
1Scientific Reports |         (2020) 10:2172  | https://doi.org/10.1038/s41598-020-58926-3

www.nature.com/scientificreports

Verification of Type-A and Type-
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Organic–inorganic halide perovskite nanocrystals or quantum dots (PQDs) are excellent candidates for 
optoelectronic applications, such as lasers, solar cells, light emitting diodes, and single photon sources. 
However, the potential applications of PQDs can expand once the photoluminescence, and in particular, 
the blinking behaviors of single PQDs are understood. Although the blinking of PQDs has been studied 
extensively recently, the underlying mechanism of the blinking behaviors is still under debate. In this 
study, we confirmed that type-A and type-B-HC (hot carrier) blinking, contributed to PQD blinking 
using their fluorescence lifetime intensity distribution (FLID). Type-B-HC blinking was experimentally 
confirmed for the first time for formamidinium based PQDs, and the simultaneous contributions of 
type-A and type-B blinking were clearly specified. Further, we related different FLID data to the ON/
OFF time distribution as distinct features of different blinking types. We also emphasized that detection 
capability was crucial for correctly elucidating the blinking mechanism.

Lead halide perovskites quantum dots (PQDs) have been successfully used as materials for next-generation opto-
electronic devices, such as solar cells, light emitting diodes, lasers, and single photon sources1–7. Their primary 
advantages lie in their large absorption cross-section, high photoluminescence (PL) quantum yield, narrow 
PL spectral width, wide-range emission tunability, feasibility for scale-up synthesis, and cost-effectiveness8–12. 
Despite their advantages, blinking and irreversible photo-degradation of PQDs have been frequently reported 
and could limit their optical performance13,14.

Classifying blinking scenarios into type-A and type-B has been widely accepted. Type-A blinking mechanism 
is attributed to charging and discharging processes. When quantum dots (QDs) are charged owing to carrier 
transfer to trapped states, the non-radiative Auger recombination of the trion state competes with the radiative 
recombination to quench photon emission by transferring its exciton energy to the extra carrier (electron or 
hole), which results in low PL emission (OFF state). The high PL emission (ON state) is recovered by neutralizing 
the QDs15–17. Type-B blinking is attributed to the activation and deactivation of multiple recombination centers 
(MRCs)17–19, which are short-lived traps (e.g., shallow traps) in QDs17–20. The activation and deactivation of MRCs 
modulate the non-radiative recombination rates, and thus, cause PL intensity fluctuations20. These two types of 
blinking mechanisms could be used for conventional semiconductor QDs15–20 and also, possibly, for PQDs13,21–23. 
In addition, several researchers have suggested in their recent publications, that the two types of blinking simul-
taneously contribute to PQD blinking24–27.

Analysis of fluorescence lifetime intensity distribution (FLID) has been regarded as a very effective experi-
mental approach to distinguish between these two types of blinking mechanisms18,19. While the FLID trajectory 
for type-A blinking is typically a curved line18,19, that of type-B blinking can be further divided into two sub 
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categories: band-edge carrier trapping (type-B-BC) which yields a linear relationship between the PL intensity 
and lifetime19, and hot-carrier trapping (type-B-HC) where the lifetime is almost constant irrespective of the large 
changes in PL intensity18.

Several scholars identified type-A blinking for PQDs using the FLID characteristics and assigned the observed 
short lifetimes to the trion13,21,24. However, the lifetimes of the PQD trion states have been reported to be vastly 
different, such as 170 ps21, 410 ps28, 2 ns24,25, and 5.8 ns29. These values could be comparable with the low-emission 
state lifetime in type B-BC blinking23–25. Moreover, the FLID trajectories of type-A blinking of PQDs in previous 
studies were not clearly verified compared to the conventional (cadmium chalcogenides) QD. In addition, owing 
to their similar shapes, the FLID trajectories of type-A and type-B-BC blinking of PQDs have not been clearly 
distinguished from each other. Therefore, it would be meaningful to further check the validity of recently given 
explanations on the FLID studies of PQDs.

