simulated metagenomes (from both short- and long-read
technologies) to show that Libra has exceptional sensitivity in
distinguishing complex mixed microbiomes. Next, we show Li-
bra’s ability to distinguish metagenomes by both community
composition and abundance using 48 samples (16S rRNA and
whole-genome shotgun sequencing [WGS]) from the Human Mi-
crobiome Project (HMP) and the simulated Critical Assessment
of Metagenome Interpretation (CAMI) “toy” Pacific Biosciences
(PacBio) dataset across diverse body sites and compare the re-
sults to Mash and Simka. Finally, we show that Libra can scale
to massive global-scale datasets by examining viral diversity in
43 Tara Ocean Viromes (TOVs) from the 2009–2011 Expedition
[36] that represent 26 sites containing about 4.2 billion reads. We
show for the first time that viral communities in the ocean are
similar across temperature gradients, irrespective of their loca-
tion in the ocean. The resulting data demonstrate that Libra pro-
vides accurate, efficient, and scalable computation for compar-
ative metagenomics that can be used to discern global patterns
in microbial ecology.

To promote the broad use of the Libra algorithm, we devel-
oped a web-based tool in iMicrobe [37] where users can run
Libra using data in their free CyVerse [38, 39] account or use
datasets that are integrated into the iMicrobe Data Commons.
These analyses are fundamental for determining relationships
among diverse metagenomes to inform follow-up analyses on
microbial-driven biological processes.

Data Description
Staggered mock community

We performed metagenomic shotgun sequencing on a staggered
mock community obtained from the Human Microbiome Con-
sortium (HM-277D). The staggered mock community is com-
prised of genomic DNA from genera commonly found on or
within the human body, consisting of 1,000 to 1,000,000,000 16S
rRNA gene copies per organism per aliquot. The resulting DNA
was subjected to whole-genome sequencing as follows. Mix-
tures were diluted to a final concentration of 1 ng/μL and used
to generate whole genome sequencing libraries with the Ion
Xpress Plug Fragment Library Kit and manual #MAN0009847,
revC (Thermo Fisher Scientific, Waltham, MA). Briefly, 10 ng of
bacterial DNA was sheared using the Ion Shear enzymatic re-
action for 12 minutes and Ion Xpress bar code adapters ligated
following end repair. Following bar code ligation, libraries were
amplified using the manufacturer’s supplied Library Amplifica-
tion primers and recommended conditions. Amplified libraries
were size-selected to ∼200 base pairs using the Invitrogen E-
gel Size Select Agarose cassettes as outlined in the Ion Xpress

manual and quantitated with the Ion Universal Library quanti-
tation kit. Equimolar amounts of the library were added to an
Ion PI Template OT2 200 kit V3. The resulting templated beads
were enriched with the Ion OneTouch ES system and quanti-
tated with the Qubit Ion Sphere Quality Control kit (Life Tech-
nologies) on a Qubit 3.0 fluorometer (Qubit, New York). Enriched
templated beads were loaded onto an Ion PI V2 chip and se-
quenced according to the manufacturer’s protocol using the Ion
PI Sequencing 200 kit V3 on an Ion Torrent Proton sequencer.
The sequence data, comprised of ∼80 million reads, have been
deposited into the National Center for Biotechnology Informa-
tion Sequence Read Archive under accession SRP115095 under
project accession PRJNA397434.

Simulated data derived from the staggered mock
community

The resulting sequence data from the staggered mock com-
munity (∼80 million reads) were used to develop simulated
metagenomes to test the effects of varying read depth and
of the composition and abundance of organisms in mixed
metagenomes [40]. To examine read depth (in terms of raw read
counts and file size), we used the known staggered mock com-
munity abundance profile to generate a simulated metagenome
using GemSim [41] of 2 million reads (454 sequencing) and dupli-
cated the dataset 2x, 5x, and 10x. We also simulated the effects
of sequencing a metagenome more deeply using GemSim [41]
to generate simulated metagenomes with 0.5, 1, 5, and 10 mil-
lion reads based on the relative abundance of organisms in the
staggered mock community. Next, we developed four simulated
metagenomes to test the effect of changing the dominant organ-
ism abundance and genetic composition, including 10 million
reads from the staggered mock community (mock 1), the mock
community with alterations in a few abundant species (mock 2),
the mock community with many alterations in abundant species
(mock 3), and mock 3 with additional sequences from archaea
to further alter the genetic composition (mock 4) as described
in Supplementary Table S2. The same community profiles were
used to generate paired-end Illumina dataset (100 million reads),
using GemSim (Illumina v4 error model). Finally, using SimLord
[42], the community profiles were used to generate simulated
third-generation sequencing datasets (PacBio single-molecule
real-time sequencing, 1 million reads). SimLord default param-
eters were used to generate those simulated datasets. All sim-
ulated datasets are available in iMicrobe [37] under project 265
and under DOI [40].

