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A B S T R A C T   

Key aroma components of 33 fragrant peanut oils with different aroma types were screened by combined using 
flavoromics and machine learning. A total of 108 volatile compounds were identified and 100 kinds of them were 
accurately quantified, and 38 compounds out of them were with odorant activity value ≥1. The 33 peanut oils 
presented varied intensity of ‘fresh peanuts’, ‘roasted nut’, ‘burnt’, ‘over-burnt’, ‘sweet’, ‘peanut butter-like’, 
‘puffed food’ and ‘exotic flavor’, and could be classified into four aroma types, namely raw, light, thick and salty. 
Partial least squares regression analysis, random forest and classification regression tree revealed that 2-acetyl 
pyrazine had a negative effect on ‘fresh peanuts’ and could distinguish raw flavor samples well; 2-methylbutanal 
and 4-vinylguaiacol were key compounds of ‘roasted nut’ and had significant differences (P < 0.0001) in thick 
and raw flavor samples; furfural contributed to the ‘puffed food’ as well as key compound of salty flavor.   

Introduction 

Peanut (Arachis hypogaea L.) is an important oilseed for edible pur-
poses with high oil content up to 50%. From 2020 to 2021, the annual 
production of peanut oil was 6.49 million tons, ranking sixth in the 
worldwide edible oil consumption. China and India are the two largest 
consumers of peanut oil, accounting for 71.66 % of the total global 
production (United States Department of Agriculture, 2021). Peanut oil 
contains >80% unsaturated fatty acids (linoleic acid and oleic acid), 
which have a positive effect on reducing cardiovascular risk. It is also 
rich in other bioactive compounds, such as sterol, phospholipid, vitamin 
E, choline and so on (Zhang et al., 2022). 

In China, peanut oil, especially for fragrant peanut oil, is very pop-
ular as cooking oil due to its unique flavor. Flavor is an important aspect 
of sensory quality of vegetable oils, which largely determines consumer 
preference and purchase intention. Various peanut oil products are 
available in the market, which can be simply divided into cold-pressed 
oil and fragrant oil. Cold-pressed peanut oil is generally processed 

under the environment of lower than 60 ◦C, exhibiting a light flavor. In 
contrast, fragrant peanut oil has a unique strong flavor processed by 
high-temperature roasting and pressing. During roasting, abundant 
volatile components could be generated by complex chemical reaction, 
such as Maillard reactions, Strecker degradation and lipid oxidation. 
Their formation and abundance are strongly dependent on roasting 
conditions. Due to the differences in the raw materials and roasting in-
tensity, peanut oil products show different sensory characteristics and 
can be further divided into different flavor types. However, rare study 
investigated the sensory characteristics of different type peanut oil. The 
key aroma compounds of peanut oil significantly affect the sensory 
property of peanut oil, but they are uncertain from the different flavor 
types aspects. Flavoromics is an approach to correlate the sensory 
properties of food to their aroma compounds, which can provide more 
comprehensive information on the flavor profile of food (Wang et al., 
2022). The key is to combine the human perception and evaluation of 
flavor with instrument analysis and mathematical model analysis, so as 
to analyze the aromatic regularity of food more deeply. At present, more 
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researchers have used this method for flavor research to determine key 
flavor compounds, characteristic flavor compounds and aroma bound-
ary compounds of citrus fruits (Feng et al., 2021), barley malt (Gu et al., 
2022), Baijiu (Wang et al., 2022), wine (Pérez-Jiménez et al., 2021) and 
mango (Aung et al., 2021), etc. With the help of flavoromics, we could 
unravel the relationship between aroma compounds of peanut oils and 
their sensory properties, which can further provide scientific reference 
for the regulation of oil processing and the production of specific 
fragrant oil. 

At present, some studies have identified the aroma components of 
peanut oil using headspace solid phase microextraction-gas chroma-
tography-mass spectrometry (HS-SPME-GC–MS) with/without elec-
tronic nose. Dun et al. (2019) have identified 101 volatile compounds in 
hot-pressed peanut oil and 64 volatiles in cold-pressed peanut oil 
through semi-qualitative analysis by HS-SPME and GC–MS-O. Liu et al. 
(2011) have characterized 94 volatile compounds by HS-SPME/GC–MS 
and found 12 pyrazines were considered to be the key contributors to the 
intense nutty/roasty flavor of aroma roasted peanut oil. Until now, 
major quantitative results for the volatiles of peanut oil are based on 
semi-qualitative analysis by the internal standard method. In contrast, 
external standard method could provide accurate quantitative analysis 
of volatile components, but it is rarely used in peanut oils. 

The multivariate chemometric methods are important tools to reveal 
the relationship between sensory properties and volatiles. Partial least 
squares regression (PLSR) is a mathematical model that can analyze and 
explain the nonlinear relationship of multivariable, which has inte-
grated the advantages of typical correlation analysis, multiple linear 
regression analysis and principal component analysis (Fan et al., 2006). 
It is widely used to establish the relationship between sensory properties 
and volatile compounds in the food field, such as cherry wine (Niu et al., 
2011), rose essential oil (Xiao et al., 2017), lavender essential oil (Xiao 
et al., 2017), burnt scallion oil (Zhang, Wang, et al., 2022). Random 
forest is a simple and efficient machine learning program to determine 
outcome predictions using binary segmentation of predicted variables, 
which can handle data sets with large numbers of predictive variables 
and provide the highest prediction accuracy compared with other 
models (Fernández-Delgado et al., 2014). The classification and 
regression tree (CART) is another common machine learning algorithm 
based on tree structure, which is suitable for discrete data. When used 
for classification, CART has the advantages of low computational 
complexity, easy operation, simple interpretation and implementation. 
Random forest and CART have been widely used in various fields due to 
their great flexibility, but little research was related to sensory science. 
Vigneau et al. (2018) used random forest and CART to predict the 
important compounds associated with typical sensory attributes in red 
wine made from Cabernet Franc grape variety. Their results screened 
out the most important compounds and highlighted few useful com-
pounds closely related to two main olfactory attributes. At the same 
time, they found that random forest model had better prediction ability 
than PLSR model. These multivariate data analysis methods could relate 
and predict the sensory characteristics to their volatile compounds, but 
they are rarely used in the analysis of peanut oil. 

