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Abstract

Penalized Multiple Regression (PMR) can be used to discover novel disease associations in GWAS datasets. In practice,
proposed PMR methods have not been able to identify well-supported associations in GWAS that are undetectable by
standard association tests and thus these methods are not widely applied. Here, we present a combined algorithmic and
heuristic framework for PUMA (Penalized Unified Multiple-locus Association) analysis that solves the problems of previously
proposed methods including computational speed, poor performance on genome-scale simulated data, and identification
of too many associations for real data to be biologically plausible. The framework includes a new minorize-maximization
(MM) algorithm for generalized linear models (GLM) combined with heuristic model selection and testing methods for
identification of robust associations. The PUMA framework implements the penalized maximum likelihood penalties
previously proposed for GWAS analysis (i.e. Lasso, Adaptive Lasso, NEG, MCP), as well as a penalty that has not been
previously applied to GWAS (i.e. LOG). Using simulations that closely mirror real GWAS data, we show that our framework
has high performance and reliably increases power to detect weak associations, while existing PMR methods can perform
worse than single marker testing in overall performance. To demonstrate the empirical value of PUMA, we analyzed GWAS
data for type 1 diabetes, Crohns’s disease, and rheumatoid arthritis, three autoimmune diseases from the original Wellcome
Trust Case Control Consortium. Our analysis replicates known associations for these diseases and we discover novel
etiologically relevant susceptibility loci that are invisible to standard single marker tests, including six novel associations
implicating genes involved in pancreatic function, insulin pathways and immune-cell function in type 1 diabetes; three
novel associations implicating genes in pro- and anti-inflammatory pathways in Crohn’s disease; and one novel association
implicating a gene involved in apoptosis pathways in rheumatoid arthritis. We provide software for applying our PUMA
analysis framework.
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Introduction

Genome-wide association studies (GWAS) have identified many

susceptibility loci underlying the molecular etiology of complex

diseases [1]. These studies have been responsible for the discovery

of many individual genes that contribute to disease risk [2–10], for

discoveries on the front line of personalized medicine [11,12], and

for discovering novel pathways important for the progression of

complex heritable diseases [13]. The expense of each GWAS that

is capable of finding well-supported disease loci is considerable

and, as a consequence, each robust and interpretable association

discovered in a GWAS is valuable, not only from the point of view

of scientific discovery but also in terms of return on investment

[14,15]. A clear picture that has an important bearing on the

investment-discovery tradeoff in GWAS experiments is that the

associations identified to date generally explain only a small to

moderate fraction of total heritability [16,17]. Recent analyses

have suggested that a considerable amount of this ‘missing’

heritability can be accounted for by rare variants or variants with

weak effects [18–20]. This suggests that there is an opportunity to

identify more risk loci through studies that require even greater

investment, by including larger sample sizes and/or by incorpo-

rating higher genetic marker coverage of the genome by using

next-generation sequencing (NGS). The novel associations discov-

ered by large consortia GWAS studies support this supposition [7–

10]. Another complementary strategy that leverages both the

current and future investment in GWAS experiments is the

application of new statistical analyses that can reliably identify

weaker associations [21–25]. Although there has been an

explosion of methods in this area [26,27], few have produced

robustly supported associations that are not detectable by single

marker tests of association [1,26–29].

Here, we report a general framework for applying a family of

GWAS analysis methods that is extremely promising for detection

of weak associations yet has not been widely applied to learn novel

biology from GWAS datasets: penalized multiple regression

(PMR) methods. PMR methods work by simultaneously incorpo-

rating tens to hundreds of thousands of genetic markers in a single

statistical model where a penalty is incorporated to force most

marker regression coefficients to be exactly zero, so that only a
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small fraction are estimated to make a contribution to disease

risk [22,30–39]. By jointly analyzing markers, PMR methods are

able to consider the correlation of each marker with the

phenotype, conditional on all other relevant markers. This can

increase the power to detect weak associations compared to

single marker methods due to the smaller residual variance and

the fact that the conditional correlation of a marker with the

phenotype can often be substantially higher than the marginal

correlation [40]. The latter effect is a consequence of non-zero

correlation structure between associated markers when the

underlying genetic architecture is polygenic [41]. These methods

therefore model the underlying biology more accurately than

single marker tests, by explicitly modeling the polygenic

architecture of complex phenotypes to account for the effects

of multiple susceptibility loci. They also leverage the same type

of statistical model used in single marker testing methods that

have demonstrated reliability in the identification of strong

associations [1,28,29]. Yet, despite theoretical power of PMR

methods, the large body of statistical literature exploring their

theoretical properties (see reviews [42,43]), and the recent

interest in the methods development community [22,30–39],

these methods have not been successful in GWAS analysis. This

is due to a combination of limitations: 1) inability to scale for

very large GWAS datasets [22,32,34,35], 2) poor performance

on simulated data [22,31], 3) they often find too many ‘hits’ to be

biologically plausible for a given GWAS sample size [22], and 4)

they do not identify novel, well-supported associations that are

not detectable by standard methods [22,31].

In order to address these issues, we present a combined

algorithmic and heuristic framework for PUMA (Penalized

Unified Multiple-locus Association) analysis that optimizes these

methods for reliable detection of weak associations when applied

to large GWAS datasets. The complete PUMA framework

includes an extremely efficient implementation of a new

minorize-maximization (MM) algorithm [44] for generalized

linear models (GLM) [45], a theoretically motivated data-

adaptive heuristic approach to determine penalty strength and

for model selection, and post hoc methods for assessing the rank of

identified associations. Within PUMA, we implement all sparse

feature selection, penalized regression approaches proposed for

GWAS analysis to date, including four penalties implemented in

a maximum likelihood framework (i.e. Lasso, Adaptive Lasso,

NEG, MCP), as well as theoretically justified penalties that have

not been previously applied to GWAS (i.e. LOG) (Figure 1). We

demonstrate the power of our framework for detecting weaker

associations that are invisible to individual marker testing through

analysis of simulated GWAS data that mirror observations from

analyses of real GWAS data. We also demonstrate that our

approaches correct issues with all current PMR methods where

software is available for GWAS analysis, where we find that all of

these currently available PMR GWAS methods can perform

worse than single marker testing for our simulation conditions. As

an illustration of the value of PUMA for mining existing GWAS

data for novel associations, we apply these methods to the original

Wellcome Trust Case Control Consortium (WTCCC) [2] GWAS

datasets for type 1 diabetes, Crohn’s disease and rheumatoid

arthritis. Our re-analysis identifies weak associations that

implicate additional susceptibility loci for these autoimmune

diseases, which did not appear significant by standard single

marker tests of association in these datasets, yet were 1) identified

in an independent GWAS of the same phenotype that did not

include WTCCC data, 2) previously known to play a role in

disease etiology, or 3) known to function in a relevant biological

pathway. Our results demonstrate that appropriately tuned PMR

methods can provide a complementary approach to large meta-

analyses [4–10] to identify susceptibility loci with weak associa-

tions. We also provide a discussion concerning how the

framework can be extended to perform penalized analysis of

epistasis, to incorporate mixed model analysis, and to address

challenges of genome-wide genotypes provided by whole-genome

next-generation sequencing.

Results

PUMA is a scalable framework for GWAS analysis
The methods implemented in our PUMA framework are orders

of magnitude faster than existing software when assigned identical

computational tasks and no pre-screening of markers is performed

(Table 1). This substantial boost in computational speed allows

Figure 1. Penalty functions on the magnitude of the regression
coefficients implemented in the PUMA framework. A parameter
determines the slope near the origin for all penalties, while MCP, LOG
and NEG have an additional tuning parameter determining the rate at
which the derivative of the penalty tails off to zero.
doi:10.1371/journal.pcbi.1003101.g001

Author Summary

Genome-wide association studies (GWAS) have identified
hundreds of regions of the human genome that are
associated with susceptibility to common diseases. Yet
many lines of evidence indicate that many susceptibility
loci, which cannot be detected by standard statistical
methods, remain to be discovered. We have developed
PUMA, a framework for applying a family of penalized
regression methods that simultaneously consider multiple
susceptibility loci in the same statistical model. We
demonstrate through simulations that our framework has
increased power to detect weak associations compared to
both standard GWAS analysis methods and previous
applications of penalized methods. We applied PUMA to
identify novel susceptibility loci for type 1 diabetes,
Crohn’s disease and rheumatoid arthritis, where the novel
disease loci we identified have been previously associated
with similar diseases or are known to function in relevant
biological pathways.

Penalized Multiple Regression Analysis for GWAS
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PUMA to perform a dense two-dimensional search of tuning

parameter values for non-convex penalties (i.e. MCP, NEG, LOG)

and examine upwards of 1 million total modes of the likelihood

surface for simulated case/control dataset of 5,000 individuals and

650K genetic markers in less than 24 hours on a 6 core IntelH
XeonH W3690 @ 3.47 GHz with 12 Gb memory when a pre-

screening p-value cutoff of 0.01 from single marker analysis is

applied (Table 2). This is a huge improvement compared to

existing software for non-convex PMR methods [22,32] which

only examine a single mode.

Theoretical and empirical justification for pre-screening
markers

While pre-screening markers based on a p-value cutoff may

initially seem to detract from the purpose of a multiple-locus

analysis, it is supported by statistical theory, is necessary for large

scale analysis and has almost no impact on the set of markers

identified as associated. In a seminal paper, Fan and Lv [46]

demonstrate that pre-screening by ranking the marginal correla-

tion of each variable with the response will retain the relevant

variable asymptotically with probability tending to 1. Fan and

Song [43] extend this result to generalized linear models.

Moreover, Tibshirani, et al. [47] and El Ghaoui, et al. [48]

establish exact pre-screening methods for linear and logistic Lasso

models where relevant variables are guaranteed to be retained for

finite sample sizes and demonstrate that the number of variables

can be reduced by up to 3 orders of magnitude. Intuitively, both

the asymptotic [43,46] and exact pre-screening methods [47,48]

rely on the fact that a variable is unlikely to have a very small

marginal correlation with the response but a large and very

significant conditional correlation for a particular sample size

when the relevant variables explain only a small fraction of the

variation in the response. Moreover, pre-screening is often

computationally necessary because storing 650 K markers for

5000 samples requires 26 Gb of memory. Finally, we note that

pre-screening is used by previous applications of PMR methods to

GWAS data [22,31] in order to handle genome-scale data.

We use a pre-screening p-value cutoff based on single marker

analysis, because 1) it retains all relevant variables asymptotically

[43,46], 2) it approximates the exact methods proposed for Lasso

[47,48], which cannot be easily adapted to other penalties, 3) it

reduces memory requirements so that very large datasets can be

analyzed on a high-end desktop computer, 4) it substantially

reduces the computational burden, 5) by using a p-value it is

naturally calibrated to the sample size and the fraction of variation

in the response being explained, and 6) it has very little empirical

effect on the results.