Human microbiome 16S rRNA gene amplicons and
WGS reads

Human microbiome datasets were downloaded from the Na-
tional Institutes of Health Human Microbiome Project [43] in-
cluding 48 samples from 5 body sites including urogenital
(posterior fornix), gastrointestinal (stool), oral (buccal mucosa,
supragingival plaque, tongue dorsum), airways (anterior nares),
and skin (retroauricular crease left and right) (See Supplemen-
tary Table S3). Matched datasets consisting of 16S rRNA reads
WGS reads, and WGS assembled contigs were downloaded from
the 16S trimmed dataset and the HMIWGS/HMASM dataset, re-
spectively. For the WGS reads dataset, the analysis was run on
the paired 1 read file.
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Tara ocean viromes

TOVs were downloaded from European Nucleotide Archive at
the European Molecular Biology Laboratory (EMBL) and con-
sisted of 43 viromes from 43 samples at 26 locations across
the world’s oceans collected during the Tara Oceans (2009–2012)
scientific expedition (Supplementary Table S4) [36]. Metadata
for the samples were downloaded from PANGAEA [44]. These
samples were derived from multiple depths including 16 sur-
face samples (5–6 meters), 18 deep chlorophyll maximum (DCM)
samples (17–148 meters), and 1 mesopelagic sample (791 me-
ters). Quality-control procedures were applied according to the
methods described by Brum and colleagues [36].

CAMI human microbiome project toy dataset

The HMP toy dataset from the CAMI 2nd Challenge was down-
loaded from their website [45]. This dataset is composed of 49
simulated PacBio reads from five different body sites of the hu-
man host, namely, gastrointestinal tract, oral cavity, airways,
skin, and urogenital tract.

Results and Discussion
Libra computational strategy

Libra uses Hadoop MapReduce to perform massive all-vs-
all sequence comparisons between next-generation sequence
datasets. Libra uses a scalable algorithm and efficient resource
usage to make all-vs-all comparisons feasible on large datasets.
Hadoop allows parallel computation over distributed computing
resources via its simple programming interface called MapRe-
duce, while hiding much of the complexity of distributed com-
puting (e.g., node failures) for robust fault-tolerant computa-
tion. Taking advantage of Hadoop, Libra can scale to larger in-
put datasets and more computing resources. Furthermore, many
cloud providers such as Amazon and Google offer Hadoop clus-
ters on a pay-as-you-go basis, allowing scientists to scale their
Libra computations to match their datasets and budgets.

Libra is implemented using three different MapReduce jobs:
(1) k-mer histogram construction, (2) inverted index construc-
tion, and (3) distance matrix computation. Figure 1 shows a
workflow of the Libra algorithm.

Libra distance computation

Jaccard and Bray-Curtis distance have been extensively used to
compare metagenomes based on their sequence signature [13–
15]. While Mash only computes the Jaccard distance between
samples, Simka and Libra implement several classic ecology
distances, allowing the user to choose the best-suited distance
for the considered dataset [15]. Libra provides three distance
metrics—Cosine Similarity, Bray-Curtis, and Jensen-Shannon.
Here, we demonstrate Cosine Similarity as the default distance
metric. This distance uses a vector space model to compute the
distance between two NGS samples based on their k-mer com-
position and abundance, while simultaneously normalizing for
sequencing depth. Cosine Similarity is widely used in document
clustering and information retrieval. This distance metric was
previously used to evaluate the accuracy of methods to recon-
struct genomes from “virtual metagenomes” derived from 16S
rRNA data based on shared Kyoto Encyclopedia of Genes and
Genomes orthologous gene counts [46] but has not been applied
in analyzing sequence signatures between metagenomes. Libra
users can also weight k-mers based on their abundance (using

Boolean weighting, natural weighting, and logarithmic weight-
ing) to account for differences in microbial community compo-
sition and sequencing effort as detailed below.

Cosine Similarity allows for an accurate and
normalized comparison of metagenomes

We explored the effects of varying (1) the size of the datasets, (2)
depth of sequencing, (3) the abundance of dominant microbes in
the community, and (4) genetic composition of the community
by adding in an entirely new organism (in our case, we added ar-
chaea). We constructed simulated metagenomes and compared
Libra’s distance based on the Cosine Similarity against those
from Mash and Simka. Simulated datasets were derived from
genomic DNA from a staggered mock community of bacteria ob-
tained from the Human Microbiome Consortium and sequenced
deeply using the Ion Torrent sequencing platform (80 million
reads; see the Methods section).

First, we examined the effect of the size of the dataset by us-
ing GemSim [41] to obtain a simulated metagenome composed
of 1 million reads (454 sequencing) from the mock community
and duplicated that dataset 2x and 10x. Overall, we found that
altering the size of the metagenome (by duplicating the data)
had no effect on the distance between metagenomes for Mash,
Simka, or Libra. In each case, the distance of the duplicated
datasets to the 1x mock community was less than 0.0001 (data
not shown).