Therefore, this study first identified the aroma compound composi-
tion of 33 representative peanut oils by absolute quantification. Then we 
evaluated the sensory characteristics of peanut oils and classified these 
oils into different aroma types according to their sensory properties. On 
this basis, PLSR, random forest and CART were employed to explore the 
relationship between volatile compounds and sensory properties, and 
differentiate key compounds of peanut oils with different aroma types. 
Our results can provide a theoretical basis for the classification of peanut 
oil based on sensory perspective, and developed a new pathway to 
screen out the key aroma compounds for the regulation of peanut oil 
processing. 

Material and methods 

Oil samples 

Thirty-three different brands of peanut oils (numbers were R1-R4, 
L1-L4, S1-S3, T1-T22) were obtained commercially from the Chinese 
market. R samples were cold-pressed peanut oil, and the rest samples 
were processed by roasting and pressing, which were in accordance with 
national standards and relevant enterprise standards. All samples were 
stored in a fridge at − 20 ◦C until further analysis. They were sealed and 
thawed at room temperature for 1 h before the experiment. 

Chemicals 

All standard chemicals (GC grade, purity ≥ 95 %) were purchased, 
and their details are shown in Table S1. The n-alkanes solution (C6-C24) 
was obtained from Supelco, Bellefonte, PA, USA. 

Analysis of volatile compounds by solid-phase microextraction-gas 
chromatography-mass spectrometry (SPME-GC–MS) 

The extraction of volatile compounds from each sample followed 
previously published method (Qian et al., 2019) with some modifica-
tions. The oil (5 g) was mixed with 10 µL of the internal standard 4- 
methyl-2-pentanol (1.0018 g/L) in a 20 mL vial capped with a PTFE- 
silicon septum. An automatic HS-SPME was used to extract volatile 
compounds on a CTC CombiPAL autosampler (CTC Analytics, Zwingen, 
Switzerland). Samples were equilibrated at 40 ◦C for 30 min with a 
stirring rate of 500 rpm and then extracted at the same temperature for 
another 30 min by DVB/CAR/PDMS fiber (2 cm, 50/30 µm, Supelco, 
Bellefonte, PA, USA). After extraction, the SPME fiber were inserted into 
injector port and desorbed at 250 ◦C for 8 min, and each sample was 
tested in triplicate. 

An Agilent 6890 gas chromatography equipped with an Agilent 5975 
mass spectrometry (Agilent Technologies, Santa Clara, CA, USA) was 
used to analyze the volatile compounds based on previous method (Qian 
et al., 2019) with minor modifications. An HP-INNOWAX capillary 
column (60 m × 0.25 mm, 0.25 µm thickness, J&W Scientific, Folsom, 
CA, USA) was used to separate the volatile compounds and the flow rate 
of the carrier gas (helium) was 1.5 mL/min. The heating procedure was 
as follows: the oven temperature kept at 50 ◦C for 1 min, then heated to 
220 ◦C under a 3 ◦C/min speed, and finally kept at 220 ◦C for 5 min. The 
temperature of transfer line heater, ion source and quadrupole in the 
mass spectrometer were set as 250 ◦C, 250 ◦C and 150 ◦C, respectively. 
The ionization voltage was set at 70 eV and a full mass scan of 30–350 
m/z was applied. A series of C6-C24 n-alkane standards were analyzed to 
calculate retention indices (RI). The volatile compounds from various 
samples were identified by comparing their mass spectrum, RI with the 
NIST11 MS database and standard reference compounds. The quantifi-
cation of compounds was based on the calibrated standard curve ac-
cording to the previous method (Liu et al., 2022). Compounds without 
standards were relatively quantified using the standard curve of struc-
tural analogues. Peak area ratio was used for auxiliary quantification. 
The standard curve covered 75 standards and was diluted to 15 gradi-
ents, with 4-methyl-2-pentanol as the internal standard. The final con-
centrations (µg/g) were calculated according to the resulting standard 
curve formulas. 

Sensory evaluation 

Sensory evaluation of 33 peanut oils was performed using quanti-
tative descriptive analysis (QDA) by a trained and experienced panel (10 
females, 40–50 years old) from COFCO Nutrition and Health Research 
Institute, Beijing (China). Before the experiment, panelist participated 
six rounds of sensory training in a standard sensory laboratory with a 
temperature of 25 ◦C and a humidity of 45% and passed the olfactory 
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sensitivity test. The first two rounds mainly focused on discussing and 
merging descriptive words. Peanut oil samples were provided to the 
evaluator, and they were required to use the tasting cup with 15 mL of 
peanut oil for pre nasal sniffing and record the felt descriptive words. 
Sensory analysts collected, deleted duplicates, merged similar words, 
and then discussed with evaluators to select representative sensory de-
scriptors and improve definitions and corresponding reference samples. 
The second round of training was based on the preparation and evalu-
ation of the reference samples. Evaluators were required to sniff and 
determine whether the reference samples were suitable and represen-
tative based on different peanut oil samples, and ultimately determine 
the complete reference sample table. The last two experiments used 
neutral solution butanol as the intensity training matrix using a 2–10 
gradient butanol solution (corresponding to 2–10 odor intensity). The 
evaluators first sniffed and remembered the corresponding sensory in-
tensity in descending order of intensity; Secondly, butanol solutions 
with strengths of 3, 5, 7, and 9 were provided and evaluators were 
required to sort them and provide the correct order after sorting. Eval-
uators were also required to memorize, repeat intensity scoring exer-
cises, and train their ability to recognize intensity. After training, the 
panelists were asked to assess the odorant characteristics of 33 peanut 
oil samples. Oils (10 mL) were presented in 25 mL brown glass bottles to 
subject according to a William Latin-square arrangement. Sensory at-
tributes were obtained after discussing, screening and merging de-
scriptors, and their intensities were scored on a 10 cm linear scale. The 
sensory attributes with a citation percentage (percentage of non-null 
scores, the overall assessors, samples and repetitions) higher than 15% 
were retained, leading to a list of eight orthonasal sensory attributes 
including ‘fresh peanuts’, ‘roasted nut’, ‘burnt’, ‘over-burnt’, ‘sweet’, 
‘peanut butter-like’, ‘puffed food’ and ‘exotic flavor’. The specific defi-
nitions and references to these sensory properties are shown in Table S2. 
The sensory evaluation experiment of 33 peanut oil was conducted for 7 
rounds, with 4–5 groups of samples in each round for 2–3 h. The 
experiment was repeated 3 times. 

