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Abstract—The incidence of low-energy acetabular fractures
has increased. However, the structural factors for these
fractures remain unclear. The objective of this study was to
extract trabecular bone architecture and proximal femur
geometry (PFG) measures from clinical computed tomogra-
phy (CT) images to (1) identify possible structural risk
factors of acetabular fractures, and (2) to discriminate
fracture cases from controls using machine learning methods.
CT images of 107 acetabular fracture subjects (25 females, 82
males) and 107 age-gender matched controls were examined.
Three volumes of interest, one at the acetabulum and two at
the femoral head, were extracted to calculate bone volume
fraction (BV/TV), gray-level co-occurrence matrix and his-
togram of the gray values (GV). The PFG was defined by
neck shaft angle and femoral neck axis length. Relationships
between the variables were assessed by statistical mean
comparisons and correlation analyses. Bayesian logistic
regression and Elastic net machine learning models were
implemented for classification. We found lower BV/TV at the
femoral head (0.51 vs. 0.55, p = 0.012) and lower mean GV
at both the acetabulum (98.81 vs. 115.33, p < 0.001) and
femoral head (150.63 vs. 163.47, p = 0.005) of fracture
subjects when compared to their matched controls. The
trabeculae within the femoral heads of the acetabular
fracture sides differed in structure, density and texture from
the corresponding control sides of the fracture subjects.
Moreover, the PFG and trabecular architectural variables,
alone and in combination, were able to discriminate fracture
cases from controls (area under the receiver operating
characteristics curve 0.70 to 0.79). In conclusion, lower
density in the acetabulum and femoral head with abnormal
trabecular structure and texture at the femoral head, appear
to be risk factors for low-energy acetabular fractures.
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INTRODUCTION

Low-energy acetabular fractures in the elderly often
occur due to low impact traumas such as lateral falls
from a standing height.9,10 Typical patterns of these
fractures are displacement of the anterior column,
anterior wall and anterior with posterior hemi-trans-
verse fractures as well as anteromedial dislocation of
the femoral head.9,10,30,33 According to a recent study,
fall-related mortality for adults over 75 years of age in
the United States of America (USA) increased dra-
matically from 51.6 to 122.2 per 100,000 people
between 2000 and 2016, respectively.19 Low-energy
acetabular fractures in the elderly also pose major
health and socioeconomic concerns with possible
treatment complications due to health conditions,
osteopenia and associated femur head fractures.16

Mobility and housing dependence of persons with
pelvic fractures has been shown to increase with a
long-term decline in the physical quality of life.4

Identifying potential risk factors for low-energy
acetabular fractures in the elderly may therefore be
crucial to developing better diagnostic and treatment
options.

Osteoporosis (OP) is associated with an increased
risk of hip fractures25 and the clinical standard used to
quantify OP is the measurement of bone mineral

Address correspondence to Robel K. Gebre, Research Unit of

Medical Imaging, Physics and Technology, University of Oulu,

Oulu, Finland. Electronic mail: robel.gebre@oulu.fi

Annals of Biomedical Engineering, Vol. 49, No. 1, January 2021 (� 2020) pp. 367–381

https://doi.org/10.1007/s10439-020-02563-4

BIOMEDICAL
ENGINEERING 
SOCIETY

0090-6964/21/0100-0367/0 � 2020 The Author(s)

367

http://orcid.org/0000-0002-5746-0994
http://crossmark.crossref.org/dialog/?doi=10.1007/s10439-020-02563-4&amp;domain=pdf


density (BMD) by dual energy X-ray absorptiometry
(DEXA).5 For hip fractures, selective use of BMD in
conjunction with other clinical risk factors has been
proposed.25 Other prior studies have shown that the
prediction of hip fractures is improved when other
measurements such as hip geometry and trabecular
bone architecture are included.25,43 However, for low-
energy pelvic fractures, it is not known whether OP,
pelvic and hip geometry, and/or trabecular bone
architecture are risk factors.

A common imaging modality that is used to assess
acetabular and other pelvic fractures is computed
tomography (CT).5 However, the limited resolution of
clinical CTs can be a disadvantage when performing
image analysis and feature extraction.6,39 Previous CT
based studies using relatively larger slice thickness (£ 5
mm)6,7,29 and pixel spacing (£ 1 mm)38,44 have
demonstrated that it is possible to extract useful
information under low-resolution settings. Hence,
trabecular architectural features defined by trabecular
structure, texture and density can be extracted from
clinical CT.1,26,39 Bone quantity can be characterized
by bone volume fraction (BV/TV).39 Trabecular tex-
ture can be analyzed using various methods such as
fractal dimensions24 and gray level co-occurrence ma-
trix (GLCM).26,39 In addition, bone mineral density
can be also estimated from the first-order statistics of
the gray value (GV) histogram within a 3D volume of
interest (VOI).22,26 Moreover, bone microstructure
measured from clinical CT has been shown to be
associated with BV/TV,1 histogram-based GV den-
sity26,42 and textural features.26,39