Because metagenomes do not scale exactly with size and in-
stead have an increasing representation of low-abundance or-
ganisms, we created a second simulated dataset from the mock
community using GemSim [41] 0.5, 1, 5, and 10 million reads
(454 sequencing) to mimic the effect of reducing the sequenc-
ing. Given the abundance of organisms in the mock community,
the 0.5 M read dataset is mainly comprised of dominant species.
Because Simka normalizes all samples to the lowest read count,
no changes between samples were measurable when using Jac-
card and Bray-Curtis distances (Fig. 2A). In contrast, Mash and
Libra (natural weighting) take into account all of the reads in
the metagenomes; therefore, they measure a larger difference
when you compare the smallest (0.5 M read sample) and largest
(10 million read sample). These results suggest that Libra (natu-
ral weighting) and Mash are appropriate for comparing datasets
at different sequencing depths, whereas using Simka could lead
to undesired effects.

In addition to natural variation in population-level abun-
dances, artifacts from sequencing can result in high-abundance
k-mers. Libra allows users to select the optimal methodology
for weighting high-abundance k-mers in their datasets includ-
ing Boolean, natural, and logarithmic. These options for weight-
ing k-mers are important for different biological scenarios as de-
scribed below and shown in simulated datasets. To examine the
effect of weighting, we compared and contrasted the natural and
logarithmic weight in Libra with other distances obtained from
Mash and Simka (Jaccard and Bray-Curtis). We also examined
the effect of adding an entirely new species by spiking a simu-
lated dataset with sequences derived from archaea (that were
not present in the mock community). The simulated datasets
(454 technology) were comprised of the staggered mock com-
munity (mock 1), the mock community with alterations in a few
abundant species (mock 2), the mock community with many al-
terations in abundant species (mock 3), and mock 3 with addi-
tional sequences from archaea to alter the genetic composition
of the community (mock 4) (see Supplementary Table S2). The
resulting data showed that Libra (logarithmic weighting) shows
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Figure 1: The Libra workflow. Libra consists of three MapReduce jobs (yellow boxes): (1) Libra constructs a k-mer histogram of the input samples for load-balancing.
The k-mer histogram of the input samples is computed in parallel by running multiple Map tasks and a Reduce task that combines their results. (2) Libra constructs
the inverted index in parallel. In the Map phase, a separate Map task is spawned for every data block in the input sample files. Each Map task generates k-mers from

the sequences stored in a data block then passes them to the Reduce tasks. Each Reduce task then counts k-mers it receives and produces an index chunk. (3) In the
distance matrix computation, the work is split by partitioning the k-mer space at the beginning of a MapReduce job. The k-mer histogram files for input samples are
loaded, and the k-mer space is partitioned according to the k-mer distributions. A separate Map task is spawned for each partition to perform the computation in
parallel and merged to produce the complete distance matrix.

Figure 2: Analysis of simulated metagenomes using Mash, Simka, and Libra. (A) Distance to staggered mock community simulated metagenome composed of 10
million reads (mock 1 10 M), for simulated metagenomes of same community sequenced at various depth. Simulated metagenomes (454 sequencing) were obtained
using GemSim and the known abundance profile of the staggered mock community (see Supplementary Table S2). In order to mimic various sequencing depths, the

simulated metagenomes were generated at 0.5, 1, 5, or 10 million reads (noted mock 1 0.5 M; mock 1 1 M; mock 1 5 M; mock 1V2 10 M). The distances between the four
simulated metagenomes and a 10 million read simulated metagenome (mock 1 10 M) was computed using Mash, Simka (Jaccard and Bray-Curtis distance), and Libra
(natural weighting). (B) Distance to staggered mock community simulated metagenome (mock 1) for simulated metagenomes from increasingly distant communities.
The mock 1 relies on the known abundance profile from the staggered mock community. The mock 2 community profile was obtained by randomly inverting three

species abundance from mock 1 profile. The mock 3 profile was obtained by randomly inverting two species abundances from mock 2 profile. Finally, a mock 4 profile
was obtained by adding high-abundance archeal genomes not present in any the other mock communities. Simulated metagenomes (454 sequencing) were generated
using GemSim at 10 million reads. The distance between the mock 1 community to mock 2, mock 3, mock 4, and a replicate community (mock 1 V2) was computed
using Mash, Simka (Jaccard and Bray-Curtis distance), and Libra (cosine distance, natural, and logarithmic weighting).

a stepwise increase in distance among the mock communities
(Fig. 2B). This suggests that logarithmic weighting in Libra allows
for a comparison of distantly related microbial communities.
Mash also shows a stepwise distance between communities but
is compressed relative to Libra, making differences less distinct.
Simka (Bray-Curtis and Jaccard) and Libra (cosine distance, nat-
ural weighting) reach the maximum difference between mock
communities 3 and 4 (Fig. 2B). This indicates that these distances
are more appropriate when comparing metagenomes with small
fluctuations in the community (e.g., data from a time-series

analysis), whereas Libra (cosine distance, logarithmic weighting)
can be used to distinguish metagenomes that vary in both ge-
netic composition and abundance over a wide range of species
diversity by dampening the effect of high-abundance k-mers.
Because of this important difference, we used the cosine dis-
tance with the logarithmic weighting in all subsequent analy-
ses. Further, we also found that cosine distance provides the
fastest computation among all distance metrics (see the Meth-
ods section). We confirmed these findings using Illumina simu-
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lated datasets (Supplementary Fig. S1A) to show that these re-
sults are consistent across short-read technologies.