Random forest (RF) and classification and regression tree (CART) 

Multivariate Random Forest models were developed using the 
package “Random Forest SRC version 2.12.1” to apply multivariate 
classification on the dataset of this study. Multivariate trees were con-
structed for multivariate outcomes. Optimal mtry and nodesize were 
tuned using out-of-bag error and then were adopted in following 
modelling. Tree size was set as 1000. Variable importance (VIMP) 
confidence internals were calculated by subsampling with subratio of 
0.2. Variable importances were scaled to 100 and indicated with red 
color if the value was significantly higher than 0, suggesting positive 
importance for the classification. Parametric normal confidence regions 
and Delete-d jackknife variance estimator were used. Level of signifi-
cance was set at 0.05. Package “mvpart version 1.6–3” was leveraged for 
generating recursive partitioning trees on multivariates. The size of the 
trees was 2000. Five multiple cross-validations were applied. Eleven 
groups of cross validation were built. Trees were selected by cross- 
validation and best tree was given within one standard error (SE) of 
the overall best. Root node error was calculated. 

Odor activity value (OAV) 

The OAV of a volatile compound was calculated through dividing its 
concentration by its odor threshold in oil. The odor thresholds of acetoin 
and acetol were determined in refined unscented oil using three- 
alternative forced-choice (3-AFC) procedure (diluted to ten concentra-
tions for the test) according to ISO 13301:2018. Preliminary experiment 
was conducted using three olfactory sensitive evaluators to determine 
the approximate threshold range. The concentration that can be clearly 
felt by all three evaluators was set as the 7-8th concentration gradient, 
and was diluted layer by layer to prepared 10 concentration gradient 

samples. Each concentration gradient had two corresponding blank oil 
matrices as controls, and all samples were randomly coded with three 
digits. Ten trained evaluators sniffed the sample pairs according to the 
given coding order. Three samples were grouped into 10 gradients and 
sniffed sequentially from low to high. The target solution was required 
to be selected, and characteristic samples were provided to the evalua-
tors. After sniffing one sample, 5 min break could be taken and the 
evaluator’s sniffing accuracy were recorded. After the evaluation was 
completed, the results of the sensory evaluation group under each 
gradient were counted to calculate the experimental detection proba-
bility (p) that can correctly select the target compound under that 
gradient. Then, the probability parameter (chance factor) was used to 
calculate the corrected detection probability (P), as follows:  

P = 3 × p-12                                                                                        

In the formula, p represented the actual detection probability in the 
experiment, P represented the detection probability corrected by chance 
probability, and the chance probability in the 3-AFC test is 1/3. The 
corresponding relationship between sample concentration and detection 
probability can be fitted using the sigmoid curve, and the fitting formula 
is as follows: 

P =
1

1 + e(− (x− x0)/b)

In the formula, x represented the logarithmic value of the sample 
concentration, x0 represented the logarithmic value of the threshold 
concentration (when P = 0.5, x0 = x), and b represents the slope rate. 
When the detection probability reaches 50%, the minimum concentra-
tion of the corresponding sample is defined as the threshold concen-
tration of the substance, that is, when the vertical axis P = 0.5, the 
corresponding value of horizontal axis is the logarithmic value of the 
threshold concentration of the target compound. SigmaPlot14.0 soft-
ware was used to plot the obtained data and calculate the pre nasal 
threshold of the compound in the oil solution. Thresholds for other 
substances were obtained from literature and are detailed in Table 1. 

Statistical analysis 

The heat map and box graphs were processed by Hiplot.com.cn. The 
standardization method for heat maps was set as row normalization, 
ward. D2 minimum variance clustering. PLSR and principal components 
analysis (PCA) was conducted by XLSTAT. The compounds with Vari-
able Importance in the Projection (VIP) > 1 were screened, and the 
model was considered reliable until Q2 > 0.4 and R2Y > 0.6. One-way 
ANOVA was performed by IBM SPSS Statistics 26. 

Results and discussion 

Sensory evaluation 

Quantitative descriptive sensory analysis (QDA) was applied to 
evaluate sensory properties of 33 peanut oil samples. Eight sensory at-
tributes were selected for descriptive analysis, which were ‘fresh pea-
nuts’, ‘roasted nut’, ‘burnt’, ‘over-burnt’, ‘sweet’, ‘peanut butter-like’, 
‘puffed food’ and ‘exotic flavor’. The intensity values of 8 sensory at-
tributes in all samples have been summarized in Fig. 1a and Fig. S1. 
Overall, most of the samples showed ‘roasted nut’, ‘burnt’, ‘over- burnt’ 
flavor, and the ‘fresh peanuts’ was strong in fractional samples. ‘Peanut 
butter-like’, ‘puffed food’ and ‘exotic flavor’ were only felt in individual 
samples. Among these attributes, the intensity values of ‘roasted nut’ 
were higher than other properties, with an average value of 5.7 and a 
maximum value of 8.5 corresponding to T6. The results of ‘over-burnt’ 
and ‘burnt’ were similar, ranging from 0 to 6. The intensities of ‘fresh 
peanuts’ were low, and only R1, R2, R3 and R4 exhibited obvious ‘fresh 
peanuts’ with the values of 5.0, 6.2, 5.7 and 6.5, respectively; In 
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contrast, the intensities of other samples ranged from 0 to 2.5. T2 and 
T13 had higher intensities of ‘sweet’, with respective intensities of 7.5 
and 7, while the intensities of ‘sweet’ in R2, R3 and R4 were 0. The 
sensory intensities of ‘peanut butter-like’, ‘puffed food’ and ‘exotic 

flavor’ were relatively low. There were only 3 ‘peanut butter-like’ flavor 
samples (T3, T4, T7) and 4 ‘puffed food’ samples (S1, S2, S3 and L2). At 
the same time, we conducted a correlation analysis on these eight at-
tributes, as shown in the Fig. 1b. Darker color represented a higher 

Table 1 
Volatile compounds with OAV ≥ 1 in 33 peanut oil.  