In this study, we verified that two types of blinking mechanisms, type-A and type-B-HC, contribute for 
organic–inorganic formamidinium lead halide (FAPbBr3) PQDs26. This was accomplished by measuring the 
FLID and using the ON/OFF time distribution analysis from our previous study26. A clear curved line for type-A 
blinking and no changes in lifetime for type-B-HC blinking were clearly observed. Interestingly, for several single 
PQDs, type-A and type-B-HC blinking appeared simultaneously. We also analyzed the relationship between the 
FLID histogram and ON/OFF time distribution to further support our claims on the involved blinking mecha-
nism. In addition, we found that the high detection efficiency and corresponding analysis (temporal) resolution 
would be crucial for correctly designating the blinking mechanism.

Results and Discussion
Colloidal FAPbBr3 PQDs were synthesized using the ligand assisted reprecipitation method utilizing 
PbBr2-dimethyl sulfoxide (DMSO) complexes as precursors at room temperature30. The average size of the 
FAPbBr3 QDs was 11 ± 3 nm. More details are presented in the Methods section.

The FAPbBr3 PQDs solution in toluene was diluted with 3 wt% poly (methyl methacrylate) (PMMA) solu-
tion before being spin-coated onto a clean cover glass substrate, which allowed to separate individual QDs. The 
FAPbBr3 PQD samples were excited using a pulsed laser at a wavelength of 380 nm (76 ps pulse width and 20 MHz 
repetition rate) utilizing an in-house built confocal microscope system. The emitted photons were collected using 
an objective lens (Plan Apo VC, Nikon, numerical aperture of 1.4) and detected using avalanche photodiodes 
(APDs, SPCM-AQ4C, Perkin Elmer). The data was recorded using the two-channeled time-tagged time-resolved 
(TTTR) mode of the PicoHarp 300 (PicoQuant) photon counter. Spatial filtering was used to select only signal 
from the regions near the QD positions, thus reducing spurious background noise. All measurements were per-
formed at room temperature.

For each PQD, we performed the second order photon correlation function g(2)(τ) measurement to guaran-
tee the single particle in the detection area (as can be seen in Supplementary Information (Fig. S1)). Then, the 
obtained TTTR data were analyzed using a customized algorithm coded using the MATLAB software. For each 
bin time, the average lifetime was calculated by taking a weighted average of the decay time histogram18,19. Here, 
we note that the average lifetime can be inaccurately derived with limited pump-pulse repetition rate of 20 MHz. 
In Supplementary Information (Figs. S2 and S3), through a quantitative analysis, we conclude that this experi-
mental limitation is not a critical problem for deciphering the FLID features for our target QDs.

Figure 1a presents the PL intensity time trace of a selected PQD (PQD1) recorded under pulse laser excita-
tion. The excitation intensity was controlled to yield the average QD exciton number per pulse, <N > ~0.113. The 
corresponding histogram is illustrated in Fig. 1b. A short interval of the PL intensity time trace (black line) from 
Fig. 1a is shown together with the average lifetime (red line) in Fig. 1c. The time bin size was 10 ms. A clear cor-
relation between the PL intensity (ON/OFF) fluctuations and the lifetime can be observed. The FLID histogram 
of PQD1 is displayed in Fig. 1d. The lifetimes of the ON and OFF states were derived by selecting only the ON or 
OFF intensity sections (green and pink areas, respectively, in Fig. 1a,b) and fitting them using single exponential 
decay functions, as illustrated in Fig. 1e. The ON and OFF lifetimes were 19.8 and 1.5 ns, respectively.

The average lifetime was calculated based on the average photon arrival time relative to the laser pulse. During 
the unity bin time, T, a single PQD could remain in state 1 (e.g., ON state, the corresponding intensity and life-
time being I1 and τ1, respectively) or in state 2 (OFF state, the corresponding intensity and lifetime being I2 and 
τ2, respectively). The PQD could also remain in state 1 for the T1 (a fraction of T) and in state 2 for the rest of the 
time (T2 = T − T1). Then, the average intensity and lifetime, I and τ, respectively, for time T could be calculated 
as follows19:
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The PL intensity as a function of average lifetime, obtained by using Eq. (1) with experimentally obtained val-
ues, is plotted as a white solid line in Fig. 1d. Note that no fitting parameters were used. The curvature of the line 
in Fig. 1d is clearly different from the linear lifetime–intensity correlation for type-B-BC blinking, which assures 
that type-A blinking was responsible for the blinking mechanism of PQD1.