Table 1. Run times for PUMA and other available software for
identical analyses.

Sample size

Method 1000 2000 5000

Lasso 2 m 11 s 5 m 55 s 14 m 45 s

NEG 1.2 s 2.2 s 9.8 s

MCP 4.7 s 8.2 s 29.2 s

Mendel [31] (Lasso) 9 m 50 s NA NA

HyperLasso [22] (NEG) 52 m 24 s 4 h 16 m 20 h 3 m

grpreg [32] (MCP) 3 h 52 m NA NA

For a typical simulated data set with 650 K markers, no pre-screening of
markers and sample sizes, n, of 1000, 2000 and 5000, we report run times for
available software and PUMA performing the same analyses. For Lasso, we had
Mendel and PUMA perform a search of tuning parameter space in order to

return 1:5
ffiffiffi
n
p

markers with nonzero coefficients. For NEG, we set HyperLasso to
its default tuning parameter values and ran PUMA with the same values. For
MCP, we set grpreg and PUMA to perform a search of tuning parameter space

in order to return 1:5
ffiffiffi
n
p

markers with nonzero coefficients, where c was set to
30 as per Ayers and Cordell [32]. Analysis was performed on an 8 core IntelH
XeonH E5520 @ 2.27 GHz with 32 Gb memory. NA indicates the program
crashed due to insufficient memory; we note that this is due to technical
limitations of Mendel and R, in which grpreg runs.
doi:10.1371/journal.pcbi.1003101.t001

Table 2. Run times for PUMA methods and other available software.

Method Run time # of models # of unique models

Lasso 33 s 156 59

Adaptive Lasso 5 s 21 13

LOG 6 hrs *700,000 *4,000

NEG 5 hrs *500,000 *10,000

1D-MCP 21 min *800,000 21

2D-MCP 14 hrs *1,000,000 *5,000

Mendel [31] 66 s 1 1

HyperLasso [22] 1 hr 1 1

perm-MCP [32] 1 hr 1 1

For a typical simulated data set with 5000 individuals, 650 K markers and a pre-screening p-value threshold of 0.01, we report the run times, and the number of total
and unique models examined by our methods (top) and available methods using standard/default settings (bottom). We list the number of models assessed during a
single run of a method where a model is defined by the set of markers with distinct nonzero coefficients and the number of unique models counts the number of sets of
distinct markers, where we note that the metrics reported can vary substantially between datasets. Lasso and Adaptive Lasso are convex and have a single tuning
parameter, so relatively few models are examined during the search. For convex penalties, each distinct tuning parameter value produces a model, although another
tuning parameter value can cause the coefficients to change but still produce the same set of markers with nonzero coefficients. Thus the number of models examined
is larger than the number of unique models. MCP, LOG and NEG penalties are non-convex and have two tuning parameters and were applied with 100 marker
reorderings, so they produce orders of magnitude more total and unique models. We note that 1D-MCP is faster than 2D-MCP as the former fixes the value of one
tuning parameter. We note that HyperLasso [22] can be extremely computationally expensive for large datasets, so that the time we report is based on analysis of the
pre-screened dataset where pre-screening step must be implemented separately. Ayers and Cordell [32] do not provide software but proposes an approach using the
grpreg package in R.
doi:10.1371/journal.pcbi.1003101.t002

Penalized Multiple Regression Analysis for GWAS
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We demonstrate this final and most important point in two

complementary simulation studies. First we consider a simple two-

step forward regression method, which is known to approximate

penalized multiple regression [49,50] and, under a range of

biologically motivated simulation conditions, demonstrate that

variables that do not cross an initial p-value threshold have a very

low probability of being significant in the second step (Figure S1).

Second we demonstrate that the pre-screening has no noticeable

effect on the performance of Lasso and MCP methods but

substantially reduces the computational time (Figure S2).

Simulated data assessment of the PUMA framework
We analyzed 960 simulated GWAS datasets to assess the

performance of our PUMA framework compared to other

published methods for PMR GWAS analysis. We note that these

simulations, while far more extensive than other published works

on PMR GWAS analysis [22,30–38] are not meant to be

exhaustive or to capture all the possible complexities in a GWAS

but rather to: 1) serve as a baseline for comparing GWAS analysis

methods and 2) provide an estimate of the expected performance

for these methods when applied to GWAS data under relatively

ideal experimental conditions. Our goal therefore was not to

attempt to model a broad spectrum of possible GWAS data

complexities (e.g. stratified experimental sampling schemes, known

or cryptic population structure effects on phenotype, relatedness

among individuals, measured or latent covariates, etc.) but rather

to simulate data that captured the most basic components of a

GWAS experiment (see Methods for details). In simulated data a

causal variant is defined as a variant whose coefficient value is

nonzero, so that number of minor alleles at this marker contributes

to the phenotype. In order to mimic the fact that true causal

variants are not available from array-based genotyping, the

simulated causal variants were removed from the dataset so that

they are not considered by the tests of association. Therefore, just

like in all array-based genotyping datasets, our simulations identify

associations based on markers in linkage-disequilibrium with the

(omitted) causal variant.

Assessment of available software for PMR GWAS
We assessed the performance of PMR methods for which there

is available software. We compared the performance of the Lasso

penalty from Wu, et al. [31], the NEG penalty as implemented in

the HyperLasso program [22], and a permutation-based approach

to selecting tuning parameter values for the MCP penalty [32,51]

that we term perm-MCP. We note that we only considered PMR

approaches that are designed to handle the specific challenges of

GWAS data and that also perform feature selection, such that we

do not consider ridge, elastic net, or group-penalties since they set

many correlated markers to have nonzero coefficients and thus

complicate the generation of interpretable p-values [30,52]. We

also did not consider Markov Chain Monte Carlo (MCMC)

approaches [34,35] since they could not efficiently scale to

genome-wide data while exploring a range of tuning parameter

values. We ran the HyperLasso program [22] with standard

settings (see Text S1). We applied the method of Wu, et al. [31],

setting the number of selected markers to the true number of

causal markers in each simulation since Wu, et al. [31] do not

specify a criterion for selecting the model size. As a benchmark, we

also ran a single marker analysis implemented by applying a

logistic regression model to each marker individually. We used a

pre-screening p-value cutoff of 0.01 from single marker analysis for

the PMR methods to make them computationally tractable.

Simulations indicate that HyperLasso [22] and the Lasso of Wu, et

al. [31] are generally less powerful than a standard single marker test

(Figure 2, S3, S4, S5, S6, S7, S8, S9, S10). While Lasso is sometimes

comparable or slightly more powerful than a single marker test for

low FDR, the performance of the method benefits from the fact that

the number of selected markers is set using information not available

in real data. Setting the marker number to 10 (the default in the

implementation of Wu, et al. [31]) or another arbitrary value results

in poor performance and is not competitive with a single marker test

(results not shown). The performance of HyperLasso is especially

poor as is it suffers from the fact that the choice of tuning parameters

has a huge effect on performance, but the method does not

implement a search over tuning parameter values. Moreover,

HyperLasso does not include a way to evaluate the significance of

a selected marker, so we used their default approach of using

coefficient values from selected markers to assess performance.

Alternatively, perm-MCP was the most powerful in our simulations.

We note that for perm-MCP, by setting the expected false

positive rate (eFPR) and using permutations to obtain the value of

the tuning parameter based on this rate, perm-MCP generates a

single model with relatively few nonzero coefficients while explicitly

addressing the multiple testing problem. Yet in practice this result

indicates that perm-MCP may assign p-values to only a handful of

markers so that the method may not identify any novel associations

for a particular dataset. Since the number of nonzero coefficients is

directly related to the specified eFPR and the pre-screening cutoff,

we examined multiple eFPR values (10{3, 10{4, 10{5, 10{6,

10{7) and cutoff values (0.1, 0.01, 0.001), and selected the values the

yielded the highest power (eFPR = 10{3, cutoff = 0.001) to present

in Figure 2, where other cutoff combinations produce poorer

performance (see Figure S11 for a representative plot showing the

results for all cutoffs). We note that the eFPR value is based on the

number of markers that pass the pre-screening cutoff, not the total

number of markers. Therefore the performance of perm-MCP is

sensitive to the eFPR and cutoff values, yet there is no clear method

Figure 2. Simulation results for existing methods. Shown here
are representative examples of simulation results for available software
including the HyperLasso program [22] (HyperLasso), Lasso using the
method of Wu, et al. [31] (LASSO_WU) and perm-MCP [32]. Power is
compared to a standard single marker analysis (SMA). Results are shown
for 20 replicate datasets from simulations with 5000 individuals, 20
causal markers affecting disease risk and a heritability of 50%. Note that
perm-MCP selected very few markers per simulation so the false
discovery rate did not exceed 10%.
doi:10.1371/journal.pcbi.1003101.g002

Penalized Multiple Regression Analysis for GWAS
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to optimally specify this value a priori. Furthermore, determining the

appropriate cutoff for a desired eFPR for correlated high-

dimensional data is the subject of current research [53], and its

application to permutation methods for selecting a tuning

parameter remains an open question. We also note that the

performance achieved with PUMA methods does not require the

optimal determination of eFPR and pre-screening cutoffs.

In addition, we note that while Ayers and Cordell [32] have

previously shown that penalized regression methods can perform

well on simulated data, the datasets we address here are orders of

magnitude larger. Ayers and Cordell [32] conducted two

simulation studies, one with 4000 markers and the other with no

more than 228. By considering such a small set of markers, which

is not the product of a pre-screening step, they were able to use

standard R packages and apply a permutation method to select

tuning parameters on the full dataset. Moreover, the multiple

testing problem is less severe in their analysis. For the HyperLasso

program, Ayers and Cordell [32] selected the tuning parameter as

described by Hoggart, et al. [22]. However, using these settings for

the genome-scale datasets examined here caused the HyperLasso

program to crash (Text S1) and so we use the default program

settings. We note that the program worked as expected for smaller

datasets. It is unclear whether this problem is an issue with the

underlying algorithm or the specifics of the implementation. Thus

the difference between the performance of methods in Ayers and

Cordell [32] and the current study is the scale of the data, the large

multiple-testing burden for genome-scale data and the necessity of

a pre-screening step for genome-scale data.

PUMA’s statistical power is due to its data-adaptive properties.

PUMA 1) performs a two dimensional search of the tuning

parameter space 2) selects the number of nonzero coefficients

based on both the fit to the data and the sample size, and 3) uses a

heuristic methods to assess the significance of correlated markers.