Given the availability of long-read (∼10K) sequencing tech-
nologies such as Oxford Nanopore and PacBio sequencing, we
repeated the above analyses on simulated long-read data (Sup-
plementary Fig. S1B). We show that simulated PacBio long-read
data for the mock community derived from SimLoRD [42] shows
a similar stepwise distance pattern between each of the mock
communities (Supplementary Fig. S1B) but has a higher overall
distance between mock 1 and each of the mock communities
(mock 2–4), likely due to the high simulated random error rate
compared to simulated short-read data.

Libra accurately profiles differences in bacterial
diversity and abundance in amplicon and WGS
datasets from the human microbiome

Microbial diversity is traditionally assessed using two methods:
the 16S rRNA gene to classify bacterial and archaeal groups at
the genus to species level or WGS for finer taxonomic classifica-
tion at the species or subspecies level. Further, WGS datasets
provide additional information on functional differences be-
tween metagenomes. Here, we compare and contrast the effect
of different algorithmic approaches (Mash vs Libra vs Simka),
distance metric (Libra vs Simka), data type (16S rRNA vs WGS),
and sequence type (WGS reads vs assembled contigs) in analyz-
ing data from 48 samples across eight body sites from the HMP.
Specifically, we examine matched datasets (16S rRNA reads,
WGS reads, and WGS assembled contigs) classified as urogenital
(posterior fornix), gastrointestinal (stool), oral (buccal mucosa,
supragingival plaque, tongue dorsum), airways (anterior nares),
and skin (retroauricular crease left and right) (See Supplemen-
tary Table S2).

Because the HMP datasets represent microbial communities,
abundant bacteria will have more total read counts than rare
bacteria in the samples. Thus, each sample can vary by both
taxonomic composition (the genetic content of taxa in a sam-
ple) and abundance (the relative proportion of those taxa in the
samples). Importantly, the 16S rRNA amplicon dataset is useful
in showing how well each algorithm performs in detecting and
quantifying small-scale variation for single a gene at the genus
level, whereas the WGS dataset demonstrates the effect of in-
cluding the complete genetic content and abundance of organ-
isms at the species level in a community [47]. Also, we examine
differences in each algorithm when read abundance is excluded
using assembled contigs that only represent the genetic compo-
sition of the community.

Using the 16S rRNA reads, both Mash and Libra clustered
samples by broad categories but not individual body sites (Fig. 3A
and 3B). Similar to what has been described in previous work
[15], samples from the airways and skin co-cluster, whereas
other categories, including urogenital, gastrointestinal, and oral,
are distinct [15]. These results indicate that limited variation in
the 16S rRNA gene may only allow for clustering for broad cat-
egories. Further, the Mash algorithm shows lower overall res-
olution (Fig. 3A) compared to Libra (Fig. 3B). Indeed, amplicon
sequencing analysis is not an original intended use of Mash,
given that it reduces the dimensionality of the data by looking at
presence/absence of unique k-mers, whereas Libra examines the
complete dataset accounting for both the genetic composition
of organisms and their abundance. In contrast, Simka (Jaccard-
ab and Bray-Curtis) fails to cluster samples by broad categories;
some skin samples are found associated with stool and fornix
samples (Fig. 3C and 3D). Moreover, Simka Jaccard-ab fails to

cluster the mouth samples together (Fig. 3C). This result sug-
gests that applying Simka and these well-used distance metrics
are not appropriate for these datasets.

When using WGS reads, both Mash and Libra show enhanced
clustering by body site (Fig. 4A and B); however, Mash shows
decreased resolution (Fig. 4A) as compared to Libra (Fig. 4B).
Again, these differences reflect the effect of using all of the
read data (Libra) rather than a subset (Mash). The effect of us-
ing all of the read data compared to a subset (when sketching
in Mash) has been previously described in Benoit et al. [15]. Im-
portantly, the Libra algorithm depends on read abundance that
provides increased resolution for interpersonal variation as seen
in skin samples (Fig. 4B). Similar to the 16S rRNA datasets, Simka
(Jaccard-ab and Bray-Curtis) failed to cluster the samples by body
site, where some skin and stool samples cluster with fornix
samples (Fig. 4C and 4D). Similarly, Simka Jaccard-ab also fails
to cluster the mouth samples together (Fig. 4C). Overall Simka
shows an enhanced clustering by body site using WGS data com-
pared to the 16S rRNA data using these distance metrics; how-
ever, the clustering is still not accurate. In order to confirm the
independence of these results toward the sequencing technol-
ogy, we performed the same experiment on the CAMI HMP “toy
dataset” (simulated PacBio long reads) (Supplementary Fig. S2).
This analysis shows that each of the tools is able to cluster the
samples broadly by body site. However, there are small misclas-
sifications shared across all tools, suggesting that the increased
error rate for this technology could have a limited impact on k-
mer–based analytics.