No. category odorants CAS RI odor description odor threshold 
(ug/kg) 

references OAV 
（mean) 

P value P value 
summary 

1 aldehyde 2-Methylbutanal 96–17-3 919 malty 2.2 h 203.45 0.0016 ** 
2 phenol 4-Vinylguaiacol 7786–61-0 2180 smoky, clove-like 20 l 124.28 0.0033 ** 
3 alcohol Nonanol 143–08-8 1661 fresh clean fatty floral rose 

orange dusty wet oily 
2 c 71.27 0.0116 * 

4 aldehyde 3-Methylbutanal 590–86-3 936 malty 5.4 g 42.83 0.0033 ** 
5 aldehyde Hexanal 66–25-1 1081 green, grassy 73 l 36.60 <0.0001 **** 
6 pyrazine 2-Ethyl-3,5- 

dimethylpyrazine 
13925–07- 
0 

1451 earthy 1.7 e 29.19 0.0024 ** 

7 acid Acetic acid 64–19-7 1424 vinegar-like 124 a 24.02 0.0027 ** 
8 aldehyde (E)-2-Octenal 2548–87-0 1440 fatty, nutty；nutty, roasty 4 j 23.65 0.2443 ns 
9 aldehyde 2-Methylpropanal 78–84-2 800 malty 15 g 22.37 0.0035 ** 
10 acid Butanoic acid 107–92-6 1620 sweaty, cheese-like 7.9 e 17.61 0.1202 ns 
11 acid Hexanoic acid 142–62-1 1855 sweaty, pungent 460 f 13.50 0.3717 ns 
12 aldehyde Benzeneacetaldehyde 122–78-1 1662 Honey-like 22 g 11.83 0.0307 * 
13 pyrazine 2,6-Dimethylpyrazine 108–50-9 1333 roasty；cocoa, roast beef 20 k 10.28 <0.0001 **** 
14 pyrazine 2,3-Dimethylpyrazine 5910–89-4 1341 nutty nut skin cocoa peanut 

butter coffee walnut 
8 k 6.84 <0.0001 **** 

15 pyrazine 2,5-Dimethylpyrazine 123–32-0 1328 peanut 2000 l 3.77 0.0005 *** 
16 pyrazine Methylpyrazine 109–08-0 1281 roasted 200 l 2.94 <0.0001 **** 
17 pyrazine 2-Acetylpyrazine 22047–25- 

2 
1617 popcorn-like 10 k 2.76 <0.0001 **** 

18 aldehyde (E)-2-Heptenal 18829–55- 
5 

1330 green, fatty 13 j 2.55 <0.0001 **** 

19 pyrazine 2,3,5-Trimethylpyrazine 14667–55- 
1 

1409 roasted, potato, must 22 l 2.31 0.0001 *** 

20 pyrazine 3-Ethyl-2,5- 
dimethylpyrazine 

13360–65- 
1 

1439 earthy；roasted, nut 76 e 1.87 0.0026 ** 

21 aldehyde (E,E)-2,4-Nonadienal 5910–87-2 1690 fatty 1.5 g 1.69 0.2853 ns 
22 furan 2-Pentylfuran 3777–69-3 1228 fruity green earthy beany 

vegetable metallic 
130 k 1.67 0.3044 ns 

23 pyrazine 2-Ethyl-5- 
methylpyrazine 

13360–64- 
0 

1395 nutty；potato, roasted 320 j 1.65 0.0032 ** 

24 alcohol 2-Furanmethanol 98–00-0 1670 burnt 680 l 1.62 <0.0001 **** 
25 aldehyde Pentanal 110–62-3 978 fermented bready fruity 

nutty berry 
240 i 1.61 0.0431 * 

26 furan 2-Methylfuran 534–22-5 874 ethereal acetone chocolate 27 b 1.52 <0.0001 **** 
27 phenol p-Cresol 106–44-5 2079 horse stable-like 2.3 g 1.45 0.1961 ns 
28 pyrazine 2-Methyl-6- 

vinylpyrazine 
13925–09- 
2 

1486 hazelnut 26 d 0.98 0.0003 *** 

29 alcohol Hexanol 111–27-3 1340 grassy 400 i 0.87 <0.0001 **** 
30 pyrazine Ethylpyrazine 13925–00- 

3 
1341 roasty, buttery 200 k 0.80 <0.0001 **** 

31 aldehyde 2-Pyrrolaldehyde 1003–29-8 2000 musty beefy coffee 104  0.79 <0.0001 **** 
32 aldehyde (E,E)-2,4-Decadienal 25152–84- 

5 
1790 Deep-fried,fatty 66 f 0.46 0.0149 * 

33 ketone Acetoin 513–86-0 1295 sweet buttery creamy dairy 
milky fatty 

146 m 0.41 0.0002 *** 

34 aldehyde Furfural 98–01-1 1455 bread, almond, sweet 700 l 0.39 <0.0001 **** 
35 lactone γ-Butyrolactone 96–48-0 1631 caramel, sweet 60 l 0.37 0.0007 *** 
36 alcohol Acetol 116–09-6 1300 pungent sweet caramellic 

ethereal 
425 m 0.36 <0.0001 **** 

37 alcohol 1-Pentanol 71–41-0 1244 fusel oil sweet balsam 470 c 0.34 <0.0001 **** 
38 aldehyde 5-Methylfurfural 620–02-0 1558 almond, caramel 260 l 0.17 <0.0001 **** 

a. (Dierkes et al., 2011). 
b. (Gemert, 2011). 
c. (Jia et al., 2019). 
d. (Jia et al., 2020). 
e. (Matheis & Granvogl, 2016). 
f. (Neugebauer et al., 2020). 
g. (Poehlmann & Schieberle, 2013). 
h. (Pollner & Schieberle, 2016). 
i. (Reboredo-Rodríguez et al., 2013). 
j. (Tian et al., 2021). 
k. (Yin et al., 2022). 
l. (Zhou et al., 2019). 
m. Measure according to national standard 《GBT22366-2008》. 
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correlation between two attributes, that is, the closest correlation co-
efficient was 1. The positive correlation between ‘burnt’ and ‘roasted 
nut’ was high, followed by ‘burnt’ and ‘over-burnt’, ‘roasted nut’ and 
‘over-burnt’, ‘puffed food’ and ‘exotic flavor’, ‘roasted nut’ and ‘sweet’, 
‘burnt’ and ‘sweet’. In addition, some attributes existed significantly 
negative correlation, such as ‘fresh peanuts’ and ‘roasted nut’, ‘burnt’, 
‘over-burnt’. This provided a good reference for the follow-up machine 
learning. 