Conversely, perm-MCP fixes one of the tuning parameters, does

not incorporate the sample size, and does not address the issues of

testing the significance of correlated markers. Moreover, perm-

MCP relies on setting the eFPR despite problem of determining an

appropriate value a priori for high dimensional data.

The potential of the PMR GWAS framework as
implemented in PUMA

For the 960 simulated GWAS datasets we analyzed, almost all

PMR GWAS approaches implemented in PUMA except NEG

and adaptive Lasso outperformed single marker analysis under

simulation conditions with sufficient sample size (Figure 3, Figures

S3, S4, S5, S6, S7, S8, S9, S10). Quite critically, the performance

is far greater even when using a conservative control of FDR that

is commonly employed in GWAS studies. Moreover, the

improvement of the PMR methods in PUMA is most noticeable

for causal variants with intermediate marginal heritability.

Overall, these simulations demonstrate that the advantage of

PMR methods over a single marker test increases with sample size,

but decreases with the number of susceptibility loci (Figure S3, S4).

While the penalized methods implemented in our PUMA

framework consistently had higher power than single marker

analysis as a function of FDR under most simulation conditions,

none of the penalties consistently stood out as the most powerful.

However, our PUMA framework, which includes a fast novel

algorithm for penalized maximum likelihood estimation in

generalized linear models, data-adaptive tuning of tuning param-

eters, heuristics for model selection and novel method of assigning

p-values (see Methods) increased the power of PMR methods

compared to current approaches using the same penalties [22,31].

We note that our implementation of the NEG penalty showed a

substantial increase in power over the HyperLasso program [22]

and indicates that our search over tuning parameter values and

heuristic approach for model selection was successful. Moreover,

our search of one or both tuning parameter values for MCP

(termed 1D-MCP and 2D-MCP, respectively) showed that our

approach to applying MCP (i.e. 2D-MCP) can be more powerful

than that of Ayers and Cordell [32]. The fact that our

implementation of Lasso had higher power than the version of

Wu, et al. [31] confirms the usefulness of our data-adaptive

approach for selecting penalty strength and our novel method for

assigning p-values. We also note that for comparison we applied a

conditional regression test and our previously published algorithm

VBAY, a variational Bayes approach for fitting a mixture prior

Figure 3. PUMA methods outperform other tests of association. Shown here are representative examples of simulation results for single
marker analysis (SMA), 2-step conditional regression, a permutation based tuning of MCP (perm-MCP), our approximate Bayesian method (VBAY), and
our PUMA methods (Lasso, Adaptive Lasso, LOG, NEG, 1D-MCP, 2D-MCP). Results are shown for 20 replicate datasets from simulations with 5000
individuals, 20 causal markers affecting disease risk and a heritability of 50%. a) The power of each method to recover true associations at a fixed FDR
of 5% shown as a function of the marginal heritability of each causal marker. b) Precision-Recall curve for the same simulations as in (a). Note that
perm-MCP selected very few markers per simulation so the FDR did not exceed 10%. c) Power to recover true associations at an FDR of 5% for a range
of sample sizes.
doi:10.1371/journal.pcbi.1003101.g003

Penalized Multiple Regression Analysis for GWAS
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penalty [33]. We found that perm-MCP and VBAY had similar

performance to our PMR methods and while the conditional test

of association was sometimes more powerful than single marker

analyses it was generally not as powerful as the PUMA PMR

methods.

Summary of Wellcome Trust Case Control Consortium
(WTCCC) re-analysis

In our re-analysis of type 1 diabetes, Crohn’s disease and

rheumatoid arthritis datasets, we applied a single-marker analysis

and all PMR analysis approaches (Lasso, Adaptive Lasso, NEG,

Figure 4. PUMA identifies associations for Wellcome Trust Case Control Consortium (WTCCC) data that are novel and that overlap
hits from previous GWAS. Genome-wide plot of associations identified by analyzing the WTCCC data for type 1 diabetes using PUMA and single
marker tests. Replications from independent (not including WTCCC data) and non-independent (including WTCCC data) GWAS of the same disease
are indicated with pink boxes and diamonds, respectively. For comparison, markers identified using a single marker association analysis are presented
in black circles, where we note that these same hits are all identified by PUMA methods. Also for comparison, we relaxed the Bonferroni threshold for
single marker analysis (open circles) until the same number of associations as found by PUMA methods are reported, where we note that many of
these additional hits tend not to overlap PUMA hits or previous GWAS hits. Arrows indicate novel associations that are biologically interpretable (see
Table 6).
doi:10.1371/journal.pcbi.1003101.g004

Penalized Multiple Regression Analysis for GWAS
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LOG, 1D-MCP, 2D-MCP, perm-MCP) using all the recom-

mended components of our framework. We included sex and the

first two principal components as unpenalized covariates, applied a

pre-screening cutoff of 0.01 on the p-values from the single marker

test, and ran 100 reorderings for the non-convex penalties.

Quantile-Quantile (QQ) plots of p-values from a standard single

marker analysis indicate that the effects of any remaining

population structure is minimal. Moreover, including the subset

of significantly associated markers identified by the PMR methods

as covariates in a single marker analysis of remaining markers does

not yield an inflation of the QQ plots and thus indicates that the

PMR methods are not overfitting the data (Figure S12). We also

note that due to the complex LD around the MHC on

chromosome 6, while we included this region in our analysis, we

omit this region from any post hoc analysis and discussion.

Our single-marker re-analysis of type 1 diabetes, Crohn’s disease

and rheumatoid arthritis datasets reproduced the same associations

as reported in the original analysis (Figure S13). Our PMR methods

recapitulated almost all of the associations identified by single

marker analysis, although there were differences among the

methods. The PUMA Lasso and Adaptive Lasso identified almost

no additional associations compared to single marker tests, and

while LOG, NEG and 1D-MCP identified more, almost all of the

associations found by these five methods (Lasso, Adaptive Lasso,

LOG, NEG, 1D-MCP) were identified by 2D-MCP (Figure 4, S14).

We note that perm-MCP identified very few associations (12 overall,

across the three diseases), all but one of which was identified by a

single marker test, and all were identified by 2D-MCP. We therefore

discuss the associations found by 2D-MCP, where we consider three

categories of interest (Table 3): those concordant with single marker

tests, those that recapitulate associations identified in external

GWAS studies but not by single marker analysis of the WTCCC,

and novel associations, of which many were deemed to be

biologically interpretable in terms of the current knowledge of

disease etiology. In the absence of functional validation, the

presence of a feasible biological interpretation lends more credibility

to these novel findings.

Figure 5. Etiologically relevant and replicated genes identified
by 2D-MCP have non-significant p-values by standard single
marker analysis. Quantile-quantile (QQ) plot shows results from a
single marker analysis of type 1 diabetes from the WTCCC with a subset
of hits identified by 2D-MCP highlighted. P-values from the single
marker test are shown in black, while each orange circle indicates a
region identified as significant by 2D-MCP and its location on the plot is
determined by the most significant single marker analysis p-value
within 0.1 cM of the significant 2D-MCP hit. Biologically relevant genes
identified by 2D-MCP are shown with arrows indicating the most
significant association in the region by single marker analysis. Genes
shown on the left are only detectable with 2D-MCP, while genes on
right are identified by both 2D-MCP and single marker analysis. P-values
from the MHC region on chromosome 6 are omitted.
doi:10.1371/journal.pcbi.1003101.g005

Figure 6. Venn diagrams showing concordance between methods. Venn diagrams show the overall concordance between regions identified
by a single marker test, 2D-MCP and the union of Lasso, Adaptive Lasso, NEG, LOG, 1D-MCP and VBAY for Crohn’s disease (CD), rheumatoid arthritis
(RA) and type 1 diabetes (T1D) for the WTCCC analysis. Areas are approximately proportional to the counts shown and empty regions correspond to a
count of zero.
doi:10.1371/journal.pcbi.1003101.g006

Table 3. Number of associations identified in the analysis of
Wellcome Trust Case Control Consortium (WTCCC) data by
disease and category.

CD RA T1D

Concordant with SMA 8 1 4

Replications not significant by SMA

Independent datasets 0 0 1

Non-independent datasets 5 0 1

Etiologically relevant associations 3 1 6

Other novel associations 12 11 11

Number of associations identified for Crohn’s disease, rheumatoid arthritis and
type 1 diabetes divided into 5 categories for the union of all associations
identified by PUMA methods.
doi:10.1371/journal.pcbi.1003101.t003
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A critical point to note about the performance of our PUMA

framework for PMR analysis of GWAS data is that these methods

not only result in the correct identification of more loci than a

single marker testing analysis (when controlling the false discovery

rate at the same level), but also lead to re-orderings of the rank of

markers that are considered the most significant when compared

to a single marker analysis (Figure 5). As a consequence, we are

able to identify etiologically relevant and replicated disease loci

that are too weak to be detected by single marker analysis, yet

show strong signals of association by PMR analysis. This means

that our PMR GWAS analysis is not simply taking advantage of

the lower residual variance to improve performance, but is also

taking advantage of the fact that conditional correlation of a

relevant marker with the phenotype is often more significant than

the marginal correlation. When the coefficients for multiple

markers, each tagging different susceptibility loci throughout the

genome, have nonzero values in the PMR framework, their

association with the phenotype becomes more significant. Our

framework can therefore identify disease susceptibility loci in a

GWAS with weak associations with phenotype, when they are

invisible to a single marker testing approach (i.e. they have p-

values in a single marker test that would never be considered

significant).

Associations identified by PUMA are concordant with
associations from single marker tests

The associations identified by PUMA generally recapitulate

associations identified by single marker analysis, and the PUMA

hits have perfect concordance for strong associations. Overall 2D-

MCP recapitulates the largest number of associations, while the

union of the other PMR methods (considered here for illustrative

purposes due to the high degree of concordance with each other,

and the fact that 2D-MCP identifies almost all of the associations

they find) had a lower degree of concordance with the single

marker analysis (Figure 4, 6, S14, Table S1). Of the 6 associations

identified by a single marker analysis that were missed by our

methods, 5 were from type 1 diabetes and 1 was from Crohn’s

disease (Table S2). One of these associations was borderline

significant by 2D-MCP with a p-value of 1.4261027.

PUMA methods replicate associations identified by
external studies

We compared associations identified by our PUMA methods

that were not detected by single marker tests in the WTCCC

dataset to markers identified by independent studies in the HuGE

database of published GWAS [53] in order to find associations

identified in both our analysis and an independent study that did

not include WTCCC data. Such replications are considered the

gold standard for validating a putative association [54]. In the

ideal case the same marker would show an association in both the

WTCCC dataset and those summarized in the HuGE database.