Machine learning, unlike traditional statistics, is a
useful approach when trying to assess a predictive
outcome from a large number of input variables.40

Several studies have previously been conducted that
employ traditional statistical approaches to discrimi-
nate subjects with and without femoral neck fractures
by measuring high-resolution trabecular architectural
variables.8,14,35,43 However, there is lack of studies
using clinical CT images to elucidate structural risk
factors of low-energy acetabular fractures and to dis-
criminate fracture cases from controls using machine
learning methods. Hence, this study had two main
goals: (1) to investigate whether significant differences
can be found between the trabecular architecture of
acetabulum and proximal femur in acetabular fracture
subjects and their age-gender matched controls; and (2)
whether machine learning techniques could discrimi-
nate low-energy acetabular fractures based on trabec-
ular architecture and/or proximal femur geometry
(PFG).

MATERIALS AND METHODS

Study Subjects and Image Characteristics

The data consisted of abdominopelvic CT images of
subjects with acetabular fractures (n = 107, 25 females
and 82 males) and their age-gender matched controls
(n = 107).12 Clinical images scanned with standard
protocols were obtained from the picture archiving and
communication system (PACS) of Oulu University
Hospital, Oulu, Finland. The images were taken from
patients admitted between January 2008 and October
2017. A research permit (220/2017) was obtained from
the Northern Ostrobothnia Hospital District, and a
written informed consent was not required due to the
register-based study design. The exclusion criteria were
age (minimum age 50 years), high energy trauma (e.g.,
car accident), femoral fractures, surgical history, or
previous pelvic diseases.

Extraction of volumes of interest (VOI) were taken
from two locations: the acetabulum and the femoral
head. Initially, there were a total of 214 subjects, 50
females and 164 males. To maintain a quantitative
balance between the fracture and control groups, two-
sided acetabular fracture cases (14 males) together with
their matching controls (14 males) were excluded from
the acetabular VOIs. However, these two-sided
acetabular fractures were not excluded from the fe-
moral heads VOIs. In addition, 9 images from femoral
head VOIs (3 females and 6 males) were eliminated for
insufficient quality e.g., structures only party visible.

The final dataset consisted of 186 subjects (n = 50
females: mean age ± standard deviation (SD): 77 ± 14
years; n = 136 males: 71 ± 11 years) for the acetabular
VOIs and 205 subjects (n = 47 females: 78 ± 13 years;
n =158 males: 70 ± 12 years) for femur VOIs. In the
final dataset the ratio of cases to controls was 93:93
(females = 25:25, males = 68:68) for acetabular VOIs
and 98:107 (females = 22:25, males = 76:82) for fe-
mur VOIs. Ages for both genders were normally dis-
tributed based on a Shapiro–Wilk test, and females
were older on average (p < 0.05), the p-value taken by
an independent samples t test.

CT image properties varied between the fracture
and control groups. The average pixel spacing and slice
thickness (± SD) were 0.73 ± 0.10 and 1.03 ± 0.68 mm
for the fracture group, and 0.77 ± 0.08 and 0.78 ± 0.34
mm for the control group, respectively. As the pixel
spacing and slice thickness were different between the
groups (p < 0.05), we resampled the data to the same
voxel sizes (0.8 mm 9 0.8 mm 9 3mm, see next sec-
tion).38,44

BIOMEDICAL
ENGINEERING 
SOCIETY

GEBRE et al.368



Extraction of Volumes of Interest

Initially, a 3D reconstruction model of the pelvis
was constructed to create an alignment anterior pos-
terior (AP) plane in 3-Matic (Materialise, Leuven BE,
Belgium) software.12 The plane was formed using ASIS
(Anterior Superior Iliac Spine) and PT (Pubic Tuber-
cles) as landmarks and then reoriented parallel to a
vertical XY-plane. This AP-plane was used as a re-
slicing plane in Mimics (Materialise, Leuven BE, Bel-
gium) where the original resolutions were retained
(Fig. 1). Each slice was also threshold at a range of 2
150 HU (Hounsfield units) to 600 HU and then ex-
ported as an 8-bit portable network graphics format
image. This range of HU was chosen to ensure that
trabecular bone was optimally5,27 segmented in the
selected slices. A custom MATLAB (version R2018b,
The MathWorks, Inc., Natick, MA, USA) code was
written to crop, extract VOIs and to calculate the
subsequent variables.