Figure 2a,b present the PL intensity time trace and corresponding histogram of a different PQD (PQD2) at 
a similar excitation level, <N> ~0.1. The applied bin time was 10 ms as in Fig. 1. While the intensity trace in 
Fig. 2c clearly displays the ON and OFF fluctuations, the average lifetime does not present any clear correla-
tion with the PL intensity. This feature can also be clearly observed in the FLID histogram in Fig. 2d. Figure 2e 
displays the decay curves of the green and pink regions in Fig. 2a,b, which correspond to the ON and OFF 
regions, respectively. A single exponential decay fitting yields lifetime of 19.5 ns (blue line). This behavior could 
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be attributed to type-B-HC blinking where hot electrons are captured by activated non-radiative recombination 
centers (RC) before they relax into lower energy states18. To the best of our knowledge, this would be the first 
report on type-B-HC blinking observed in formamidinium based PQDs.

Pure type-B-HC blinking occurred rarely in our measurements (2 PQDs out of 25). In most cases, pure type-A 
blinking (13 PQDs out of 25) or combined type-A and type-B-HC blinking (10 PQDs out of 25) was observed. 
More FLID histograms can be found in Supplementary Information (Figs. S4–S6). Figure 3a,b present the PL 
intensity time trace and corresponding histogram of a different PQD (PQD3) at an excitation level of <N> ~0.1. 
The simultaneous contributions of type-A and type-B-HC blinking obtained for PQD3 are demonstrated in the 
FLID histogram of Fig. 3d. While the white curved line indicates type-A blinking, the quasi-constant lifetime in 
the OFF state is a characteristic of type-B-HC blinking18. It should be noted that the relatively large lifetime distri-
bution of the OFF state was caused by overestimating the lifetime due to the flat background when the PL counts 
were close to the noise level18,19. In addition, the dark count effect could lead to considerable errors for the average 
lifetime estimation18. Therefore, to further support our claim of the coexistence of the two types of blinking, we 
presented in Fig. 3e the lifetimes of the ON and OFF states (green and pink regions, respectively, in Fig. 3a). While 
the ON state exhibited single exponential distribution corresponding to the lifetime of 23.9 ns, the OFF state 
could be fitted using a bi-exponential function, which yielded the fast decay time of 2.8 ns followed by a slow com-
ponent of 19.5 ns. This slow decay lifetime for the OFF state indicated the presence of type-B-HC blinking, where 
hot electrons might be captured by the RCs before their non-radiative recombination with holes21. In addition, 
Fig. 3f @1–3 present the PL decay curves during selected short OFF intervals in Fig. 3c, which are highlighted in 
light orange, purple, and green, respectively. The decay curves could be fitted using mono- or bi-exponentials. The 
short (1 and 3 ns) and long (22 ns) lifetimes at different OFF intervals were a strong evidence for the coexistence 
of type-A and type-B-HC blinking in this PQD18. We did not observe any type-B-BC blinking for the FAPbBr3 
PQDs under investigation. This may have occurred because the hot electrons relaxed much faster to RCs than 
to band-edges. It is interesting to note that among caesium (Cs), methylammonium (MA) and formarmidinium 
(FA) based lead halide perovskites, type B-HC is found for MA-27 and FA-based perovskite (this work) but not for 
Cs-based perovskites13,22–25,28. These results may suggest the different influence between organic (FA, MA) and 
inorganic cation (Cs) to PQD blinking behaviors. More studies are necessary to elucidate this point.