However, given 1) the lack of overlap of marker-sets between

genotyping platforms, 2) that the HuGE database reports only the

most significant marker in an associated LD block, and 3) that

PMR methods tend to select only a single marker within a LD

block, we considered a marker to recapitulate a known association

if the two are within 0.1 cM [6]. A representative example from

Crohn’s disease is shown in Figure 7 where only 2D-MCP is able

to identify STAT3 as a susceptibility locus in the WTCCC dataset

(Figure 7a). While this association has also been replicated in non-

independent datasets [6], which included WTCCC data, the role

of STAT3 in Crohn’s and other autoimmune disease is well

established [55,56].

While all PUMA methods and a single marker test are able to

replicate associations from independent studies, LOG, NEG and

1D-MCP, stood out in terms of identifying associations replicated

by non-independent studies, but not detected in the WTCCC

dataset by a single marker analysis. These counts reflect the results

when the number of markers considered as ‘hits’ was set to be

equal across methods so that they reflect the ordering of markers

by PMR methods rather than the number of associations. When

comparing the total number of significant hits from each method

to associations identified in either independent studies or non-

independent external studies that incorporated WTCCC data,

Figure 7. Local manhattan plots illustrating individual examples of associations identified by PUMA analysis of the Wellcome Trust
Case Control Consortium (WTCCC) data. The top panel shows { log10 p-values (left axis, all methods except VBAY) and posterior probabilities
for VBAY (right axis) for markers in the local genomic region, gene models are shown below in orange with the names of the associated gene
indicated, the middle panel shows recombination rates and genetic distance from where the associated marker is indicated with an asterisk and the
bottom panel shows a linkage disequilibrium plot among markers in the region using D0 . a) A region identified only by 2D-MCP replicates an
association from a non-independent studies (which included WTCCC data) of Crohn’s disease, b) a novel association identified for type 1 diabetes
only by a PUMA method (2D-MCP) that implicates the etiologically relevant SLC30A1 gene, and c) an association identified only by a PUMA method
(2D-MCP) for type 1 diabetes that implicated the LPHN2, a gene previously identified but not replicated as a risk locus for type 1 diabetes. Although
the associations from the independent studies do not tag the same linkage disequilibrium block as the association identified by 2D-MCP, all three
likely affect LPHN2 as they are located either in or directly upstream of this gene and next closest gene is 1.8 Mb (1.7 cM) away.
doi:10.1371/journal.pcbi.1003101.g007
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2D-MCP is the only PMR method to identify as many total

replicated associations as a single marker test (Tables 4, S3, S4,

Figures S15, S16, S17, S18, S19). However, 2D-MCP is able to

replicate known associations that cannot be replicated by a

standard single marker test in this dataset, thus demonstrating that

PMR methods can extract biologically relevant information that is

overlooked by standard analyses (Table S5). These results

demonstrate that PMR methods overall are able to identify

replicated associations in this dataset that are invisible to a

standard single marker test. Moreover, our methods provide an

opportunity to replicate previously unreplicated associations by re-

analyzing existing GWAS datasets.

PUMA methods identify novel associations
Re-analysis of type 1 diabetes, Crohn’s disease and rheumatoid

arthritis datasets from the original WTCCC [2] with our PUMA

methods revealed novel associations that have not been identified

in previous GWAS of these diseases (Table 5, Figures S14, S20,

S21, S22). These methods, most notably 2D-MCP, identify novel

associations in or near genes which have been previously

associated with etiologically related diseases or which are known

to function in biologically relevant pathways based on public

databases and disease literature (Tables 5,6). In addition, PUMA

also identified associations without a clear biological link to the

disease phenotype (Tables S6, S7, S8).

PUMA methods identified novel susceptibility loci for type 1

diabetes involved in pancreatic function, insulin pathways and

immune cell function and for Crohn’s disease that are involved in

pro- and anti-inflammatory pathways (Table 6). 2D-MCP

identified a gene functioning in apoptosis as a susceptibility locus

for rheumatoid arthritis (Table 6). These genes are known to

function in relevant pathways or have been previously implicated

in the etiology of the disease but have not been found by previous

GWAS of each disease. A representative example is shown in

Figure 7b where only 2D-MCP identifies an association that

implicates SLC30A1. This gene is a zinc transporter related to

SLC30A8, which has been implicated in type 2 diabetes, and zinc

transport plays a role in insulin secretion by pancreatic b-cells

[57,58].

Discussion

Each GWAS discovery that has a well supported association

produces valuable information for understanding the etiology of

the disease phenotype and such discoveries are regularly used as

the foundation for studies that use the locus as a starting point

[59,60]. Given that GWAS involving a thousand to several

thousands of individuals seldom return more than a few to a dozen

well-supported associations (depending on the disease) the

monetary, time, and resource investment in these studies often

translates to a considerable expenditure per discovery. This is true

even when considering additional discoveries that may occur as

individual GWAS are combined together into large meta-analysis

studies [4–10]. We have demonstrated that our PUMA framework

has the potential to produce added investment return for GWAS

studies by discovering additional well-supported disease loci

associations that are invisible to the standard single marker

analysis methods responsible for almost all reported GWAS [1,53].

For example, our re-analysis of type 1 diabetes, Crohn’s disease

and rheumatoid arthritis from the original Wellcome Trust Case

Control Consortium (WTCCC) [2] demonstrates that PUMA

methods can identify associations that are not detectable by single

marker analysis approaches but which replicate associations

known from independent studies, which did not include WTCCC
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data, as well as novel loci with strong links to known disease

etiology. These included 10 novel associations identifying genes

that are linked to primary pathways of these autoimmune diseases,

specifically 6 genes involved in pancreatic function, insulin

pathways and immune-cell function in type 1 diabetes; 4 genes

(in 3 association regions) functioning in pro- and anti-inflamma-

tory pathways in Crohn’s disease; and 1 gene involved in apoptosis

pathways in rheumatoid arthritis. Applying our PUMA framework

therefore has the potential to add a significant number of

discoveries for a given GWAS.

A critical property of our PUMA framework is it does not return

the same ordering of significant markers produced by a standard

single marker analysis. By simultaneously accounting for the

associations of multiple loci and better reflecting the underlying

polygenic architecture of complex phenotypes, PUMA can find

strong statistical support for associations deemed non-significant

by a single marker analysis and places these among the top list of

associations. A prime example is marker rs613232 which had a p-

value of 6.51|10{2 by a single marker analysis in the type 1

diabetes dataset so it would not be considered for a follow-up

study. However, by taking into account the polygenic architecture

of the trait, 2D-MCP assigned it a p-value of 6.96|10{8

(Figure 7b, Table 5). This marker tags the zinc transporter

SLC30A1 and zinc transport has an established role in type 1

diabetes, yet this gene was only identified as a susceptibility locus

by 2D-MCP. This example illustrates the power of PUMA

methods to reorder the p-values of markers so that a marker that is

not in the top 20,000 by a single marker test can be in the top 30

by 2D-MCP. Another example is that of LPHN2, a gene identified

by an independent GWAS of type 1 diabetes, yet the association

was not replicated in an independent dataset in the same study

[61] or, to our knowledge, any subsequent study. In our re-

analysis, 2D-MCP identified a strong signal in a nearby marker

and assigned it a p-value of 3.99|10{9, while the p-value by a

single marker test was 3.78|10{2 (Figure 7c, Table 5). The very

weak single marker p-value found in this dataset makes the

previous inability to replicate this association unsurprising. The

gene encodes the G-coupled protein receptor latrophilin 2 and has

a weak association with rheumatoid arthritis [62] but its relation to

disease etiology is unclear. These examples illustrate that our

PUMA framework returns additional and complimentary infor-

mation to the results of a single marker analysis of a GWAS. In

general, it seems clear that applying a spectrum of appropriate

GWAS analysis methods to the same data is likely to maximize

discovery.

The PUMA framework and software that we present here is

immediately applicable to a large number of existing GWAS and

we are currently exploring extensions of the framework to address

additional challenges in GWAS experimental designs and GWAS

analysis. For example, GWAS discoveries are regularly being

produced by consortia that combine several independently

executed GWAS experiments. Such combined data introduce a

number of complexities including complex batch effects, popula-

tion structure, relatedness, and latent environmental variables.

While meta-analysis techniques for combining p-values across

studies are a good approach to normalizing for many of these

issues [4–10], a PMR analysis directly on the genotypes can

include correction for study heterogeneity, population structure

and cryptic relatedness using a linear mixed model [63–65], and

we are currently working on such extensions. Given that the

increase in performance for our PMR methods compared to single

marker analysis increases with increasing sample sizes, solving

these problems has great potential to detect additional weak

associations. There is also going to be a near-term shift towards

GWAS that add millions of additional genetic markers genotyped

by next-generation sequencing, which can add increased density of

markers and different allele types. Our approach can already

handle these large number of markers directly to take advantage of

the better tagging, and in some cases genotyping, of causal disease

polymorphisms. The trend of increased sample sizes and genome

marker coverage in GWAS also opens the opportunity to identify

genetic interactions that are currently difficult to detect, including

epistasis and gene|environment interactions, which could be

identified by incorporating group penalty approaches [30,66,67]

within our framework. Overall, our framework represents a

platform for integrating richer statistical models and techniques for

addressing the future needs of GWAS.

Table 6. Novel susceptibility loci identified by PUMA methods and their biological link to the disease.

disease gene description

CD ASB3 functions in ubiquitination and degradation of TNF-R2, which mediates TNF-a pro-inflammatory response [103,104]

CD VRK1 phosphorylates c-Jun and p53, which both function in inflammation [105]

CD CYP11A1 cytochrome P450 enzyme that synthesizes anti-inflammatory corticosterone in the intestine, and the enzyme is underexpressed in
inflamed colon biopsies of patients with Crohn’s disease [106,107]

CD SEMA7A immune semaphorin whose expression on activated T-cells induces macrophage production of pro-inflammatory cytokines [108]

RA TP73 p53-like transcription factors that functions in apoptosis, a process implicated in the etiology of rheumatoid arthritis [109,110]

T1D SLC30A1 zinc transporter related to SLC30A8, which has been implicated in type 2 diabetes, and zinc transport plays a role in insulin
secretion by pancreatic b-cells [57,58]

T1D CCR4 chemokine receptor and CCR4-bearing T-cells function in the autoimmune inflammation of the pancreas in mice [111]. A nearby
marker shows a strong association with celiac disease [112]

T1D SEMA5A member of the semaphorin protein family whose members play a role in cell-cell interactions in immune processes, but the
function of this gene is not well characterized [108]

T1D RXFP2 receptor for relaxin, a member of the insulin protein family [113]

T1D SOS2 Ras-guanine nucleotide exchange factor which is upstream of a number of relevant signalling pathways [114]

T1D ERG ETS-family transcription factor that functions in pancreatic development [115]

Genes were deemed to be etiologically relevant if they have been previously associated with etiologically related diseases or are known to function in biologically
relevant pathways based on public databases and disease literature.
doi:10.1371/journal.pcbi.1003101.t006
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Methods

The PUMA framework
Our framework is a combination of algorithms and heuristic

approaches designed for robust and efficient analysis of GWAS

datasets when the desired output is a ranked list of genetic

markers that individually tag disease loci. The value of the

framework is that tag genetic markers, which are too weak to be

reliably identified by a single marker analysis, can be identified

while preserving a conservative FDR genome-wide. To solve

issues that have limited the value of existing PMR GWAS

software for this purpose, we designed our framework to have the

following properties: 1) the versatility to handle a diversity of

penalties for simultaneous analysis of thousands to millions of

genetic markers while incorporating unpenalized covariates, 2)

the efficiency to analyze up to millions of markers after pre-

screening on a standard desktop, 3) the sensitivity to tune the

strength of penalties and to perform model selection when the

fraction of variation accounted for by disease loci identifiable with

tag markers is small (as is typical for GWAS), and 4) the capability

to return a ranked list of p-values where each of the top markers

identifies an independent disease association. We outline the

components of our framework responsible for each of these

properties in the next four sections, followed by a description of

our software PUMA that implements our recommended practices

and options for implementation. We note that in its entirety, this

framework is a new GWAS analysis approach that incorporates

novel components including (but not limited to): application of

penalties not previously applied to GWAS, a new MM algorithm

for GLMs, heuristics for penalty strength and model selection,

and post hoc model fitting approaches for ranking associated

markers.