A specific number of slices was selected from the
realigned CT slices depending on the thickness and
depth of VOI (24 mm), i.e., number of slices ¼ depthð
of VOIÞ= slice thicknessð Þ. A rectangular region of
interest (ROI = 16 mm 9 16 mm) was manually
placed in center slice of the selected slices to mark the
intended anatomical locations (Fig. 2). Then the ROI
was automatically placed on the remaining slices and
visually inspected to make sure the demarcated area
contained only trabecular bone. Three anatomical
locations were selected; the first was on the acetabulum
principal compressive unit, i.e., acetabulum region
(AR), and the other two were on the femoral head
principal compressive unit, i.e., femoral head region

FHR-1 and femoral head region FHR-2 (Fig. 2). AR
was placed only on the contralateral side of the
acetabular fracture, whereas FHR-1 and FHR-2 were
placed on both sides both for the fracture and control
group.

Then, the area on the CT slices covered by the ROIs
was cropped and concatenated to create a VOI
16mm� 16mm� 24mmð Þ (Fig. 2). Lastly, each VOI
was resampled to the same voxel size
0:8mm� 0:8mm� 3mmð Þusing bicubic interpolation
for comparability of results.44 The final dimensions of
the VOIs were 20� 20� 8ð Þvoxels. The in-plane voxel
resolution of 0.8 mm was chosen based on the average
pixel spacing of the dataset. The axial voxel resolution
of 3 mm was chosen to account for the largest slice-
thicknesses in the dataset.

Proximal Femur Geometry (PFG) Measurement

Neck shaft angle (NSA) and femoral neck axis
length (FNALa and FNALb) were measured to char-
acterize PFG (Fig. 3). Femurs on the acetabular frac-
ture sides and their corresponding control sides were
measured. Briefly, a 3D reconstruction of the femur
was created using Mimics and PFG was measured in 3-
Matic.12 NSA was defined as the angle between the
femoral shaft medial axis and the femoral neck medial
axis. In addition, the femoral neck length (FNAL) was
measured using two parameters,12,34,35 FNALa and
FNALb, along the femur neck’s medial axis. The
starting point of the medial axis for both variables was
below the greater trochanter whereas the FNALa ex-
tended up to the femoral head anterior point and

FIGURE 1. Pelvic slices realignment. (a) shows the creation of a vertical anterior posterior (AP) plane using landmarks on the
three-dimensional reconstructed pelvis. (b) shows misalignment between the alignment plane (red) and slices before re-slicing. (c)
shows re-aligned slices.
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FNALb was the distance up to the femoral head center
(Fig. 3).

Bone Density Assessment Using Bone Volume Fraction

BV/TV is a ratio of bone volume (BV) to total
volume (TV) which describes the amount of trabecular
bone within the boundaries of a VOI.15,21,39 Due to
low resolution and lack of a density calibration stan-
dard during the acquisition of the CT scans, here BV/
TV refers to apparent BV/TV. BV is the total count of
bone fraction voxels, while TV is the total number of
voxels in the VOI.31 Otsu thresholding,32 a histogram
based adaptive thresholding method, was used to
separate BV voxels from TV voxels (Fig. 2).

Texture Analysis

Texture information of an image or VOI, derived
from GLCM, is the spatial distribution of gray levels
separated by a given distance at different angles rela-
tive to one another.17,18,41 The parameters needed to
construct a co-occurrence matrix are distance, offset
directions and number of gray levels. Here, 1-pixel
distance, 13 offset directions (i.e., the 13 unique angles

out of the total of 26 found around a point in 3D) and
16 numbers of gray levels were used. The offset
directions were defined by a 2 1, 0 or 1 variations of a
three-component vector row, column, sliceð Þthat
determine the co-occurrence locations of a pair of
pixels in the x, y and z Cartesian coordinate system.39

The relative frequencies Pi;j of two adjacent pixels i,
j over the 13 offset directions in the VOI were calcu-
lated to construct a GLCM of size 16; 16; 13ð Þ. The Pi;j

were converted into probabilities by normalizing each
by the total number of co-occurrences. In addition, the
final GLCM containing the probabilities of co-occur-
rences was then made symmetrical by adding its
transpose along the main diagonal.18 Finally, based on
these probabilities the following nine variables were
calculated; contrast, correlation, entropy, difference
entropy, difference variance, homogeneity, maximum
probability, sum variance and information measure of
correlation.17,18,41 Briefly, contrast, correlation, en-
tropy and homogeneity describe local intensity varia-
tions, linear dependencies, disorder and similarities
between neighboring gray levels, respectively.18,41

Difference entropy and difference variance measure
the disorder related to gray level differences and
heterogeneity with respect to the mean respectively.18