The analysis of the ON/OFF time distribution in the PL intensity time trajectory could also be used to deter-
mine the blinking mechanism. In brief, the threshold intensity was selected, and intensities above and below the 

Figure 1.  (a) PL intensity time trajectory at 10 ms bin time and (b) corresponding histogram for a selected 
perovskite quantum dot (PQD1). The green and pink colored areas indicate the ON and OFF sections, 
respectively, and the red dashed line is the threshold separating the ON and OFF states. (c) PL intensity and 
average lifetime (black and red lines, respectively) of selected small area in (a). (d) FLID histogram of PQD1. 
The white line is the FLID trajectory line fitted using Eq. (1). (e) Lifetime decay curves of the ON and OFF states 
selected in (a). Here, τX and τX* are the decay times of the single-exciton and trion, respectively.
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threshold were considered to represent ON and OFF states, respectively. We calculated the probability distribu-
tions, P(τON/OFF), for the ON/OFF periods, τON/OFF, as follows:
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31. The ON/OFF time 
distributions of PQDs 1–3 are illustrated in Fig. 4a–c, respectively. The ON time could be fitted using the power 
law with exponential cut-off τ∼ − τ− ( )( expn

TC
, where n is the power law exponent following cut-off time Tc) in 

all cases. However, the OFF time distribution was different for different types of blinking. For PQD1, the OFF 
time distribution could be fitted using the same function used to fit the ON distribution for type-A blinking. For 
PQD2, the OFF distribution could be fitted using a pure power law (~τ−m), which supported the occurrence of 
type-B-HC blinking. These results were also consistent with the classification introduced by Galland et al.18. For 
PQD3, instead of pure power law (orange solid line in Fig. 4c), the OFF time distribution could be well fitted 
using the following function (green solid curve in Fig. 4c):
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which was consistent with our previous study26 and supported our suggestion of the simultaneous contributions 
of two types of blinking in PQDs.

Herein, we stress the importance of measurement capability and time-resolution during blinking analysis. The 
different bin times used when analyzing the PL intensity trajectories could change the results quite significantly32,33, 
thus the cut-off behavior can be easily hidden into pure power law distribution. In this study, we applied two dif-
ferent photon measurement schemes: TTTR T3 and T2 modes. The T3 mode used one input channel as excitation 
timing reference synchronized to the pump pulses. Therefore, the other input channel counted the signal photons 
emitted by PQDs. In addition, the acquisition timing resolution was limited to 1 ns. By comparison, the T2 mode 
used both input channels to count the signal photons, and the timing resolution was higher: 4 ps34. Therefore, the 

Figure 2.  (a) PL intensity trajectory at 10 ms bin time and (b) corresponding histogram for a selected 
perovskite quantum dot (PQD2). The green and pink areas indicate the ON and OFF sections, respectively, 
and the red dashed line is the threshold that distinguishes the ON and OFF states. (c) PL intensity and average 
lifetime (black and red lines, respectively) of selected small area in (a). (d) FLID histogram of PQD2. (e) Decay 
curves of ON and OFF states selected in (a); here τ is the average lifetime.
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larger detection photon counts and higher timing resolution of the T2 mode could allow for a smaller bin size 
when analyzing the PL intensity trajectory. However, lifetime analysis was only possible for the T3 mode.

To quantitatively compare the two detection modes, we analyzed the PL intensity time trajectories of PQD4 
under the same pulse laser illumination conditions but using different TTTR modes (T2 and T3). Figure 5a,b 
were obtained in the T3 and T2 modes, respectively, and were analyzed for the same bin time of 5 ms. The detec-
tion count of the T2 mode was roughly 2.5 times larger than that of the T3 mode. The ON time duration illus-
trated in Fig. 5d presents a power law distribution followed by cut-offs for both modes. The OFF time durations 
presented in Fig. 5e could be fitted using pure power laws (without cut-offs) for both modes, and the errors were 
acceptable. However, for the T2 mode, it was possible to further reduce the bin time with enough photon counts 
as shown in Fig. 5c. For the bin time of 1 ms, the ON time still presented a power law distribution with cut-off 
profile, but the OFF time exhibited mixed contributions of two types of blinking, as described by Eq. (2) (Fig. 5f). 
Our results indicate strongly that a shorter bin time maintaining higher photon detection capability is a crucial 
condition to precisely analyzing blinking behaviors of PQDs, especially when the cut-off time becomes compa-
rable to binning time.