Objective functions and penalties
Our framework makes use of a generalized linear modeling

(GLM) framework to construct the likelihood objective function.

We can therefore model phenotypes measured on a large

diversity of scales by implementing an appropriate link function

[45], although here, we limit our implementations to an identity

and logistic link function to model continuous phenotypes with

normal error and case-control phenotypes, respectively. We also

note that incorporating unpenalized covariates is straightforward,

where these are modeled with regression coefficients with no

penalty. While our current implementation is restricted to

penalties that select a small number of well supported markers

(i.e. feature selection penalties [51,68–72]), the framework is

versatile enough to implement a wide diversity of penalties

approaches when making use of the algorithm described in the

next section.

For marker selection, we use the penalized maximum likelihood

estimate (pMLE) of the regression coefficients:

b̂b~ argmax
b

‘(yDb){
X

j

ph(bj)

where y is the vector of disease phenotype values, and b is the

vector of regression coefficients ‘(:) is the log-likelihood of a linear

or logistic regression and ph(:) is the penalty function on the

magnitude of bj indexed by a vector of tuning parameters, h. Since

we are interested in identifying a small set of variables associated

with the phenotype, the penalty function must have the sparsity

property whereby most of the regression coefficients are set to

exactly zero. Multiple penalties satisfy this condition while

balancing computational tractability with desirable theoretical

properties. We implement the penalties that have been applied for

PMR GWAS analysis (i.e. Lasso, Adaptive Lasso, NEG, MCP) as

well as a penalty that has not be previously applied to GWAS (i.e.

LOG). We describe the properties of each penalty in the following

paragraphs and the functional form of each penalty is given in

Text S2.

The Lasso penalty [68] (previously implemented for PMR

GWAS in the software Mendel [31]) is a linear function of the

magnitude of the regression coefficients and is the most widely

used since it has a single tuning parameter. Moreover, the penalty

is convex so that it yields a unique pMLE. Yet it is widely known to

select too many variables with non-zero coefficients in high

dimensional datasets [72] and does not satisfy the ‘‘oracle

property’’ whereby parameter estimates are asymptotically equiv-

alent to unpenalized estimates when the identity of the non-zero

coefficients are known in advance [72].

The Adaptive Lasso penalty [69], (previously implemented for

PMR GWAS by Yang, et al. [37]) unlike the Lasso, satisfies the

oracle property. This two-step Lasso regression procedure is also

convex (yields a unique pMLE) although it requires an initial

estimate of the regression coefficients, which are then used to

weight the strength of a Lasso penalty in the second step. There is

no criterion for determining optimal weights, so in practice the

Lasso penalty for each coefficient is weighted by the square root of

the initial coefficient estimate.

The NEG penalty [71] (previously implemented for PMR

GWAS in the software HyperLasso [22]) has two tuning

parameters and is non-convex such that it produces a multimodal

likelihood surface where pMLE’s are not unique. The penalty

satisfies the oracle property, since the derivative of the penalties

approach zero in the limit [72], although it has other less desirable

properties since its derivative approaches zero much more slowly

than the other penalties and its very complex functional form

makes it numerically unstable for large coefficient values. In our

framework, we re-implement NEG using a faster algorithm than

Hoggart, et al. [22] and includes a two dimensional search of the

tuning parameter space, while Hoggart, et al. [22] use asymptotic

theory to set the tuning parameters.

The MCP penalty [51] (previously implemented in the R

package grpreg [73]) has two tuning parameters. Like NEG, this

penalty is non-convex and satisfies the oracle property. However,

the derivative of MCP reaches zero for finite coefficient values so

that it avoids over penalizing large coefficient values. Moreover,

MCP is designed to reduce the multimodality of the objective

function [51]. The tuning parameters determine the slope of the

penalty near the origin (i.e. l) and coefficient value at which the

derivative of the penalty is set to zero (i.e. a or c, depending on

notation). When applying this method to GWAS data, Ayers and

Cordell [32] fixed the value of a at 30, and identify the value of l
using a permutation approach. We term this approach perm-

MCP. In addition, we consider a one dimensional search over the

value of l and a two dimensional search over both parameters,

termed 1D-MCP and 2D-MCP, respectively. The latter has the

most potential since it explores the value of the tuning parameter,

a, that determines the coefficient value at which the derivative of

the penalty is set to zero, and learns the value of the parameter

based on the data.

We also implement the LOG penalty and apply it to GWAS for

the first time. The LOG penalty [70] has two tuning parameters

and is non-convex, such that it produces a multimodal likelihood

surface where pMLE’s are not unique, but is satisfies the oracle

property, since the derivatives of the penalties approach zero in the

limit [72]. This penalty is also designed to identify fewer non-zero

regression coefficients.
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Minorize-Maximization (MM) algorithm and scalable
implementation

Our framework implements a highly efficient algorithm and

optimized coding practices to allow fast simultaneous analysis of

genetic markers in the range of hundreds of thousands to millions.

We implement a new minorize-maximization (MM) algorithm for

finding pMLE by using a coordinate-wise ascent approach with an

upper bound on the second derivative of the likelihood function

[44]. By using bounded univariate updates, the algorithm is

extremely fast and is guaranteed to converge to a mode of the

likelihood surface. While Newton-Raphson algorithms must

evaluate the log-likelihood after each update to check if it has

decreased [74], the use of an MM algorithm for logistic regression

guarantees a monotonic increase and eliminates the expensive

function evaluation. Derivations are given in Text S2. In addition

to the algorithm, we also implement a number of optimized coding

practices to accelerates these PMR methods. These include data

structures to minimize access time to each marker, use of

optimized linear algebra libraries and searching multiple modes

of the likelihood surface for non-convex penalties in parallel.

Adaptive tuning of penalties and model selection
Critical to the performance of our framework is preserving a

conservative control of the FDR for identified markers. To

accomplish this, we employ a strategy that allows our PMR

methods to automatically adapt, not only to the sample size of the

dataset, but also to the number and magnitude of the non-zero

regression coefficients for relevant markers associated with the

phenotype. Our approach includes an adaptive tuning of penalty

strength in combination with model selection and assessment of

model fit.

Statistical theory considering linear regression has shown that for a

sample size of n, the number of variables detectable as having

nonzero coefficients is on the order of
ffiffiffi
n
p

[75]. This is consistent

with other theoretical work [76,77] and satisfies our intuition that the

number of detectable associations is directly related to the sample

size of the dataset. For adaptive tuning of the Lasso and Adaptive

Lasso, where the likelihood is convex and there is a single tuning

parameter, the search is simple and we start with a severe penalty,

which is gradually decreased to select one additional non-zero

coefficient at a time, until 1:5
ffiffiffi
n
p

genetic markers are selected. For

the non-convex penalties [22,32,70], a grid search over a two-

dimensional space of tuning parameters is used starting from equally

spaced Lasso models (a special case of all non-convex penalties)

where the non-convexity of the penalty is gradually increased until

1:5
ffiffiffi
n
p

markers are selected. This approach for searching the space

has been shown to avoid some suboptimal modes of the likelihood

surface [70]. We note that we have previously published the

approximate Bayesian methods, VBAY and VBAYNET, which

incorporate a probabilistic bound, where we applied the same 1:5
ffiffiffi
n
p

bound [33,78]. In order to mitigate the problem of suboptimal

modes at least to some degree, we explore multiple modes of the

likelihood surface for non-convex penalties by permuting the order

in which the regression coefficients are updated. For both the

simulations and WTCCC analyses of this study, we found 100

reorderings was sufficient to obtain robust results.

Once sets of markers with nonzero coefficients are identified for

each value of the tuning parameters for a given penalty, the

optimal set is determined. We assessed the overall appropriateness

of the fit of a selected model based on a QQ plot by fitting an

unpenalized model with selected markers, and calculating p-values

for each marker in the dataset by regressing it against the residuals

from the first step (Figure S12) [79].

A slight inflation of { log10 p-values at the tail of the QQ plot

indicates that the PMR method has not over fit the data. We tried

many model selection strategies to determine which consistently

produced optimal residual-QQ plots, including Bayesian informa-

tion criterion [80], cross-validation [40], asymptotic justifications

[22] and permutation-based approaches [32]. We eventually

selected AIC [81] with an additional restriction as our default

because it tended to produce the best overall performance for

simulated GWAS data, when assessed by both QQ plot and when

applying a strong control of the FDR. While AIC [81] and BIC

[80] have been studied extensively in the context of sparse model

selection theory, these criteria do not incorporate an upper bound

on the number of variables it is feasible to select for a given sample

size. Therefore, while good performance may be guaranteed for

an infinite sample size, these criteria can select too many variables

than is plausible for a finite sample size [82] such that our upper

bound on the number of markers selected 1:5
ffiffiffi
n
p

seems

reasonable, where we compare all models satisfying this bound

using AIC. We also note that while AIC is not asymptotically

model selection consistent [83], our use of AIC should not suffer

from the inclusion of irrelevant genetic markers since we apply it in

the context of models constrained to have fewer than 1:5
ffiffiffi
n
p

genetic markers and we apply a significance test (described in the

next section) before considering a marker to have an association.

Post hoc assessment of p-value ranks
The most valuable final output of a PMR GWAS analysis is a

ranked list of markers in decreasing order of highest confidence.