FIGURE 2. Placement of the volumes of interest (VOI) on the acetabulum and femoral head. (a) and (b) represent femoral head
region 1 (FHR-1) and femur head region 2 (FHR-2), respectively, whereas (c) represents the acetabular region (AR). When
calculating bone volume fraction, the VOI was segmented into bone fraction and empty space using Otsu thresholding.
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Maximum probability describes the largest probability
of a gray level’s co-occurrence in the GLCM.17 Sum
variance describes the sum distribution of the gray le-
vel around the GLCM mean.18,41 Information measure
of correlation (IMC) is a measure of texture com-
plexity derived from mutual information as defined by
Haralick et al.18 Lastly, the variables in each of the 13
directions were averaged to ensure rotational invari-
ance.26,39

Bone Density Assessment Using Gray Value Histogram
Analyses

Histogram analyses are first order statistics that
provide information about gray value (GV) distribu-
tions within an image or VOI. Previously, histograms
have been used to indirectly assess trabecular bone
density.22,26,42 GV mean, standard deviation, variance,
skewness and kurtosis were calculated in this study.

Statistical Analyses

Prior to mean group comparisons, a Shapiro–Wilk
test was performed to determine variable distribution.
Following the normality check, either an independent-
samples t test or a Mann–Whitney U test was con-

ducted for normally or nonnormally distributed data,
respectively. Correction for multiple comparison test-
ing was not applied.37 A bivariate Pearson’s linear
correlation was also performed to investigate the
associations between variables and to check for mul-
ticollinearity. The IBM SPSS (version 24.0.0.1, Ar-
monk, CINY: IBM Corp, USA) statistics program was
used for statistical analyses.

Two machine learning methods, Bayesian logistic
regression (BLR) and Elastic net (EN) models, were
implemented to discriminate acetabular fracture cases
from controls. The models classified the responses into
the pair ‘‘fracture’’ and ‘‘control’’ for FHR-1 and
FHR-2, comparing the fracture side of the acetabular
fracture cases and the matching side of the controls,
and into the pair ‘‘contralateral’’ and ‘‘control-con-
tralateral’’ for AR, comparing the contralateral side of
the fracture cases, and the matching contralateral side
of the controls, respectively. In addition, classification
performances of the models were evaluated using the
area under the receiver operating characteristics
(ROC) curve (AUC).

To identify the best predictive model and for easy
interpretability of the classification results, three types
of model inputs were used; PFG alone, and trabecular
variables without and with PFG. Inputs without PFG
comprised of BV/TV, GLCM texture and GV his-
togram variables, and those with PFG consisted of the
additional geometry variables of the proximal femur.
In order to train and validate the models, repeated k-
fold cross-validation (CV) was used at 10 folds and 50
repeats. With K-fold CV data is split into equal sized
training sections and validated iteratively on a random
kth part k number of times.20 R (version 3.6.1) statis-
tical computing software was used for the machine
learning analyses. We used the R package caret28

(version 6.0-84) for the k-fold CV, arm13 (version 1.10-
1) for BLR, glmnet11 (version 3.0) for EN models and
pROC36 (version 1.15.3) to plot the ROC curves.

Bayesian Logistic Regression (BLR)

BLR is a type of regression developed as an
improvement to the traditional logistic regression. It
mainly solves nonidentifiability and unstable separa-
tion problems that are especially associated with
smaller datasets.13 In order to accomplish this, it
standardizes both the binary predictors and continu-
ous input variables and then assigns independent
samples t test priors on the regression coefficients b 13

Principal component analysis (PCA) was performed
before running BLR to account for multicollinearity
between the input variables. Here, PCA was used for
dimension reduction by decomposing the data into
orthogonal principal components (PCs) in the direc-

FIGURE 3. Measurement of Proximal femur geometry (PFG).
Neck shaft angle (NSA) is the angle between femoral neck
medial axis (A-B) and shaft medial axis (l). (O) is the center of
the femoral head, (A-B) is the femoral neck axis length-a
(FNALa) and (B-O) is the femoral neck axis length-b (FNALb).
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tion of maximum variance. Eigenvectors of the
covariance matrix were calculated to determine the
PCs’ variances. PCs that explained ‡ 98% of the
variance were finally chosen as model inputs. For in-
stance, for the two input types, without and with PFG,
there were 15 and 18 variables which were reduced to 8
and 10 PCs respectively after the PCA.