Conclusions
In conclusion, we demonstrated that type-A and type-B-HC blinkings, solely or simultaneously, contributed 
to FAPbBr3 QDs blinking. This was accomplished by analyzing the FLID and ON and OFF duration times. The 
specific curvature of type-A blinking was clearly visualized, and the type-B-HC blinking was observed for the 
first time for formamidinium based PQDs. The simultaneous contributions of two different blinking types were 
verified using FLID and were further supported by the ON/OFF duration statistics data. This simultaneous 
blinking behavior was also observed for traditional colloidal CdSe/CdS core-shell QDs. This similarity suggests 
that it could be possible to control the blinking behavior of PQDs using pre-treatment methods, such as thick 
shell or Fermi-level modifications. In addition, we also suggest that the unusual shape of the OFF time distri-
bution (which was described using Eq. (2)) could be a distinct feature that would allow to distinguish blinking 
types. However, attention should be paid to correctly reconstruct the OFF time distribution using sufficient time 
resolution.

Figure 3.  (a) PL intensity trajectory at 10 ms bin time and (b) corresponding histogram for a selected 
perovskite quantum dot (PQD3). The green and pink areas indicate the ON and OFF sections, respectively, 
and the red dashed line is the threshold that distinguishes the ON and OFF states. (c) PL intensity and average 
lifetime (black and red lines, respectively) of selected small area in (a). Three short OFF intervals are colored 
and marked as @1–3. Their corresponding lifetimes are compared in (f). (d) FLID histogram of PQD3. The 
white line is the fitted FLID trajectory line. (e) Decay curves of selected ON and OFF states in (a). τX is single 
exciton lifetime, τS and τL are fast- and slow-component of decay time of the OFF state. (f) Decay curves of 
selected regions in (c).
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Methods
Synthesis of FAPbBr3 QDs.  The FAPbBr3 QDs analyzed in this study were synthesized following the proce-
dure in a previous report26,30. Briefly, precursor solution was first prepared by mixing 0.1 mmol (0.0445 g) PbBr2-
DMSO, 0.1 mmol (0.0125 g) formamidinium bromide, and 20 μL OLA in 7 mL anhydrous DMF. The precursor 
solution was then transferred dropwise into a large amount of toluene (175 mL)/OLAc (787 μL) mixture while 
stirring vigorously. Upon mixing with toluene, the solution immediately turned pale green. Lastly, some large 
particles were removed from the FAPbBr3 nanocrystal solution by centrifugation at 5300 RCF for 10 min.

Preparation of thin film.  The PMMA film embedding single FAPbBr3 QDs is prepared by spin coating 
(2000 rpm for 45 s). More experimental parameters can be found in ref. 26.

Photon detection and analysis.  When obtaining the PL intensity time traces and lifetimes, photons were 
detected using single photon counting APDs (SPCM-AQ4C, Perkin Elmer). TTTR T3 mode (1 ns resolution) 
is used for the lifetime measurements with using two channels of the PicoHarp 300 (PicoQuant). Both the T2 
and T3 mode are used for the PL intensity time trace. All collected data were reconstructed and analyzed using 

Figure 4.  ON/OFF probability distribution of single PQDs (a) PQD1, (b) PQD2, and (c) PQD3.

Figure 5.  PL trajectory and corresponding histogram recorded in (a) T3 and (b) T2 modes at 5 ms bin time 
for a selected perovskite quantum dot (PQD4). (c) Same data set of PDQ4, but recorded in T2 mode at 1 ms bin 
time. The red dashed line is the threshold that distinguishes the ON and OFF states. (d) ON and (e) OFF time 
distributions from PL trajectories in (a) and (b). (f) ON and OFF time distributions of PL trajectory in (c).
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algorithms, coded utilizing the MATLAB software, and fitted employing the ORIGIN 2016 software. The tem-
poral resolution of the photon detection system used in this study was estimated to be approximately 0.65 ns by 
measuring temporally short laser pulses (~3 ps), and de-convoluting the measured curves.
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