Standard methods for producing such ranked lists in a PMR

framework assess significance by conducting variable selection on

a subset of the data and assessing significance on another subset

[84], or subsetting the data many times and identifying variables

selected in many of the subsets [85]. Such methods can be very

computationally demanding for large GWAS datasets and have

been shown to underperform a standard single marker test of

association [86]. Moreover, these methods do not address the

challenging problem of assessing the significance of a marker in the

presence of correlated markers within the same linkage disequi-

librium (LD) block. While PMR methods tend to select a single

non-zero regression coefficient for an associated LD block, cases

often arise where multiple markers in a LD block have non-zero

coefficients. In such cases, the correlation between the markers in

the block dramatically increases the sample variance of the

coefficients so that the markers are not assigned significant p-

values even if each would be significant if the other were dropped

from the model.

We deal with the problem of producing an informative ranked

list of selected markers in our framework by initially fitting an

unpenalized regression model with all markers selected by a given

PMR and including relevant covariates, and calculating p-values

for each marker using a standard likelihood ratio test by

comparing the full model to null models where each marker is

omitted in turn. The correlation between all pairs of selected

markers is then evaluated, the pair of markers with the largest

correlation is identified, the marker with the smallest absolute

regression coefficient of the two is dropped, and p-values are then

recalculated for the remaining markers. This process is repeated

until no pairwise correlation between remaining markers exceeds

0.1 and each marker is finally assigned the smallest p-value

produced for it during this processes. This heuristic procedure

means that the values cannot be interpreted strictly as asymptotic

p-values [31], but they can be considered as scores indicative of the

significance of the association that ranks the values in terms of

confidence while ensuring at least one marker in the LD block is
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assigned a p-value rank that can appropriately reflect a true

association.

PUMA software
PUMA implements both linear and logistic models for PMR

methods, as well as single marker analysis, a conditional regression

analysis, and the variational Bayes multiple regression method

VBAY [33]. The software reads genotype files in TPED format

and phenotypes in TFAM as used by Plink [87]. For all multiple

marker methods, we employ a heuristic to remove markers with

low marginal correlations with the phenotype as they are

extremely unlikely to be selected to have nonzero regression

coefficients [31,46]. This is approach is not novel [31,46], but

accelerates computation and allows flexibility when analyzing

extremely large GWAS datasets. The set of markers identified at

each mode of the likelihood surface is stored and is saved in a text

file readable by R. The software is available at http://mezeylab.

cb.bscb.cornell.edu/Software.aspx.

For the single marker analysis, p-values are calculated using a

standard F-test or likelihood ratio test [88] for linear and logistic

models, respectively. The conditional regression performs the

standard single marker test of association and includes the

significant markers as covariates in a second set of single marker

tests. The minimum of the two p-values from the first and second

stage analysis is then reported for each marker. In this analysis we

used a first stage p-value cutoff of 1|10{6 and selected the single

most strongly associated marker within 100 Kb to include as

covariates in the second stage. We also re-implemented the

approximate Bayesian method VBAY, previously developed by

our group [33]. While Bayesian regularized regression methods

using a number of prior distributions as been applied to association

mapping using Markov chain Monte Carlo (MCMC) methods,

these cannot simultaneously analyze more than a few hundred to a

few thousand genetic markers at a time [34,35]. VBAY [33] uses a

variational Bayes approximation to the posterior surface [89] and

applies a hierarchical mixture prior on the regression coefficients

so that the large majority of coefficients have a high posterior

probability of being exactly zero (see Logsdon et al. [33] for a

more detailed discussion of this method). Within PUMA, we re-

implemented VBAY and added the capability to analyze case-

control phenotypes, where we increased the power to detect weak

associations for case-control phenotypes by approximating a

logistic regression by modeling the error distribution with a

Student t-distribution with 7.3 degrees of freedom. This param-

eterization has the smallest squared error loss of any t-distribution

with respect to the logistic error function [90,91]. Moreover, we

address the multimodality of the posterior surface by exploring

many posterior modes and applying Bayesian model averaging

[92] in order to weight the contribution of each mode to the

posterior probability of association for each marker. The VBAY

algorithm was run with 1000 restarts to explore the non-convex

posterior surface. Due to its Bayesian formulation, VBAY reports

the posterior probability, between 0 and 1, that each marker is

associated with the phenotype.

PUMA software recommended usage
The default settings of PUMA are our recommended settings

for a GWAS analysis, which are the same procedures we followed

for our analysis of the WTCCC data here:

1. Marker imputation: Beagle [93] was used to impute missing

genotypes, but other methods can be used. Alternatively,

PUMA fills in missing data with the mean of each marker.

2. Inclusion of fixed covariates: Identify relevant covariates and

principal components and perform single marker analysis so

that the corresponding QQ plot and lGC [94] are acceptable.

Results from the single marker analysis must be acceptable

before applying PMR methods.

3. Marker filtering: We applied a pre-screening filter based on p-

values from single marker analysis using a cutoff of 0:01.

4. Number of restarts: The penalized likelihood for the 1D-MCP,

2D-MCP, NEG and LOG penalties is non-convex so 100

reorderings were used to explore the multimodal surface for

each setting of the tuning parameters.

5. Performance assessment: We recommend assessing the fit of a

PMR model by including the selected markers as covariates in

a subsequent single marker analysis. Too much inflation or

deflation of the p-values indicates that the PMR method may

be overfitting the data.

6. Threshold determination: We have demonstrated that the

reported p-value score statistics are valuable at prioritizing the

top hits as well as novel weak associations, so assessing the list

in rank order is the suggested strategy for minimizing false

positives. For example, in our current analyses we examined at

most the top 30 hits for each method combined across the three

diseases, which limited our focus to markers with a p-value

score of v1|10{7 for 2D-MCP, v1|10{6 for all other

PMR methods, and for comparison, a posterior probability of

w0:97 for VBAY.

GWAS simulation study
Our approach was to simulate different sized GWAS experi-

ments where we used the real genetic markers for unrelated

European individuals from the Multi-Ethnic Study of Atheroscle-

rosis (MESA) [95] genotyped on the Affymetrix 6 platform. Larger

sample sizes were generated by drawing haplotypes from existing

individuals in order to avoid the confounding effect of population

structure [96]. For each simulated GWAS dataset, we considered

different sample sizes (n~1000,2000,5000) with equal numbers of

case and control phenotypes simulated under an additive threshold

model with a disease prevalence of 50%, using the GCTA

program [97], and that different numbers of susceptibility loci

(q~10,20,30,50) contributed to phenotype heritability, where the

total contribution of these loci to heritability was varied

(h2~30,40,50,60%). Coefficients were drawn from a C(1,1),
independent of allele frequency, so that most effect-sizes were very

small as determined by the marginal heritability calculated by

GCTA [97]. We considered 20 replicates per simulation condition

to give 960 simulated GWAS datasets. Causal variants affecting

the phenotype were selected uniformly from the set of genetic

markers with minor allele frequency (MAF) w5%. We followed

typical array-based GWAS by omitting the causal variants from

the analysis so a susceptibility locus must be identified by markers

in linkage disequilibrium with the causal variant.

Following the performance evaluation of previous studies

[22,32], a marker was considered a true positive hit if it had

r2
§0:05 with a causal marker, otherwise it was considered a

false positive hit. Since a causal variant may be tagged by

multiple true positive markers, the true positive count is defined

as the total number of causal variants tagged when all true

positive hits are considered together. Alternatively, since false

positive hits will often fall in clusters in the same linkage

disequilibrium block, we assign each to a 100 kb cluster centered

at the most significant hit in that cluster. The false positive count

is then defined as the number of such false positive clusters. We
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note this is a strategy for assessing the performance properties

that will be of greatest interest to GWAS practitioners since it

focuses on correct identification of tag markers that are in high

linkage disequilibrium (LD) and in close physical proximity to

the location of the true causal alleles, while considering a strict

control of the FDR.

Analysis of WTCCC data
To run the data analysis we used the same quality control

filters as in the Wellcome Trust Case Control Consortium, first

by excluding 809 individuals because of poor sample quality,

non-Caucasian ancestry, or a high degree of relatedness [2]. An

additional individual was removed for being an outlier by

principal components analysis [96]. Marker locations and genetic

map are based on reference assembly GRCh37/hg19 and dbSNP

v131. Next, the same study-wide missing data rate and deviation

from Hardy-Weinberg equilibrium cutoffs were used for each set

of cases as in the original study [2], with an additional filter to

only include markers in the analysis with a minor allele frequency

greater than 0.05 in each combined case-control population,

leaving approximately 360,000 markers for each combined case-

control data set. We used the CHIAMO calling scores to set data

to missing, where any call with a score of less than 0.90 was set to

missing [2]. To impute this sporadic missing data we used Beagle

[93], with the default settings and allocating a maximum of

3000 MB of memory, where the sporadic missing data for each

cohort was imputed separately. The same set of controls (1958

Birth Cohort (58C) and UK Blood Service sample (NBS)) were

used for each set of cases as in the original study [2]. Finally, the

PMR and single marker analyses included sex as a covariate

along with the first two principal components of the genotype

matrix.

In order to explore the biological function, relevant pathways

and possible disease implications of each gene near a significantly

associated marker, we mined public databases including GenBank

[98], Pfam [99], KEGG [100], OMIM [101], GeneCards [102] as

well as the HuGE database [53] of known GWAS hits and known

gene-phenotype links. We also conducted an extensive literature

search with each gene name and relevant phenotypes.

Supporting Information

Figure S1 Assessing p-value cutoff in two-step forward

regression. Plots show { log10 p-values from a single marker

analysis (x-axis) compared to the change in { log10 p-values from

a conditional regression analysis where markers passing the

Bonferroni cutoff are included as covariates (y-axis). Markers

passing the Bonferroni cutoff in the first step (red points) are

necessary omitted from being tested in the second step, and are

considered to have no change in p-value. Markers with a large

enough increase in { log10 p-value in the second step to cross the

second Bonferroni cutoff (blue dashed line) are indicated by green

points. The p-value cutoff of 0:01 (i.e. a { log10 p-value of 2) is

indicated by the grey dashed line. Results are shown for 10

replicate simulations each of (a) 1000, (b) 2000, and (c) 5000

samples with 500 K markers, heritability of 30, 40, 50 or 60%

and 30, 40, 50, 70 or 100 simulated markers with true nonzero

coefficients. This corresponds to 200 simulations and 1 |108 p-

values for each sample size. The results indicate that in a forward

regression, which approximates penalized multiple regression

[49,50], markers with small { log10 p-values in the first step have

a very low probability of being significant in the second step.

Therefore, using a p-value cutoff of 0.01 from a marginal

regression retains almost all relevant variables under biologically

motivated simulation conditions.