Elastic Net (EN) Regression

EN is a type of regularized linear regression used in
statistics for shrinking coefficients in order to reduce
the effects of multicollinearity and optimize feature
selection.45 It is particularly useful for when the num-
ber of observations N is less than the number of pre-
dictor variables x.45 EN is a combination of two
penalties, the lasso (L1, a = 1) and ridge regression
(L2, a = 0), incorporated into the standard linear
regression to reduce b to zero, given the response
variable y and the regularization parameter k (Eq. 1).45

The k parameter is inversely related to the number of
penalized nonzero b values and hence determines the
strength of penalty.45
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Each k-fold CV model was fit repeatedly over a grid
of regularization parameters (a, k) to solve the EN
regression problem (Eq. 1). The grid search consisted
of a ranging from 0.01 to 1 incremented at 0.03 and k
from 0.001 to 0.15 incremented at 0.005.

RESULTS

When comparing the trabecular architecture
between the fracture subjects and their matching con-
trol sides at the acetabula and femoral heads, the
variables which showed significant differences (p <

0.05) varied amongst the three VOIs (Tables 1, 2, and
3). Moreover, a strong multicollinearity within the
GLCM texture and GV histogram variables was
observed for all three VOIs (Supplementary Tables 1–
3).

Trabecular Architecture at Acetabulum

There were no significant differences when com-
paring the BV/TV at AR on the contralateral side of
acetabular fracture subjects with their matching con-
tralateral sides of control subjects. Amongst the
GLCM texture variables at AR, entropy was signifi-
cantly smaller on the contralateral sides of the frac-

tured subjects than on the matching contralateral sides
of the controls only for all subjects (3.69 [95% Confi-
dence Interval (CI)] [3.60–3.77] vs. 3.83 [3.74–3.92], p
= 0.02) (Table 1). In addition, correlation and sum
variance for all subjects and males, and contrast and
difference variance for all subjects and females were
significantly lower on the subjects with acetabular
fracture compared to their matching controls (p <

0.05) (Table 1).
Amongst the AR GV histogram variables, GV mean

was significantly lower on the contralateral sides of the
fracture subjects than their matching controls for all
subjects (98.81 [92.83–104.79] vs. 115.33 [109.83–
120.83], p < 0.001), females (90.88 [75.78–105.98] vs.
110.02 [96.84–123.19], p = 0.035) and males (101.73
[95.57–107.88] vs. 117.28 [117.28–111.35], p < 0.001)
(Table 1).

Trabecular Architecture at Femoral Head

None of the textural variables at FHR-1 for female
subjects showed significant differences between the fe-
moral heads of the fracture side of the subjects with
acetabular fracture and the matching side of the non-
fractured controls (Table 2). The homogeneity at
FHR-1 was greater on the fracture sides than controls
for all subjects (0.56 [0.55–0.57] vs. 0.55 [0.54–0.55], p
= 0.038) and males (0.56 [0.55–0.57]–0.55 [0.54–0.55],
p = 0.002). Also, FHR-2 of females showed differ-
ences only for correlation and IMC (Table 3).

BV/TV at FHR-1 did not show difference between
the groups (Table 2). However, BV/TV at FHR-2 was
significantly lower on the fracture sides than on the
matching control sides for all subjects (0.51 [0.48–0.53]
vs. 0.55 [0.53–0.57], p = 0.012) and males (0.52 [0.49–
0.54] vs. 0.56 [0.54–0.59], p = 0.011) (Table 3).

Amongst the GV histogram variables at FHR-1,
GV mean was significantly lower on the fracture sides
than on the matching control sides for all subjects
(136.41 [130.90–141.93] vs. 147.99 [142.65–153.32], p
= 0.003) and males (138.96 [132.86–145.06] vs. 152.10
[146.81–157.38], p = 0.001) (Table 2). Similarly, at
FHR-2, the GV mean was significantly lower on the
fracture sides than on the matching control sides for all
subjects (150.63 [144.31–156.96] vs. 163.47 [157.21–
169.73], p = 0.005) and males (154.45 [147.32–161.58]
vs. 169.86 [163.79–175.93], p = 0.001) (Table 3). In
addition, the GV skewness did not show difference at
FHR-1 (Table 2) while at FHR-2 it was negatively
skewed for the control cases for all subjects (0.01 [2
0.08 to 0.11] vs. 2 0.18 [2 0.29 to 2 0.07], p = 0.023)
and males (2 0.03 [2 0.15 to 0.09] vs.2 0.27 [2 0.39 to
2 0.14], p = 0.022) (Table 3).

Lastly, the side-wise relationships of the trabecular
variables between FHR-1 and FHR-2 on their
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respective fracture and control sides are presented in
the Supplementary Table 4. Strong correlation was
found between most variables.