The principal component analysis (PCA) was performed to demon-
strate the relationship between peanut oils and their sensory attributes 
(as shown in Fig. 1c), and the two principal components F1 and F2 
explained 74.94 % of the variance. The samples R1-4 were located in the 
third quadrant and closely related to the ‘fresh peanuts’ attribute. S1 and 
S3 samples with ‘puffed food’ were clearly separated from other sam-
ples. S2 was classified as S sample because its process was similar to S1 
and S3, and its ‘puffed food’ flavor was second after S1 and S3, which 
was placed in the first quadrant together with S1 and S3. l and T samples 
could be distinguished on F2. The characteristics of ‘roasted nut’, ‘burnt’ 
and ‘over-burnt’ in T samples were stronger than those in L samples. 

In the Fig. 1d, ‘roasted nut’, ‘over-burnt’ and ‘burnt’ attributes were 
obviously similar and located closely, and ‘peanut butter-like’ and 
‘sweet’ aroma were closed to each other. Most samples were associated 
with these five attributes. The four L samples in the second quadrant had 
low levels of ‘roasted nut’, ‘burnt’, ‘over-burnt’ and ‘exotic flavor’, so 
they were distributed near the middle. According to the results of PCA, 
we divided all 33 peanut oil samples into four types, namely, raw (R1- 
R4), light (L1-L4), salty (S1-S3) and thick (T1-T22) flavor. The differ-
ences in the aroma of peanut oils were closely related to their processing 
methods. Previous studies have reported that the peanut oil extracted 
from roasted peanuts had a ‘baking smell’ similar to ‘roasted nut’, while 
the cold pressed peanut oil was often ‘green’ and ‘fatty’ (Dun et al., 
2019). 

Characterization of volatile compounds in peanut oils 

A total of 108 compounds were identified in the 33 samples by 
GC–MS, including 21 aldehydes, 16 pyrazines, 13 alcohols, 11 acids, 6 
phenols, 7 esters, 7 alkanes, 5 lactones, 4 terpenes, 4 pyrroles, 4 ketones, 

Fig. 1. Sensory evaluation and principal component analysis of 33 peanut oil samples. (a) QDA score of sensory attributes; (b) Sensory attribute correlation matrix; 
(c) Sample distribution scatter plot; (d) Loading plot of sensory attributes. 
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4 furans, 3 compounds containing benzene ring, 1 thiazole, 1 amide, and 
1 pyridine (Table S3). Most of the 33 peanut oil samples contained all 
the 108 compounds, except for T1 and T10 (detected 107 compounds), 
T8 (106 compounds), R3 (95 compounds), R4 (94 compounds) and R2 
(92 compounds). In peanut oils, the compound with higher concentra-
tion was hexanoic acid (3.92–13.41 µg/g), followed by acetic acid 
(1.68–2.22 µg/g), 2-ethylhexanoic acid (2.86–2.97 µg/g), hexanal 
(0.71–8.25 µg/g) and 4-vinylguaiacol (0.86–7.14 µg/g). The compound 
with lower concentration was 2-ethyl-6-methylpyrazine, followed by 2- 

acetylfuran, ethyl acetate, 6-methyl-5-heptene-2-one and benzothiazole. 
Based on the distribution of volatile compounds, a cluster heat map was 
used to reveal the differences among various peanut oil samples (Fig. 2). 

According to the clustering heat map, S- and R- samples were obvi-
ously clustered into two categories. The contents of 2-methylfuran 
(0.064–0.080 µg/g), 2-acetyl pyrazine (0.037–0.046 µg/g), 2-furanme-
thanol (3.55–4.56 µg/g), 5-methyl-2-furanmethanol (0.08–0.13 µg/g), 
and pyrrole (0.029–0.350 µg/g) were higher in S-samples. 5-Methylfur-
fural (0.28 µg/g) and 2-pyrrolaldehyde (0.36 µg/g) were especially 

Fig. 2. Heat map of volatile compounds distributed in the 33 peanut oil samples.  
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higher in S1. 2-Methylfuran, 2-acetyl pyrazine, 5-methylfurfural and 2- 
pyrrolaldehyde reached their thresholds in oil, which had ‘chocolate’, 
‘popcorn’, ‘caramel’, ‘burnt’ and ‘nutty’ flavors, respectively. Other 
compounds with higher contents belonged to pyrazines. Studies have 
found that N-heterocyclic compounds accounted for the highest pro-
portion (61.68 %) in roasted peanut oils and pyrazines were the most 
abundant volatile compounds. Pyrazines were formed by the Maillard 
reaction between sugars and amino acids during seed roasting, usually 
accompanied by the generation of other N-heterocyclic compounds such 
as pyrrole and pyridine. Most of them exhibited ‘baked’, ‘nutty’, ‘butter’, 
‘baked potato’ aroma attributes, and played a dominant role in the fla-
vor of roasted seed oil because of their low thresholds and high dilution 
factors (Liu et al., 2011). In addition, roasting produced other volatile 
compounds, including furans, furanones, pyranones and cycloketones, 
and they together contributed to the ‘nutty’, ‘roasted’, and ‘over-burnt’ 
flavors, which were typical sensory characteristics of vegetable oils 
extracted from roasted seeds (Zhang et al., 2019). 

R samples had distinct aroma of ‘fresh peanuts’ and slight aroma of 
‘roasted nut’. The compounds with higher contents in R samples were (E, 
E)-2,4-nonadienal (0.086 µg/g, R2) (‘fatty’), hexanol (2.32 µg/g, R3) 
(‘grassy’), hexanal (8.25 µg/g, R2) (‘green’), (E) − 2-hexenal (0.049 µg/ 
g, R3) (‘almon-like’), (E)-2-heptenal (0.094 µg/g, R3) (‘green’). Butyl 2- 
propenoate (0.088 µg/g) and butylacetate (0.0027 µg/g) (‘fruity’) were 
higher in R1 and R2, while nonanol (0.30 µg/g) was higher in R3. Pre-
vious studies found that aldehydes mostly with ‘green’, ‘fatty’ and 
‘earthy’ flavor were the main aroma odorants in cold pressed peanut oil, 
followed by alcohols and terpenes (Dun et al., 2019). Aldehydes and 
alcohols were formed by lipid oxidation and played an important role in 
the overall aroma of cold pressed peanut oil (Yin et al., 2022). Lipid 
oxidation mainly involved two pathways. One was lipoxygenase 
pathway that occurred during the division of oilseed cells, and the other 
was auto-oxidation during processing and storage. Hexanal and nonanal 
were the oxidation products of linoleic acid and oleic acid, respectively 
(Dun et al., 2019). Some alcohols were also formed by the reduction of 
their corresponding aldehydes, such as 1-hexanol, 1-octanol, 1-nonanol, 
1-decanol, etc. (Wang et al., 2020). 4-Vinylguaiacol was a key phenolic 
compound in roasted peanut oil, which had a ‘smoky’ flavor and 
commonly produced by the thermal degradation of 4-hydroxycinnamic 
acid and ferric acid (Tańska et al., 2018), but this phenolic substance has 
not been detected in cold pressed peanut oil (Yin et al., 2022). However, 
in our study, 4-vinylguaiacol was detected in all four R samples, and the 
contents of R1-R4 were 1.28 µg/g, 0.86 µg/g, 0.96 µg/g and 0.91 µg/g, 
respectively. 