(PDF)

Figure S2 Effect of pre-screening on performance. (a) 100

replicate simulations with 500 K markers, 50 causal markers,

heritability of 50% and 1000 or 2000 individuals using Lasso and

MCP methods show that using a pre-screening p-value cutoff of 1,

0.10 and 0.01 has no noticeable effect of performance of PUMA.

Note that the performance was so similar for all cutoffs that the

curves are overlapping. (b) Running times for simulations in (a)

show that pre-screening substantually reduces computational time.

We note that simulations with 5000 individuals were not possible

due to the very high memory requirements of running PUMA

without prescreening.

(PDF)

Figure S3 Power vs sample size. Simulation results showing

power for our PMR methods, current PMR methods, an

approximate Bayesian method, single marker analysis and

conditional regression methods at an FDR of 5% as a function

of sample size as in Figure 3c in the main text. Results are shown

for a range of total heritabilities and number of susceptibility loci.

(PDF)

Figure S4 Power vs number of causal markers. Simulation

results showing power for our PMR methods, current PMR

methods, an approximate Bayesian method, single marker analysis

and conditional regression methods at an FDR of 5% as a function

of the number of susceptibility loci. Results are shown for a range

of sample sizes and total heritabilities.

(PDF)

Figure S5 Power vs marginal heritability for 1000 samples.

Simulation results showing power a sample size of 1000 for our

PMR methods, current PMR methods, an approximate Bayesian

method, single marker analysis and conditional regression

methods at an FDR of 5% as a function of the marginal

heritability of each causal marker as in Figure 3a in the main text.

Results are shown for a range of total heritabilities and number of

causal markers.

(PDF)

Figure S6 Power vs marginal heritability for 2000 samples.

Simulation results showing power a sample size of 2000 for our

PMR methods, current PMR methods, an approximate Bayesian

method, single marker analysis and conditional regression

methods at an FDR of 5% as a function of the marginal

heritability of each causal marker as in Figure 3c in the main text.

Results are shown for a range of total heritabilities and number of

causal markers.

(PDF)

Figure S7 Power vs marginal heritability for 5000 samples.

Simulation results showing power a sample size of 5000 for our

PMR methods, current PMR methods, an approximate Bayesian

method, single marker analysis and conditional regression methods

at an FDR of 5% as a function of the marginal heritability of each

causal marker as in Figure 3c in the main text. Results are shown for

a range of total heritabilities and number of causal markers.

(PDF)

Figure S8 Precision-Recall curves for 1000 samples. Simulation

results showing precision-recall curves for a sample size of 1000.

Results are shown for a range of total heritabilities and number of

causal markers. Solid colors for pML methods indicate results

using our method for assessing significance in the presence of

correlated markers, while dashes indicate the significance method
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of Wu, et al. [31] and perm-MCP [32]. This figures is analogous to

Figure 3b in the main text.

(PDF)

Figure S9 Precision-Recall curves for 2000 samples. Simulation

results showing precision-recall curves for a sample size of 2000.

Results are shown for a range of total heritabilities and number of

causal markers. Solid colors for pML methods indicate results

using our method for assessing significance in the presence of

correlated markers, while dashes indicate the significance method

of Wu, et al. [31] and perm-MCP [32]. This figures is analogous to

Figure 3b in the main text.

(PDF)

Figure S10 Precision-Recall curves for 5000 samples. Simula-

tion results showing precision-recall curves for a sample size of

5000. Results are shown for a range of total heritabilities and

number of causal markers. Solid colors for pML methods indicate

results using our method for assessing significance in the presence

of correlated markers, while dashes indicate the significance

method of Wu, et al. [31] and perm-MCP [32]. This figures is

analogous to Figure 3b in the main text.

(PDF)

Figure S11 Precision-Recall curves for perm-MCP for multiple

values of eFPR and pre-screening p-value cutoff. Simulations for

5000 samples, 20 causal markers and heritability of 50% using

eFPR values (1|10{3, 1|10{4, 1|10{5, 1|10{6, 1|10{7)

and pre-screening cutoff values (0.1, 0.01, 0.001) indicated in the

legend. Results from single marker analysis and MCP-2D are

shown for comparison.

(PDF)

Figure S12 Quantile-Quantile plots for each disease and method.

Plots are shown for a) Crohn’s disease, b) Rheumatoid arthritis and

c) Type 1 diabetes. Results from a standard single marker analysis of

each disease are shown in grey and are the same in all plots for a

given disease. Results from including the subset of significantly

associated markers identified by each pML method as covariates in

a single marker analysis of remaining markers is shown in black,

where the relevant method is indicated above each plot. Results

from replacing the p-values from this latter analysis with p-values

from the PMR method for the relevant markers with nonzero

coefficients are shown in color. The genomic inflation values for are

shown in the upper left of each plot. Note that the NEG method

failed for the type 1 diabetes dataset, so no plot is shown.

(PDF)

Figure S13 Manhattan plots of single marker analysis for three

disease datasets. Manhattan plots showing results of single marker

analysis for a) Crohn’s disease, b) Rheumatoid arthritis, and c)

Type 1 diabetes datasets from our re-analysis. Shown are { log10

p-values where large values are truncated at 20. Markers with

{ log10 p-values w6 are colored green.

(PDF)

Figure S14 Genome-wide plots of hits found by each method.

Genome-wide plot of associations identified by analyzing the

WTCCC data for a) Crohn’s disease, b) rheumatoid arthritis and c)

type 1 diabetes using PMR methods, conditional regression, and

single marker analysis. External associations from independent

datasets (which do not include WTCCC data) and non-independent

datasets (which include WTCCC data) of the same disease are

indicated with pink boxes and diamonds, respectively. Markers that

are considered associations only when the p-value threshold for the

single marker analysis is relaxed to match the same number of

associations (with hits in the MHC region excluded) as the union of

all PMR methods are indicated with black circles. Arrows indicate

novel associations that are biologically interpretable.

(PDF)

Figure S15 Local manhattan plots of hits replicated from an

independent study of Crohn’s disease.

(PDF)

Figure S16 Local manhattan plots of hits replicated from an

independent study of rheumatoid arthritis.

(PDF)

Figure S17 Local manhattan plots of hits replicated from an

independent study of type 1 diabetes.

(PDF)

Figure S18 Local manhattan plots hits replicated from a non-

independent study of Crohn’s disease.

(PDF)

Figure S19 Local manhattan plots of hits replicated from a non-

independent study of type 1 diabetes.

(PDF)

Figure S20 Local manhattan plots of biologically relevant hits

for Crohn’s disease.

(PDF)

Figure S21 Local manhattan plots of biologically relevant hits

for rheumatoid arthritis.

(PDF)

Figure S22 Local manhattan plots of biologically relevant hits

for type 1 diabetes.

(PDF)

Table S1 Concordance of PMR hits with single marker analysis.

Number of regions identified by a single marker analysis with a p-

valuev1|10{6 and the number of these regions that are

recapitulated by each other method.

(PDF)

Table S2 Regions identified only by single marker analysis.

Regions identified by single marker analysis with a p-

valuev1|10{6. Of the regions missed by PMR methods, only

one association passes the Bonferroni cutoff of

0:05=360,000 = 1.38|10{7, although 5 of these have been

replicated: rs6596075 [4,116,117], rs17388568 [6], rs10807124

[6,61,118], rs4766517 [6,61,118], rs12924729 [6,61,118,119].

(PDF)

Table S3 Associations recapitulated in independent studies.

Regions which are significant either by single marker analysis,

conditional regression, or a PMR method and which recapitulate a

known association to the same disease in an independent study

that does not include data from the WTCCC. The table includes

all regions with a VBAY posterior probabilityw0.97, an MCP p-

valuev1|10{7, or a p-value for any other method v1|10{6.

(PDF)

Table S4 Associations recapitulated in non-independent studies.

Regions which are significant either by single marker analysis,

conditional regression, or a PMR method and which recapitulate a

known association to the same disease in a non-independent study

that includes data from the WTCCC. The table includes all

regions with a VBAY posterior probability w0.97, an MCP p-

valuev1|10{7, or a p-value for any other method v1|10{6.

(PDF)
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Table S5 Replication counts for equal numbers of hits. For each

method, the number of associations in this re-analysis that

replicate associations identified in a) independent (not including

WTCC data) and b) non-independent (including WTCC data)

datasets, where the number of markers considered as ‘hits’ is set to

be equal across methods. For each method the number of hits is set

to a given value and the number of replications is reported.

Numbers in parentheses indicate the number of hits that are

distinct from those found by the single marker analysis.

(PDF)

Table S6 Additional associations for Crohn’s disease. Additional

associations for Crohn’s disease identified by PMR methods but

not a single marker analysis.

(PDF)

Table S7 Additional associations for rheumatoid arthritis.

Additional associations for rheumatoid arthritis identified by

PMR methods but not a single marker analysis.

(PDF)

Table S8 Additional associations for type 1 diabetes. Additional

associations for type 1 diabetes identified by PMR methods but not

a single marker analysis.

(PDF)

Text S1 Parameters for running HyperLasso.

(PDF)

Text S2 Efficient coordinate-wise gradient descent algorithms

for high-dimensional penalized generalized linear models with

convex or nonconvex penalties.

(PDF)

Acknowledgments

We thank Martin T. Wells for discussions about the LOG penalty.

Author Contributions

Conceived and designed the experiments: GEH BAL JGM. Performed the

experiments: GEH BAL. Analyzed the data: GEH BAL. Wrote the paper:

GEH JGM.

References

1. Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, et al. (2009)
Potential etiologic and functional implications of genome-wide association loci

for human diseases and traits. Proceedings of the National Academy of Sciences
of the United States of America 106: 9362–7.

2. Wellcome Trust Case Control Consortium (2007) Genome-wide association
study of 14,000 cases of seven common diseases and 3,000 shared controls.

Nature 447: 661–78.

3. Voight BF, Scott LJ, Steinthorsdottir V, Morris ADP, Dina C, et al. (2010)

Twelve type 2 diabetes susceptibility loci identified through large-scale
association analysis. Nature Genetics 42: 579–589.

4. Franke A, McGovern DPB, Barrett JC, Wang K, Radford-Smith GL, et al.
(2010) Genome-wide meta-analysis increases to 71 the number of confirmed

Crohn’s disease susceptibility loci. Nature Genetics 42: 1118–25.

5. Stahl EA, Raychaudhuri S, Remmers EF, Xie G, Eyre S, et al. (2010) Genome-

wide association study meta-analysis identifies seven new rheumatoid arthritis

risk loci. Nature Genetics 42: 508–14.