When abundance is taken out of the equation by using as-
sembled contigs (see Supplementary Fig. S3), Mash performs
well in clustering distinct body sites, whereas Libra shows dis-
crepancies and less overall resolution. Thus, as designed, Libra
requires reads rather than contigs to perform accurately and
obtain high-resolution clustering (Fig. 4). Simka (Jaccard-ab and
Bray-Curtis) was not able to distinguish any assembled datasets
and scored all sample-to-sample distances to the maximum,
even considering presence-absence distance metric proposed by
Simka (data not shown). This phenomenon may be explained by
the normalization method used by Simka, which does not pro-
vide enough data to compare the samples when normalized by
the smallest number of contigs (in our dataset 69 contigs).

Libra allows for ecosystem-scale analysis: clustering
theTOVs to unravel global patterns

To demonstrate the scale and performance of the Libra algo-
rithm, we analyzed 43 TOVs from the 2009–2011 Expedition [36]
representing 26 sites, 43 samples, and 4.2 billion reads from the
global ocean (see the Methods section). Phages (viruses that in-
fect bacteria) are abundant in the ocean [48] and can signif-
icantly impact environmental processes through host mortal-
ity, horizontal gene transfer, and host-gene expression. Yet, how
phages change over space and time in the global ocean and with
environmental fluxes is just beginning to be explored. The pri-
mary challenge is the majority of reads in viromes (often >90%)
do not match known proteins or viral genomes [3] and no con-
served genes like the bacterial 16S rRNA gene exist to differen-
tiate populations. To examine known and unknown viruses si-
multaneously, viromes are best compared using sequence sig-
natures to identify common viral populations.

Two approaches exist to cluster viromes based on sequence
composition. The first approach uses protein clustering to ex-
amine functional diversity in viromes between sites [3, 36, 49].
Protein clustering, however, depends on accurate assembly and



Choi et al. 7

Figure 3: Clustering of HMP 16S rRNA datasets using Mash, Libra, and Simka. A total of 48 human metagenomic samples from the HMP clustered by Mash (A), Libra
(B), or Simka using Jaccard-ab (C) and Bray-Curtis distances (D) from 16S rRNA sequencing runs. The samples were clustered using Ward’s method on their distance

scores. Mash, Simka, and Libra report distance in the same range (0–1). Heat maps showing the pairwise dissimilarity between samples were therefore scaled between
0 (green) and 1 (red). A key below the heat map colors the samples by body sites.

Table 1: Execution times for the Libra based on the TOV dataset

Stage Execution time

Preprocessing (k-mer
histogram
construction/Inverted index
construction)

16:32:55

Distance matrix
computation

1:24:27

Total 17:57:22

gene finding that can be problematic in fragmented and geneti-
cally diverse viromes [50]. Further, assemblies from viromes of-
ten include only a fraction of the total reads (e.g., only one-third
in TOVs [36]). To examine global viral diversity in the ocean us-
ing all of the reads, we examined TOVs using Libra. The com-
plete pairwise analysis of ∼4.2 billion reads in the TOV dataset
[36] finished in 18 hours using a 10-node Hadoop cluster (see
the Methods section and Supplementary Table S4). Importantly,
Libra exhibits remarkable performance in computing the dis-
tance matrix, wherein k-mer matches for all TOVs completed
within 1.5 hours (see Table 1). This step usually represents the
largest computational bottleneck for bioinformatics tools that
compute pairwise distances between sequence pairs for appli-
cations such as hierarchical sequence clustering [51–54]. A direct
comparison of the runtime of Simka, Mash, and Libra are not
possible given that each tool is tuned to a different computa-
tional architecture with a different number of servers and total

CPU/memory (Mash runs on a single server; Simka runs on an
HPC, and Libra on Hadoop).

Overall, we found that viral populations in the ocean are
largely structured by temperature in four gradients (Fig. 5) sim-
ilar to their bacterial hosts [2]. Interestingly, samples from dif-
ferent Longhurst provinces but the same temperature gradient
cluster together. Also, water samples from the surface and DCM
at the same station, cluster more closely together than sam-
ples from the same depth at nearby sites (Fig. 5). Also note-
worthy, samples that were derived from extremely cold environ-
ments (noted as C0 in Fig. 5) lacked similarity to all other sam-
ples (at a 30% similarity score), indicating distinctly different vi-
ral populations. These samples include a mesotrophic sample
that has previously been shown to have distinctly different vi-
ral populations than surface ocean samples [55]. Taken together,
these data indicate that viral populations are structured globally
by temperature and at finer resolution by the station (for sur-
face and DCM samples), indicating that micronutrients and local
conditions play an important role in defining viral populations.

Innovations

Scientific collaboration is increasingly data driven given large-
scale next-generation sequencing datasets. It is now possible
to generate, aggregate, archive, and share datasets that are ter-
abytes and even petabytes in size. Scalability of a system is be-
coming a vital feature that decides the feasibility of massive
‘omic’s analyses. In particular, this is important for metage-
nomics where patterns in global ecology can only be discerned
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Figure 4: Clustering of WGS samples using Mash, and Libra and Simka. A total of 48 human metagenomic samples from the HMPs clustered by Mash (A), Libra (B),
or Simka using Jaccard-ab (C) and Bray-Curtis distances (D) from WGS runs. The samples were clustered using Ward’s method on their distance scores. Heat maps
illustrate the pairwise dissimilarity between samples, scaled between 0 (green) and 1 (red). A key below the heat map colors the samples by body site.

by comparing the sequence signatures of microbial communi-
ties from massive ‘omics datasets, given that most microbial
genomes have not been defined. Current algorithms to perform
these tasks run on local workstations or high-performance com-
puting architectures.