Proximal Femur Geometry (PFG)

Acetabular fracture subjects had significantly smal-
ler NSA than controls for all subjects (121.71�
[120.58�–122.84�] vs. 124.60� [123.49�–125.70�], p <

0.001), for females (118.76� [115.72�–121.79�] vs.
124.51� [122.09�–126.93�], p = 0.003) and also for
males (122.49� [121.33�–123.66�] vs. 124.63� [123.36�–
125.89�], p = 0.015). In contrast, FNALb was signif-
icantly longer for fractures than controls for all sub-
jects (78.36 mm [77.14–79.58 mm] vs. 76.03 mm [74.75–
77.30 mm], p = 0.010) and males (80.07 mm [78.87–
81.28 mm] vs. 77.77 mm [76.42–79.12 mm], p = 0.037)
(Supplementary Table 5).

Classification Performance

When assessing the classification performances of
the AR BLR and EN models, the ROC AUC values
were 0.70 [0.63–0.78] and 0.68 [0.60–0.76] for all sub-
jects, 0.88 [0.78–0.98] and 0.86 [0.76–0.97] for females,
0.72 [0.63–0.81] and 0.69 [0.60–0.79] for males,
respectively (Table 4 and Fig. 4). The variables se-
lected in the final AR EN models are shown in Sup-
plementary Table 6.

When assessing the classification performances of
the PFG BLR and EN models, the ROC AUC values
were 0.70 [0.62–0.77] and 0.69 [0.62–0.77] for all sub-
jects, 0.75 [0.61–0.89] and 0.74 [0.59–0.89] for females,
0.68 [0.59–0.76] and 0.68 [0.59–0.76] for males,
respectively (Table 4 and Fig. 4).

Without the inclusion of PFG, the highest BLR and
EN ROC AUC values for FHR-1 and FHR-2 vari-
ables were 0.72 for all subjects and 0.82 for the indi-
vidual genders (Table 4). When FHR-1 and FHR-2
variables were combined into one input, the BLR and
EN ROC AUCs were 0.75 [0.68–0.81] and 0.73 [0.66–
0.80] for all subjects, 0.92 [0.85–1.00] and 0.68 [0.52–
0.84] for females, 0.76 [0.68–0.83] and 0.74 [0.66–0.81]
for males, respectively. With the inclusion of PFG, the
BLR and EN ROC AUCs for the combined FHR-1
and FHR-2 variables were 0.79 [0.72–0.85] and 0.77
[0.71–0.84] for all subjects, 0.97 [0.92–1.00] and 1.00
[1.00–1.00] for females, 0.79 [0.71–0.88] and 0.77 [0.69–
0.84] for males, respectively (Table 4 and Fig. 4). The
variables selected in the final EN model of the com-
bined features of FHR-1, FHR-2 and PFG are shown
in Table 5.

The regularization parameters used in the final EN
models are shown in Supplementary Table 7.

DISCUSSION

In this study, trabecular architecture of acetabulum
and femoral head as well as proximal femur geometry
were measured on clinical CT images to identify
potential structural risk factors of acetabular fractures.
Discrimination of acetabular fracture cases from con-
trols was also implemented using machine learning
methods. We found lower trabecular bone volume
fraction at the femoral head region close to the hip
joint (FHR-2) and lower density (histogram-based
variables) at both the acetabulum and femoral head of
the fracture subjects compared to their matched con-
trols. Furthermore, we observed difference in the tra-

TABLE 4. The area under the curve (AUC) values in the ROC analysis for the classification performances of the Bayesian logistic
regression (BLR) and elastic net (EN) models.

Model Inputs

BLR AUC (95% CI) EN AUC (95% CI)

All Females Males All Females Males

PFG

Fracture side 0.70 (0.62–0.77) 0.75 (0.61–0.89) 0.68 (0.59–0.76) 0.69 (0.62–0.77) 0.74 (0.59–0.89) 0.68 (0.59–0.76)

Trabecular structure, density and texture variables

AR 0.70 (0.63–0.78) 0.79 (0.67–0.91) 0.71 (0.63–0.80) 0.67 (0.59–0.75) 0.73 (0.58–0.87) 0.70 (0.62–0.79)

FHR-1 0.70 (0.63–0.77) 0.69 (0.53–0.85) 0.72 (0.65–0.80) 0.70 (0.63–0.77) 0.82 (0.70–0.95) 0.70 (0.62–0.78)

FHR-2 0.72 (0.65–0.79) 0.78 (0.65–0.91) 0.73 (0.66–0.81) 0.70 (0.63–0.77) 0.77 (0.63–0.91) 0.72 (0.64–0.80)

FHR-1&2 0.75 (0.68–0.81) 0.92 (0.85–1.00) 0.76 (0.68–0.83) 0.73 (0.66–0.80) 0.68 (0.52–0.84) 0.74 (0.66–0.81)