T samples mainly presented the flavor of ‘roasted nut’, ‘burnt’ and 
‘over-burnt’, and some samples also had obvious ‘sweet’ aroma, such as 
T2, T3 and T9 or ‘peanut butter’ such as T13 and T7. Samples with 
‘roasted nut’ flavor tended to contain higher concentrations of pyr-
azines, as well as individual aldehydes such as 2-methylbutanal (1.18 
µg/g, T3), 3-methylbutanal (0.50 µg/g, T2), and 2-methylpropanal 
(0.81 µg/g, T2), exhibiting ‘malty’ aroma. Some acids were also detec-
ted in T samples. Most acids were ‘sweet’ and ‘cheese’ flavor, and a few 
had ‘vinegar’ flavor, such as acetic acid. The contents of some acids in T 
samples were higher, for example nonanoic acid (0.10 µg/g, T7) 
(‘moldy’), isobutyric acid (0.075 µg/g, T3) (‘cheese-like’). However, 
their threshold values were relatively high, so their contributions to the 
overall flavor of peanut oil were not outstanding. In addition, there were 
esters, lactones, alkanes in peanut oils, but these odorants were not 
generally considered to have an important contribution to the flavor of 
oil due to their high odor thresholds. Among terpenes, D-limonene was 
widely concerned as a monoterpene and existed in many plants, which 
had ‘citrus’ and ‘mint’ flavor (Zhou et al., 2019). It generally dis-
appeared in the later stage of peanut roasting, which may be related to 
its low volatility (Liu et al., 2011). In this study, D-limonene was detected 
in all samples ranging from 0.046 µg/g to 0.079 µg/g. Dimethyl sulf-
oxide and dimethyl trisulfide have been identified in peanut oil, which 
were less identified in previous studies (Yin et al., 2022). These sulfides 

were produced by sulfur-containing amino acids such as methionine, 
cysteine and cystine in peanuts through Maillard reaction or Strecker 
degradation (Jia et al., 2019). As for L samples, only the contents of acid 
compounds in L1 and L4 samples were high. 

Comparison of odorant activity value (OAV) in various peanut oil samples 

The concentrations of volatiles were not enough to reflect their 
importance to the flavor of peanut oil, and the contributions of key 
aroma compounds were also closely related to their aroma thresholds. 
The lower the threshold, the easier it could be perceived. OAV was the 
ratio of the concentration of compound to its threshold value in the same 
matrix. Generally, odorants with OAV greater than or equal to 1 were 
regarded as aroma-activate compounds, which had greater contribution 
to the flavor (Xu et al., 2022). 

The OAVs of odorants in 33 peanut oil samples have been shown in 
the Fig. S2. The 38 compounds with OAV ≥ 1 were ranked according to 
the mean values of OAV in 33 samples, and their retention index, aroma 
description, detectable threshold and significance between different 
samples are listed in Table 1. Among these compounds, 10 pyrazines and 
10 aldehydes accounted for the highest proportion. Pyrazines such as 
2,3-dimethylpyrazine, 2-ethyl-3,5-dimethylpyrazine, 2-ethyl-5-methyl-
pyrazine, 2,5-dimethylpyrazine, methylpyrazine, 2,6-dimethylpyrazine, 
3-ethyl-2,5-dimethylpyrazine and 2-methylbutanal had high OAV 
values, which had ‘roasted nut’ and ‘roasted potato’ flavor and provided 
‘roasted nut’ aroma to roasted peanut oil (Yin et al., 2022). Through one- 
way analysis of variance, 2,3-dimethylpyrazine, methylpyrazine, 2,6- 
dimethylpyrazine, 2-acetyl pyrazine and methylpyrazine had high sig-
nificance in different flavor samples and were important odorants in 
peanut oil. 

Aldehydes were another aroma-active volatile compounds in peanut 
oils and were important to the overall aroma profile of peanut oil. 2- and 
3-Methylbutanal with average OAVs of 203 and 43 contributed to the 
aroma of ‘roasted nut’. Benzeneacetaldehyde, hexanal and pentanal 
contributed to ‘sweet’, ‘green’ and ‘fruit’ aroma, and 2-pyrolaldehyde, 
furfural and 5-methylfural exhibited ‘coffee’, ‘bread’ and ‘caramel’ fla-
vor. In addition, the average OAV values of 2-methylbutanal and 4- 
vinylguaiacol were the highest, which were 203 and 124, respectively. 
4-Vinylguaiacol generally appeared in roasted peanut oil and was less 
detected in cold pressed peanut oil. At the same time, through the 
comparison between different types of samples, 2-furanmethanol, 
furfural, 2,6-dimethylpyrazine and methylpyrazine had significant dif-
ferences between S and other samples, which proved that these com-
pounds could well distinguish S samples; hexanal and hexanol had 
significant differences between R and other samples. The results of OAV 
played an important role in revealing the aroma-active odorants of 
peanut oil, and it also made a certain comparison and reference for the 
subsequent modeling analysis. 