Hadoop is a well-used framework allowing for scalability. The
Hadoop framework was previously used for k-mer spectra calcu-
lation in prior work (Supplementary Table S1B) [31, 32]. However,
these tools do not provide any distance computation between
the generated k-mer spectra. To our knowledge, Libra is, there-
fore, the first k-mer based de novo comparative metagenomic tool
that uses a Hadoop framework for scalability and fault tolerance.

De novo comparative metagenomic tools rely on the calcula-
tion of a distance metric in order to perform a clustering task
on the metagenomes. Libra provides several distance metrics
on the k-mer spectra: two well-used metrics in metagenomics
(Bray-Curtis and Jensen distance), as well as a Cosine Similar-
ity metric. Cosine Similarity, although extensively used in com-
puter science, has been rarely implemented in genomic and
metagenomic studies [46]. To our knowledge, this work is the
first to describe the use of the Cosine Similarity metric to clus-
ter metagenomes based on their k-mer content.

Finally, the analysis of large-scale metagenomic analysis re-
quires access to large computing resources. In order to use Libra,
the user requires access to a Hadoop framework. To allow for
better access to the tool and to computing resources, we provide
a web-based implementation tool embedded in the CyVerse ad-
vanced cyberinfrastructure through iMicrobe [37]. The work de-
scribed here is the first step in implementing a free cloud-based
computing resource for de novo comparative metagenomics that

can be broadly used by scientists to analyze large-scale shared
data resources. Moreover, the code can be ported to any Hadoop
cluster (e.g., Wrangler at TACC, Amazon EMR, or private Hadoop
clusters). This computing paradigm is consistent with recent ef-
forts to increase the accessibility of big datasets in the cloud,
such as the Pan-Cancer Analyses of Whole Genomes Project [56].

Methods
Libra algorithm detailed description

k-mer size
Libra calculates the distances between samples based on their
k-mer composition. The canonical representation of the k-mer is
used to reduce the number of stored k-mers. Several considera-
tions should be taken into account for choosing the k-mer size k.
Larger values of k result in fewer matches due to sequencing er-
rors and fragmentary metagenomic data. However, smaller val-
ues of k give less information about the sequence similarities. In
Libra, k is a configurable parameter chosen by the user and is set
by default to k equal to 21. This value was reported to be at the
inflection point where the k-mer matches move from random to
a representative of the read content and is generally resilient to
sequencing error and variation [57, 58].

Distance matrix computation
Libra provides three distance metrics—Cosine Similarity, Bray-
Curtis, and Jensen-Shannon. Cosine Similarity is the default.
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Figure 5: Visualizing the genetic distance among marine viral communities using Libra. Similarities between samples from 43 TOV from the 2009–2012 Tara Oceans
Expedition. Lines (edges) between samples represent the similarity and are colored and thickened accordingly. Lines with insignificant similarity (less than 30%) are
removed. Each of the sample names is color coded by Longhurst Province. Inner circles show temperature ranges. Sample names show the temperature range, station,

and depth as indicated on the legend. The analysis is performed using Libra (k = 20, Logarithmic weighting, and Cosine Similarity).

Cosine Similarity metric
Libra constructs a vector vs for each sample s from the weight of
each k-mer k in the sample (wk.s). Each dimension in the vector
corresponds to the weight of the corresponding k-mer:

vs = (wk1,s, wk2,s, wk3,s, . . . , wkn,s)

The weight of a k-mer in a sample (wks) can be derived from
the frequency of the k-mer ( fks) in several ways. The simplest

uses the raw frequency of the k-mer ( wks = fks), called Natural
Weighting. Another uses Logarithmic Weighting ( wks = 1 + log( fks))
to not give too much weight to highly abundant k-mers. In this
weighting, wks grows logarithmically with the frequency fks, re-
ducing the effect on the distance of highly abundant k-mers
caused by sequencing artifacts.

Once their vectors have been constructed, the distance be-
tween two samples (s1 and s2) is derived using distance metrics.
For example, the distance between the two samples using Co-
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sine Similarity is determined as follows:

Distance (s1, s2) = 1 − CosineSimilarity (s1, s2)

= 1 − cos (vs1, vs2) = 1 − vs1 · vs2

||vs1|| × ||vs2|| = 1 − Ds1,s2

Ms1 × Ms2

where,

Ds1,s2 = vs1 · vs2 =
∑

i∈s1∩s2

wki,s1 × wki,s2,

Ms = ||vs|| =
√∑

i∈s

(wki,s)
2

In other words, Ds1, s2 is the dot product of the vectors vs1and
vs2, and Ms is the magnitude (length) of the vector vs. The dis-
tance between two NGS samples is the cosine of the angle be-
tween their vectors vs; the magnitude of the vector Ms is not
taken into account in the metric, thereby normalizing samples
with different numbers of total base pairs.