6. Barrett JC, Clayton DG, Concannon P, Akolkar B, Cooper JD, et al. (2009)
Genome-wide association study and meta-analysis find that over 40 loci affect

risk of type 1 diabetes. Nature Genetics 41: 703–707.

7. Ehret GB, Munroe PB, Rice KM, Bochud M, Johnson AD, et al. (2011)

Genetic variants in novel pathways inuence blood pressure and cardiovascular

disease risk. Nature 478: 103–9.

8. Furberg H, Kim Y, Dackor J, Boerwinkle E, Franceschini N, et al. (2010)

Genome-wide metaanalyses identify multiple loci associated with smoking
behavior. Nature Genetics 42: 441–447.

9. Anderson CA, Boucher G, Lees CW, Franke A, D’Amato M, et al. (2011)
Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the

number of confirmed associations to 47. Nature Genetics 43: 246–52.

10. Lango Allen H, Estrada K, Lettre G, Berndt SI, Weedon MN, et al. (2010)

Hundreds of variants clustered in genomic loci and biological pathways affect
human height. Nature 467: 832–838.

11. Ising M, Lucae S, Binder EB, Bettecken T, Uhr M, et al. (2009) A genomewide
association study points to multiple loci that predict antidepressant drug

treatment outcome in depression. Archives of General Psychiatry 66: 966–75.

12. Zhou K, Bellenguez C, Spencer CCa, Bennett AJ, Coleman RL, et al. (2011)

Common variants near ATM are associated with glycemic response to
metformin in type 2 diabetes. Nature Genetics 43: 117–20.

13. Wang K, Li M, Hakonarson H (2010) Analysing biological pathways in
genome-wide association studies. Nature Reviews Genetics 11: 843–854.

14. Anderson CA, Pettersson FH, Barrett JC, Zhuang JJ, Ragoussis J, et al. (2008)
Evaluating the effects of imputation on the power, coverage, and cost efficiency of

genome-wide SNP platforms. American Journal of Human Genetics 83: 112–9.

15. Spencer CA (2009) Designing genome-wide association studies: Sample size,

power imputation, and the choice of genotyping chip. PLoS Genet 5(5):
e1000477. doi:10.1371/journal.pgen.1000477.

16. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, et al. (2009)
Finding the missing heritability of complex diseases. Nature 461: 747–53.

17. Maher B (2008) Personal genomes: The case of the missing heritability. Nature
456: 18–21.

18. Yang J, Manolio Ta, Pasquale LR, Boerwinkle E, Caporaso N, et al. (2011)
Genome partitioning of genetic variation for complex traits using common

SNPs. Nature Genetics 43: 519–25.

19. Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, et al. (2010)

Common SNPs explain a large proportion of the heritability for human height.

Nature Genetics 42: 565–9.

20. Park JH, Wacholder S, Gail MH, Peters U, Jacobs KB, et al. (2010) Estimation

of effect size distribution from genome-wide association studies and

implications for future discoveries. Nature Genetics 42: 570–5.

21. McKinney Ba, Crowe JE, Guo J, Tian D (2009) Capturing the spectrum of

interaction effects in genetic association studies by simulated evaporative
cooling network analysis. PLoS Genetics 5: e1000432.

22. Hoggart CJ, Whittaker JC, De Iorio M, Balding DJ (2008) Simultaneous

analysis of all SNPs in genome-wide and re-sequencing association studies.

PLoS Genetics 4: e1000130.

23. Kooperberg C, Ruczinski I (2005) Identifying interacting SNPs using Monte
Carlo logic regression. Genetic Epidemiology 28: 157–170.

24. Ritchie MD, Hahn LW, Moore JH (2003) Power of multifactor dimensionality
reduction for detecting gene-gene interactions in the presence of genotyping

error, missing data, phenocopy, and genetic heterogeneity. Genetic Epidemi-
ology 24: 150–7.

25. Wang K, Li M, Bucan M (2007) Pathway-based approaches for analysis of
genomewide association studies. American Journal of Human Genetics 81:

1278–1283.

26. Moore JH, Asselbergs FW, Williams SM (2010) Bioinformatics challenges for

genome-wide association studies. Bioinformatics 26: 445–55.

27. Cantor RM, Lange K, Sinsheimer JS (2010) Prioritizing GWAS results: A

review of statistical methods and recommendations for their application.
American Journal of Human Genetics 86: 6–22.

28. Stranger BE, Stahl Ea, Raj T (2011) Progress and promise of genome-wide
association studies for human complex trait genetics. Genetics 187: 367–83.

29. Visscher P, Brown M, McCarthy M, Yang J (2012) Five Years of GWAS

Discovery. American Journal of Human Genetics 90: 7–24.

30. Zhou H, Sehl ME, Sinsheimer JS, Lange K (2010) Association Screening of

Common and Rare Genetic Variants by Penalized Regression. Bioinformatics
26: 2375–2382.

31. Wu TT, Chen YF, Hastie T, Sobel E, Lange K (2009) Genome-wide
association analysis by lasso penalized logistic regression. Bioinformatics 25:

714–21.

32. Ayers KL, Cordell HJ (2010) SNP Selection in genome-wide and candidate gene

studies via penalized logistic regression. Genetic Epidemiology 34: 879–91.

33. Logsdon BA, Hoffman GE, Mezey JG (2010) A variational Bayes algorithm for

fast and accurate multiple locus genome-wide association analysis. BMC
Bioinformatics 11: 58.

34. Guan Y, Stephens M (2011) Bayesian variable selection regression for genome-
wide association studies and other large-scale problems. The Annals of Applied

Statistics 5: 1780–1815.

35. Li J, Das K, Fu G, Li R, Wu R (2010) The Bayesian Lasso for Genome-wide

Association Studies. Bioinformatics 27: 516–523.

36. He Q, Lin DY (2011) A variable selection method for genome-wide association
studies. Bioinformatics (Oxford, England) 27: 1–8.

37. Yang C, Wan X, Yang Q, Xue H, Yu W (2010) Identifying main effects and
epistatic interactions from large-scale SNP data via adaptive group Lasso. BMC

Bioinformatics 11 Suppl 1: S18.

38. Eleftherohorinou H, Hoggart CJ, Wright VJ, Levin M, Coin LJM (2011)

Pathway-driven gene stability selection of two rheumatoid arthritis GWAS
identifies and validates new susceptibility genes in receptor mediated signalling

pathways. Human Molecular Genetics 20: 3494–3506.

39. Vignal CM, Bansal AT, Balding DJ (2011) Using Penalised Logistic Regression

to Fine Map HLA Variants for Rheumatoid Arthritis. Annals of Human
Genetics 75: 655–64.

Penalized Multiple Regression Analysis for GWAS

PLOS Computational Biology | www.ploscompbiol.org 17 June 2013 | Volume 9 | Issue 6 | e1003101



40. Hastie T, Tibshirani R, Friedman J (2009) The Elements of Statistical
Learning. Springer Series in Statistics. 2nd edition. Springer: New York. 768 p.

41. Carbonetto P, Stephens M (2011) Scalable variational inference for Bayesian

variable selection in regression, and its accuracy in genetic association studies.

Bayesian Analysis 6: 1–42.

42. Buhlmann P, van der Geer S (2011) Statistics for High-Dimensional Data:

Methods, Theory and Applications Springer-Verlag: New York. 573 p.

43. Fan J, Song R (2010) Sure independence screening in generalized linear models
with NPdimensionality. The Annals of Statistics 38: 3567–3604.

44. Hunter DR, Lange K, Unter DRH, Ange KL (2004) A Tutorial on MM
Algorithms. The American Statistician 58: 30–37.

45. McCullagh P, Nelder JA (1989) Generalized Linear Models. 2 edition.
Chapman & Hall/CRC: New York. 511 p.

46. Fan J, Lv J (2008) Sure independence screening for ultrahigh dimensional

feature space. Journal of the Royal Statistical Society: Series B (Statistical

Methodology) 70: 849–911.

47. Tibshirani R, Bien J, Friedman J, Hastie T, Simon N, et al. (2012) Strong rules
for discarding predictors in lasso-type problems. Journal of the Royal Statistical

Society: Series B (Statistical Methodology) 74: 245–266.

48. Ghaoui LE, Viallon V, Rabbani T (2011) Safe Feature Elimination for the

LASSO and Sparse Supervised Learning Problems. arXiv:10094219 .

49. Hastie T, Taylor J, Tibshirani R, Walther G (2007) Forward stagewise

regression and the monotone lasso. Electronic Journal of Statistics 1: 1–29.

50. Efron B, Hastie T (2004) Least angle regression. The Annals of statistics 32:

407–499.

51. Zhang CH (2010) Nearly unbiased variable selection under minimax concave

penalty. The Annals of Statistics 38: 894–942.

52. Cho S, Kim H, Oh S, Kim K, Park T (2009) Elastic-net regularization
approaches for genome-wide association studies of rheumatoid arthritis. BMC

Proceedings 3: S25.

53. Yu W, Gwinn M, Clyne M, Yesupriya A, Khoury MJ (2008) A navigator for

human genome epidemiology. Nature Genetics 40: 124–5.

54. Chanock SJ, Manolio T, Boehnke M, Boerwinkle E, Hunter DJ, et al. (2007)

Replicating genotypephenotype associations. Nature 447: 655–660.

55. Ellinghaus D, Ellinghaus E, Nair RP, Stuart PE, Esko To, et al. (2012)

Combined Analysis of Genome-wide Association Studies for Crohn Disease
and Psoriasis Identifies Seven Shared Susceptibility Loci. American Journal of

Human Genetics 90: 636–647.

56. Cénit MC, Alcina A, Márquez A, Mendoza JL, Dı́az-Rubio M, et al. (2010)

STAT3 locus in inammatory bowel disease and multiple sclerosis susceptibility.
Genes and Immunity 11: 264–8.

57. Lichten La, Cousins RJ (2009) Mammalian zinc transporters: nutritional and

physiologic regulation. Annual Review of Nutrition 29: 153–76.

58. Kelleher S, McCormick N, Velasquez V, Lopez V (2011) Zinc in Specialized

Secretory Tissues: Roles in the Pancreas, Prostate, and Mammary Gland.

Advances in Nutrition: An International Review Journal 2: 101.

59. Orozco G, McAllister K, Eyre S (2011) Genetics of rheumatoid arthritis:
GWAS and beyond. Open Access Rheumatology: Research and Reviews 3:

31–46.

60. Hirschhorn JN, Gajdos ZKZ (2011) Genome-wide association studies: results

from the first few years and potential implications for clinical medicine. Annual
Review of Medicine 62: 11–24.

61. Hakonarson H, Grant SFa, Bradfield JP, Marchand L, Kim CE, et al. (2007) A
genome-wide association study identifies KIAA0350 as a type 1 diabetes gene.

Nature 448: 591–4.
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