Trabecular structure, density and texture variables + PFG

AR – – – – – –

FHR-1 0.76 (0.70–0.83) 0.83 (0.72–0.95) 0.77 (0.70–0.84) 0.76 (0.70–0.83) 0.74 (0.59–0.89) 0.77 (0.70–0.85)

FHR-2 0.76 (0.70–0.83) 0.93 (0.86–1.00) 0.77 (0.69–0.85) 0.76 (0.69–0.83) 0.92 (0.83–1.00) 0.76 (0.69–0.84)

FHR-1&2 0.79 (0.72–0.85) 0.97 (0.92–1.00) 0.79 (0.71–0.87) 0.77 (0.71–0.84) 1.00 (1.00–1.00) 0.77 (0.69–0.84)

The fracture side proximal femur geometry (PFG) was used in the femoral head region (FHR) models.
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becular architecture between the femoral heads of the
fracture and control subjects. For the first time, we
showed that trabecular architecture as well as proximal
femur geometry, both alone and when combined, are
able to discriminate acetabular fracture cases from
controls. The highest discriminative capacity was

observed for the combination of femoral head trabec-
ular architecture and PFG variables (AUC 0.77 to
0.79).

We found BV/TV to be 0.50 ± 0.09, 0.55 ± 0.11 and
0.26 ± 0.13 respectively at FHR-1, FHR-2 and AR for
our non-fracture control subjects. We did not observe

FIGURE 4. Receiver operating characteristics curves based on inputs from the acetabular region (AR), the combined femoral
head regions (FHR) 1 and 2, and proximal femur geometry (PFG). Bayesian logistic regression (BLR) and elastic net (EN) models
were applied for all subjects and individual genders. FHR and AR were measured from the fracture and contralateral side,
respectively. (a) shows AR curves, (b) shows PFG curves, (c) and (d) show combined FHR curves, without and with PFG.
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any BV/TV differences at the femoral head region
FHR-1 between the fractures and controls suggesting
normal trabecular bone volume. Thevenot et al.42 ex-
tracted VOIs at the femoral head-neck region close to
our FHR-1, and reported BV/TV as 0.48 ± 0.27, which
closely matches to our findings. For the FHR-2 region,
BV/TV of the fracture subjects, especially males, was
significantly different from that of the matching sides
of controls, indicating that the trabeculae at the femur
head might have abnormal or different structure in the
cases with acetabular fracture. BV/TV at the acetab-
ular region was not significantly different between the
contralateral side of the fractured cases and matching
side of the controls. However, the acetabulum of the
fractured side was not assessed since a fracture within
the region could yield unreliable results.

To define texture, we calculated nine GLCM based
statistical variables, as defined by Haralick et al.17,18

When analyzing textural differences between controls
and fracture cases, the matched side comparisons re-
vealed differences for all the three VOIs. For the AR,
only slight textural differences were observed, with the
females showing significantly fewer local variations in
the gray levels and males demonstrated significantly
lesser linear dependence and dispersion of gray level
sums from the mean at the contralateral sides. In
addition, a general linear model (GLM) univariate
analysis was performed to further understand the
independent contribution of texture variables by con-
trolling for the effects of GV (data not shown). After
adjusting with the GV mean, Entropy, Difference
variance, and Sum variance did not significantly differ
between controls and fracture cases anymore. Con-

versely, IMC showed significant difference between
controls and fracture cases after adjustment. It should
be noted here that we were unable to find previous
literature on GLCM based texture analysis at the AR.

Previous GLCM texture studies of the proximal
femur placed VOIs at different locations than this
study,35,43 hence it is difficult to make an assertive
comparisons to our findings. The texture at FHR-1
was significantly more homogeneous and less entropic
for fracture subjects consistent with previous reporting
for femoral neck fracture studies.35,43 On the contrary,
FHR-2 gray levels had similar homogeneity and dis-
order between the fracture and control subjects. After
adjusting with the GV mean, homogeneity in FHR-1
and Difference Variance in FHR-2 did not significantly
differ between controls and fracture cases anymore. In
addition, the side-wise comparisons of the femoral
head VOIs revealed that FHR-2 is significantly more
homogeneous and less entropic, with gray levels devi-
ating less than within FHR-1, suggesting that these
two VOIs have different textures. However, informa-
tion measure of correlation (IMC) showed different
results for the side-wise comparison of the femoral
head VOIs. The acetabular fracture side femoral head
IMC comparison did not show a significant difference
between the two VOIs, which could be due to the
similarity of the texture complexities, while FHR-2
showed a significantly different texture complexity
than FHR-1 at the control side.