Inverted index construction

A naı̈ve implementation would require the storage of one vector
with 4k dimensions per sample, where k is the k-mer length. For
a k of 21, each vector would have more than 1 million dimen-
sions. To reduce the overhead, Libra stores and computes the
distance on a single inverted index with the k-mer frequencies
from multiple samples and performs the distance computation
on the index directly. The inverted index is indexed by k-mer,
and each entry is an index record containing a list of pairs, each
of which contains a sample identifier and the frequency of the
k-mer in the sample.

index record = k − mer : {〈sample − id, f requency〉,
〈sample − id, f requency〉 . . .}

The records in the index are stored in alphabetical order by
k-mer, allowing the record for a particular k-mer to be found via
binary search. The k-mer record contains the k-mer frequency
in each sample, not the weight, to allow for different weighting
functions to be applied during distance matrix computation.

Sweep line algorithm

To compute the distance between two samples S1 and S2, Libra
must compute the three values Ds1, s2, Ms1, and Ms2. The values
are calculated by scanning through the vectors vs1 and vs2 and
computing the values. The time for the distance matrix compu-
tation is proportional to the number of dimensions (the number
of k-mers) in the two vectors. In general, computing all-vs-all
comparisons on n samples would require n × (n − 1)/2 vector
scans, which becomes prohibitively expensive as n gets large.
Libra uses a sweep line algorithm [38] to greatly reduce the com-
putational time. The sweep line algorithm only requires a single
scan of all vectors to compute the distance of all pairs of samples
(see Supplementary Fig. S4). Briefly, Libra sweeps a line through
all the vectors simultaneously starting with the first component.

Libra outputs a record of the non-zero values of the following
format:

record = k − mer : {〈sample − id, weight〉 , 〈sample − id, weight〉 , . . .}

Libra then moves the sweep line to the next component
and performs the same operation. From the output records,
contributions to Ms for each sample in the record are com-
puted and accumulated. Contributions to D are also computed
from the record by extracting sample pairs. For example, the
record {< s1, x >, < s2, y >, 〈s4, z〉} has three sample pairs
(s1s2), (s1s4) and (s2s4). Libra then computes contribution to D for
each pair, e.g., x ∗ y is added to Ds1, s2, x ∗ z is added to Ds1, s4,
and y ∗ z is added to Ds2, s4. Using this method, Libra computes
the distances of every sample pair in an input dataset in linear
time. Other distance metrics, such as Bray-Curtis and Jensen-
Shannon, can also be computed in the same fashion.

The sweep algorithm is particularly easy to implement on
an inverted index; it consists of simply stepping through the
(sorted) k-mers. Furthermore, the sweep algorithm is easily par-
allelized. The k-mer space is partitioned and a separate sweep
is performed on each partition computing the contributions of
its k-mer frequencies to the D and M values. At the end of the
computation, the intermediate D and M values are combined
together to produce the final D and M values and thereby the
distance matrix. Each sweep uses binary search to find the first
k-mer in the partition.

Terabyte sort

Libra groups the samples automatically based on the number
and size (by default 4 GB per group). Similar to Terabyte Sort
[59], the index records are partitioned by k-mer ranges and the
records in each partition are stored in a separate chunk file. All k-
mers in partition n appear before the k-mers in partitionn + 1 in
lexicographic order. This facilitates breaking computation and
I/O down into smaller tasks, so that work of creating an index
can be distributed across several machines.

k-mer space partitioning

Both the inverted index construction and the distance matrix
computation require partitioning the k-mer space so that differ-
ent partitions can be processed independently. For the partition-
ing to be effective, the workload should be balanced across the
partitions. Simply partitioning into fixed-size partitions based
on the k-mer space will not ensure balanced workloads, as the
k-mers do not appear with uniform frequency. Some partitions
may have more k-mer records than others and thereby incur
higher processing costs. Instead, the partitions should be cre-
ated based on the k-mer distribution, so that each partition has
roughly the same number of records (see Supplementary Fig. S5).

Computing the exact k-mer distribution across all the sam-
ples is too expensive in both space and time; therefore, Libra ap-
proximates the distribution instead. A histogram is constructed
using the first six letters of the k-mers in each sample, which re-
quires much less space and time to compute. In practice, parti-
tioning based on this histogram adequately partitions the k-mer
space so that the workloads are sufficiently balanced across the
partitions.
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Figure 6: Scalability testing for Libra. Runtimes of Libra on four datasets consisting of 10, 20, 30, and 40 samples (total sizes of 93 GB, 186 GB, 279 GB, and 372 GB,

respectively). Libra was performed with default parameters (k = 20, Logarithmic weighting, and Cosine Similarity). Runtimes were averaged out over three runs. The
total runtime of Libra increased linearly with increased input volume. Both index construction and distance matrix computation showed linearly increased runtimes
for the increased input volume. This shows that Libra performs efficiently and scales to input although the number of distances between sample pairs to be computed
increases quadratically.