Partial least squares regression (PLSR) analysis 

PLSR could reveal the relationship between volatile compounds and 
sensory attributes (Zhang, Wang, et al., 2022). The compounds with 
Variable Importance in the Projection (VIP) > 1 were screened, and the 
model was considered reliable until Q2 > 0.4 and R2Y > 0.6 (Liu, Gu, 
Laaksonen et al., 2022). Based on the modeling results, six ideal attri-
butes were selected as the representative flavor of peanut oils including 
‘fresh peanuts’, ‘roasted nut’, ‘over-burnt’, ‘burnt’, ‘puffed food’ and 
‘exotic flavor’. Twenty-nine compounds were strongly related to these 
sensory attributes, and 18 of them had a OAV great than 1. The modeling 
of ‘peanut butter-like’ and ‘sweet’ were not ideal due to the data 
structure of the sample so it was not discussed here (Table S4 for specific 
model parameters). Through PLSR analysis, the correlation coefficients 
between volatile compounds and each sensory attribute are summarized 
in the Table 2. 

Some of these compounds had one-way positive or negative effects 
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on the sensory attributes, such as (E)-2-heptenal (‘green, fat’), 1-penta-
nol (‘sweet, fat’), which only had a positive effect on the odour of ‘fresh 
peanuts’. 2-Methylpropanal (‘malt’) had a positive effect on the odour of 
‘roasted nut’ and ‘burnt’; 3-methylbutanal (‘malt’) had a positive effect 
on ‘roasted nut’, ‘burnt’ and ‘over-burnt’; nonanol (‘fat, fresh’) had a 
negative effect on ‘roasted nut’, ‘burnt’ and ‘over-burnt’. Zhang et al. 
(2022) analyzed the relationship between compounds and sensory 
properties of fried Allium tenuissimum L. flower oil by PLSR. Their results 
suggested that N-heterocyclic compounds such as methylpyrazine, 2,5- 
dimethylpyrazine, were positively correlated with the sensory proper-
ties of ‘roasty’, and 2-pentylfuran, furfural and 2-furanmethanol had 
significant positive effects on ‘caramel’ properties. Furthermore, some 
compounds had positive correlations to some sensory attributes but 
negative correlations to other attributes, such as 2-acetyl pyrazine with 
‘popcorn’ flavor had positive effects on ‘roasted nut’, ‘burnt’ and ‘over- 
burnt’, but a negative effect on the ‘fresh peanuts’. On the other hand, 
hexanol (‘grassy’) had a positive effect on ‘fresh peanuts’ but a negative 
effect on ‘roasted nut’, ‘burnt’ and ‘over-burnt’, as did hexanal (‘green’, 
‘fresh’, ‘leaf’) and 2-phenylethanol (‘floral’). The PLSR results were well 
consistent with the aroma description of volatiles. 

Among these important variables, it was obvious that most alcohol 
compounds had a positive correlation with ‘fresh peanuts’, and some 
had a negative correlation with ‘roasted nut’ and ‘burnt’ at the same 
time. The odorants positively related to ‘roasted nut’, ‘burnt’ and ‘over- 
burnt’ aroma attributes were often negatively related to ‘fresh peanuts’, 
such as pyrazines and individual aldehydes. In addition, five com-
pounds, 2-pyrrolaldehyde (‘coffee’), 5-methylfural (‘caramel’), pyrazine 
(‘hazelnut’), ethylbenzene and pyrrole (‘nutty’), were also positively 
correlated with two highly correlated attributes (correlation coefficient 
= 0.73) of ‘puffed food’ and ‘exotic flavor’ (Fig. 2b). Such results could 
guide us to study the interaction of interrelated odorants in the further 
and to clarify the effect of these compounds on the overall flavor in oil 
matrix. 

Random forest 

Random forest could establish a prediction model through variable 
selection. On the basis of reducing the burden of data analysis, key 
variables related to sensory attributes or aroma characteristics were 
accurately screened. Through the analysis and comparison of parame-
ters, the R2 of ‘fresh peanuts’, ‘roasted nut’, ‘burnt’ and ‘over-burnt’ 
were all above 0.7, indicating that the prediction results of these sensory 
attributes were better in this model. The random forest screened out 5 
important compounds (red compounds in the Fig. 3) that affect these 
four attributes. 

The important volatile for ‘roasted nut’ was 2-methylbutanal; for 
‘fresh peanuts’ were furfural, 2-furanmethanol, 5-methylfurfural, 2- 
acetyl pyrazine; for ‘burnt’ was 2-methylbutanal, and 2-acetyl pyr-
azine; for ‘over-burnt’ was 2-methylbutanal. The correlation matrix of 
sensory attribute (Fig. 2b) had confirmed that ‘roasted nut’, ‘burnt’ and 
‘over-burnt’ attribute were highly correlated. 2-Methylbutanal (‘cocoa’, 
‘nut’ and ‘wheat’) was served as the important compound for all these 3 
attributes by random forest, which was also an important aromatic 
compound in roasted almonds and made an important contribution to 
roasted almond flavor (Erten & Cadwallader, 2017). It was produced by 
Strecker degradation of isoleucine (Whitfield & Mottram, 1992). The 
selected five important variables could be used as indicators of different 
sensory characteristics, providing basis for processing control of peanut 
oil. In this study, fewer important variables were screened out by 
random forest (5 variables) than PLSR (29 variables), and there were 
four compounds overlapped by the two methods, except 2-methylbuta-
nal. Random forest and PLSR were always better than null model. 
Moreover, random forest retained fewer variables, which provided 
higher prediction accuracy and lowest prediction error (Vigneau et al., 
2018). 

Classification and regression tree (CART) 

Each CART was constructed by means of the recursive binary parti-
tioning of the dataset (Breiman, 2001). It is grown from a root at which 

Table 2 
Correlation between sensory properties and compounds by PLSR.  

Compounds Fresh peanuts Roasted nut Burnt Over-burnt Puffed food Exotic flavor 

2-Methylpropanal  0.058 0.057    
3-Methylbutanal  0.071 0.073 0.107   
Hexanal 0.148 − 0.181 − 0.154    
(E)-2-Heptenal 0.109      
Benzeneacetaldehyde  0.084     
2-Pyrrolaldehyde     0.208 0.22 
1-Pentanol 0.108      
Acetol     − 0.006 − 0.207 
Hexanol 0.137 − 0.142 − 0.128    
2-Furanmethanol     0.055  
Guaiacol     − 0.016  
2-Phenylethanol 0.128 − 0.158 − 0.137    
2-Furanmethanol, 5-methyl- − 0.072  0.055 0.209 0.029  
2(5H)-Furanone     − 0.07 − 0.202 
2-Methylfuran − 0.074      
Furfural     − 0.088  
2-Acetylfuran     − 0.094  
5-Methylfurfural     0.208 0.309 
Pyrazine     0.211 0.175 
Methylpyrazine     0.06  
2,5-Dimethylpyrazine    − 0.037   
2,6-Dimethylpyrazine     0.038  
2-Acetylpyrazine − 0.095 0.094 0.091 0.374   
2-Acetyl-6-methylpyrazine     − 0.04  
Propanoic acid     0.011 − 0.132 
Methyl acetate     − 0.023  
Ethylbenzene     0.381 0.308 
Pyrrole     0.154 0.379 
Acetamide     − 0.031  