Scalability benchmarking for Libra

We used synthetic datasets for a scalability benchmark. Each
dataset contains 10 billion bytes (approximately 9.3 GB). We used
four datasets consisting of 10 (93 GB), 20 (186 GB), 30 (279 GB), and
40 (372 GB) samples in the benchmark. Each experiment was run
three times, and an average of the three runs reported (see Sup-
plementary Table S4 for details). The runtime of Libra increased
linearly with increased input volume (Fig. 6). This shows that
Libra efficiently handles the increased volume of input and effi-
ciently computes distances between all sample pairs while the
number of sample pairs increases quadratically.

Benchmarking runtimes of different distance metrics in
Libra

We used the same synthetic dataset with 40 samples (372 GB
in total) in the scalability benchmarking (Fig. 7). We measured
the runtimes of Libra for the different distance metrics. Once
the index is constructed, all distance metrics are calculated us-
ing that index; thus, runtimes of the inverted index construction
for the different metrics are the same. Each experiment was run
three times and the average reported (see Supplementary Table
S4 for details). Differences in runtimes are mainly due to the dif-
ferent computational workloads of distance metrics (Fig. 7). For
example, Jensen-Shannon requires more multiplications and di-
visions in nested loops than Cosine Similarity, incurring more
computational workload. Yet, distance matrix computation with
Jensen-Shannon took only 12.64% of total runtime.

Advanced cyberinfrastructure for Libra in iMicrobe

To improve access to Libra, we made it available on the iMicrobe
website [37]. A researcher with a CyVerse account can run Libra
on iMicrobe by filling out a simple web form specifying the input
files and parameters. Input files are selected from the CyVerse
Data Store where they have either been uploaded by the user to
their home directory or are part of the iMicrobe Data Commons.
When a job is submitted, the user is presented with the status

of the job and on completion with the output files and visualiza-
tion of results. To deploy Libra on iMicrobe, we developed a job
dispatch service to automate the execution of Libra on a Univer-
sity of Arizona Hadoop cluster. The service is written in NodeJS
and accepts a JSON description of the job inputs and parame-
ters, stages the input files onto the UA Hadoop cluster, executes
Libra with the given parameters, and transfers the resulting out-
put files to the user’s home directory in the CyVerse Data Store.
The service provides a RESTful interface that mimics the Agave
API Jobs service and is secured using an Agave OAuth2 token.
The source code is available on Github [60].

Experimental environment description

Mash and Simka configurations
Mash v1.1 was run on the metagenomic datasets with the fol-
lowing parameters: -r –s 10000 –m 2 [19]. The analysis of as-
semblies was run without the parameter “-r,” used for short se-
quences.

Simka v1.3.2 was run on the metagenomic datasets with
the following parameters: -abundance-min 2 -max-reads [MIN-
COUNT] -simple-dist -complex-dist, where [MINCOUNT] is the
smallest sequence count across the analyzed samples.

Hadoop cluster configuration
The Libra experiments described here were performed on a
Hadoop cluster consisting of 10 physical nodes (9 MapReduce
worker nodes). Each node contains 12 CPUs and 128 GB of RAM
and is configured to run a maximum of 7 YARN containers simul-
taneously with 10 GB of RAM per container. The remaining sys-
tem resources are reserved for the operating system and other
Hadoop services such as Hive or HBase.

The rationale for not porting Libra to Spark
Spark [61] is increasingly popular for scientific data analysis
[62] because of its outstanding performance provided by fast in-
memory processing. Although Libra is currently implemented
on Hadoop MapReduce, Libra can be easily ported to Spark be-
cause both Hadoop MapReduce and Spark have similar inter-
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Figure 7: Runtimes for different distance metrics. Runtimes for three different distance metrics (Cosine Similarity, Bray-Curtis, and Jensen-Shannon) in Libra with
40 samples of input (372 GB in total). Libra was performed with default parameters (k = 20 and Logarithmic weighting). Runtimes were averaged over three runs. An

inverted index was reused for all three distance metrics because the inverted index Libra constructs are independent of the distance metrics. Cosine Similarity took
the shortest runtime among the three metrics while Jensen-Shannon took the longest. Jensen-Shannon took almost twice as long as Cosine Similarity because it
requires more mathematical computations. Because of its fastest runtime, Cosine Similarity is used by default in Libra.

faces for data processing and partitioning. For example, resilient
distributed datasets (RDD) can be partitioned and distributed
over a Spark cluster using Libra’s k-mer range partitioning. RDDs
are memory resident, allowing Spark to significantly improve
the performance of Libra’s k-mer counting and distance matrix
computation by avoiding slow disk I/O for intermediate data. We
implemented Libra using Hadoop MapReduce because Spark re-
quires much more RAM than Hadoop MapReduce, significantly
increasing the cost of the cluster.

Availability of source code and requirements

Project home page: Program binary, source code, and documen-
tation for Libra are available in Github [63]; Libra web-based App
is in iMicrobe [37] under Apps; code to implement the Libra web-
based App is in Github [60].

Operating system(s): MapReduce 2.0 (Apache Hadoop 2.3.0 or
above).

Programming language: Java 7 (or above).
Other requirements: None.
License: Apache license version 2.0.
Any restrictions to use by non-academics: None. Libra has

been registered with the SciCrunch database under reference ID:
SCR 016608.

Availability of supporting data

Snapshots of the code and other supporting data are available
in the GigaScience repository, GigaDB [64].
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