The bold indicate that OAV > 1 in at least one sample. 
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all the observations are merged, and then is split into two subsets 
through successive nodes. The terminal nodes are usually called leaves 
and may contain a single observation if the tree is completely built. As 
shown in the Fig. 4, there are 9 nodes in the regression tree and 6 
compounds retained for prediction, including 4-vinylguaiacol (‘smoky’), 
hexanol (‘grass’), 2-acetyl pyrazine (‘popcorn’), 2-methylbutanal 
(‘nutty’, ‘cocoa’, ‘malt’), benzeneacetaldehyde (‘green’, ‘floral’) and 
furfural (‘toasted’, ‘almond’, ‘sweet’). The number of variables screened 
by CART was significantly lower than that by PLSR, and there were four 
replicates (hexanol, 2-acetyl pyrazine, benzeneacetaldehyde, furfural). 
Three compounds (2-acetyl pyrazine, 2-methylbutanal, furfural) were 
the same with the results of random forest. Two subsets were distin-
guished after nodes according to the concentrations of the compounds, 
and ‘n’ represented the number of samples. In the first step, 4-vinyl-
guaiacol with a concentration of 1.34 µg/g was selected, and the com-
pounds in node one were divided into two subsets. The left subset (No. 
1–2) was further distinguished by hexanol at a concentration of 1.758 
µg/g. Hexanol was described as ‘grassy’, and the samples in this subset 
were screened for R1, R2, R3, R4 and L1. Meanwhile, the bar chart also 
showed that the first subset had a distinct odour of ‘fresh peanuts’. The 
rightmost subset (No. 11) was separated by 2-acetyl pyrazine at a con-
centration of 0.03583 µg/g. It showed only three samples S1, S2 and S3, 

which exhibited higher ‘puffed food’ and ‘exotic flavor’ than other 
groups. In the middle of eight group samples (No. 3–10), the No. 3–5 
groups all had clear flavor of ‘roasted nut’, ‘burnt’, ‘over-burnt’ 
compared with the No. 6–10 groups. The ‘sweet’ was relatively weak 
when benzeneacetaldehyde < 0.2161 µg/g and furfural < 0.1839 µg/g. 
However, when the concentration of furfural > 0.1839 µg/g, the ‘sweet’ 
could not be perceived but ‘puffed food’ and ‘exotic flavor’ could be 
perceived. When the concentration of benzeneacetaldehyde > 0.2161 
µg/g, ‘sweet’ was obviously perceived. The No. 6–10 groups had obvious 
flavor of ‘roasted nut’, ‘burnt’ and ‘over-burnt’, but almost no ‘fresh 
peanuts’, ‘puffed food’ and ‘exotic flavor’. 

The concentration distribution of six variables in the four flavor 
types of peanut oils have been shown in the Fig. 4. 2-Acetyl pyrazine 
could distinguish the raw flavor (R samples) well (P < 0.05). This result 
was consistent with the PLSR result, and 2-acetyl pyrazine had a sig-
nificant negative correlation with ‘fresh peanuts’. Similarly, hexanol 
could well distinguish raw flavor from the other three flavor types (P <
0.001), so it might make a significant contribution to the raw flavor type 
samples. The content of furfural in S samples was significantly higher 
than that in the other three flavor types and it was considered as a 
candidate compound of salty flavor type; 4-vinylguaiacol and 2-methyl-
butanal had significant differences in thick (T samples) and raw flavor 

Fig. 3. The key variables related to corresponding sensory properties selected by random forest (red module on the right side of the ordinate). (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version of this article.) 
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(P < 0.0001). 

Conclusion 

In this study, flavoromics was carried out to evaluate the charac-
teristic of 33 fragrant peanut oils in China market from the aroma 
composition and sensory perspective. Among all identified compounds, 
100 were accurately quantified, which mainly included aldehydes, 
pyrazines, alcohols, acids, phenols, esters, terpenes and other hetero-
cyclic compounds. And 38 volatile compounds were detected with OAV 
≥ 1. From the perspective of sensory properties, most commercial 

peanut oils presented ‘fresh peanuts’, ‘roasted nut’, ‘burnt’, ‘over-burnt’ 
and ‘sweet’ flavor, and a few samples had ‘puffed food’ and ‘exotic fla-
vor’. They can be classified into four aroma types, namely raw, light, 
thick and salty. The relationship between the volatiles and sensory 
characteristics has been established using multi-analytical approach. 
Partial least squares regression analysis identified 29 compounds with 
potential contributions to the specific aroma of peanut oil, while random 
forest and regression tree screened out 5 and 6 key aroma compounds. 
The concentration of 2-acetyl pyrazine was lower in the raw aroma type 
oil, while hexanol was higher. 2-Methylbutanal and 4-vinylguaiacol 
contributed significantly to the ‘roasted nut’ of peanut oil, which 

Fig. 4. CATR (a) and the distribution of key variables in four type flavor samples (b). (Numbers next to the compounds in (a) represented the compound con-
centration µg/g; ‘n’ represented the number of samples; (b) performed one way ANOVA, * is P < 0.05, * * is P < 0.01, * * * is P < 0.001, * * * * is P < 0.0001, NS is P 
> 0.05). 
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could be used as the signature compound of thick flavor. Furfural was 
the characteristic compounds in the salty type peanut oil. Compared 
with PLSR, random forest and regression tree could greatly reduce the 
number of variables while finding the key compounds that affect the 
aroma types of peanut oil. Furthermore, CART provided complementary 
information about the effects of volatile concentrations on sensory at-
tributes and flavor type, which was more conducive to the process 
control of specific flavor. In the future research, these important vari-
ables can be applied to study the formation mechanism of characteristic 
aroma and evaluate the quality and grade of peanut oil. The important 
variables selected in this study need to be verified by aroma omission 
and recombination test, so as to provide scientific basis for processing 
specific fragrant oils. 
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