Presently, GV mean was used as a measure of
density23,26,42 and the results of the fracture- vs. -con-
trol comparisons suggest that fracture subjects have
lesser dense trabecular bone at all of the three regions.
Here, we did not get a strong correlation between GV
mean and BV/TV at the AR, but we did get moderate
correlations (r > 0.55, p < 0.01) within the femoral
head. Previous lCT to clinical CT co-registered studies
have reported different values of correlation between
GV mean and BV/TV (r = 0.91, p < 0.01,26 and r =
0.61, p < 0.01).23 The correlation differences in these
studies might be due to the variations in resolution,
anatomical locations and/or methodologies used to
calculate GVs.23 Furthermore, the GV skewness sug-
gests tendency of the individual GV mean distribution
differences within the fracture and control groups. For
the control subjects, the GV histogram of FHR-2 was
significantly negatively skewed compared to fracture
subjects, suggesting FHR-2 as much denser only for
the controls. The side-wise comparisons for males and
combined gender subjects on the fracture and control
sides revealed FHR-2 to be denser than FHR-1.
However, the skewness results on the fracture side
suggest similar density distributions between FHR-1
and FHR-2, but on the control side a significantly
negatively skewed FHR-2 GV mean distribution.

TABLE 5. Coefficient weights of the variables used in the
final EN model of the combined inputs of trabecular
architecture features at the femoral head region -1 (FHR-1)
and femoral head region -2 (FHR-2), and proximal femur
geometry (PFG) defined by neck shaft angle(NSA) and femoral

neck axis length (FNALa and FNALb).

Variables Weights

Intercept 0.092

Difference entropy FHR-1 0.186

Difference entropy FHR-2 0.100

Entropy FHR-1 0.110

Sum variance FHR-2 0.015

IMC FHR-2 2 0.445

GV mean FHR-1 0.107

GV mean FHR-2 0.108

GV kurtosis FHR-1 2 0.096

NSA 0.365

FNALb 2 0.322

The trabecular architecture features were bone volume fracture

(BV/TV), gray level co-occurrence matrix and gray value (GV)

histogram variables.

IMC information measure of correlation.
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A possible explanation for an acetabular fracture as
a result of a low energy sideway impact could be PFG,
femoral head trabeculae connectivity and/or aniso-
tropy. Our current results show smaller NSA (121.7�
vs. 124.6�) and lower density at the femoral head in the
acetabular fracture subjects. Normal femoral head
trabeculae are plate-like21 but due to osteoporosis they
become more rod-like with a loss of horizontal con-
nectivity and increased anisotropy.2 Trabecular archi-
tecture is subject to age and gender-related
changes.2,3,8 In addition, our results of BV/TV and
GLCM texture indicate that FHR-2 for fracture sub-
jects is structurally abnormal, and also more similar to
FHR-1 in structure and complexity of texture. There-
fore, PFG differences in combination with an abnor-
mal trabecular architecture, possibly due to the loss of
horizontal connectivity and/or variations in aniso-
tropy, may affect the hip joint stress/strain distribution
following impact thence causing acetabular fracture(s).

For the first time, we presented the application of
Bayesian logistic regression and Elastic net machine
learning methods to classify low-energy acetabular
fracture subjects from their age-gender matched con-
trols using trabecular architectural variables with and
without the inclusion of PFG. Two different types of
machine learning approaches were implemented to
compare classification performances where multi-
collinearity of the model inputs was handled differently
in each case. In our previous 3D pelvic geometry study,
we have shown that a Varus femur with longer FNALb
(> 78mm) could be associated with acetabular frac-
tures.12 In the current study, the PFG BLR and EN
machine learning models were able to discriminate
acetabular fractures from controls (AUC 0.68–0.75).
The current findings are in-line with prior 2D radio-
graphic studies that have shown NSA to discriminate
femoral neck fractures from non-fracture femurs,
AUC being 0.72 (Gnudi et al.14), 0.69 (Thevenot
et al.43) and 0.87 (Pulkkinen et al.35).

The different types of variables used in the final EN
model show that the discrimination of acetabular
fractures from controls is best achieved by combining
trabecular architecture and PFG. The machine learn-
ing models with the highest classification performances
were found when FHR-1, FHR-2 and PFG variables
were combined (AUC > 0.77). Some of the selected
variables used in the final EN model were GV mean at
FHR-1 and FHR-2 from the GV histogram features,
IMC at FHR-2, difference entropy and entropy at
FHR-1 from the 3D GLCM texture features, and from
PFG NSA and FNALb (Table 5). Therefore, by using
the BLR and EN machine learning methods we were

able to regularize a relatively large number of inputs
with a high degree of multicollinearity to identify the
most important variables to discriminate acetabular
fractures from controls.

This study has some limitations. Firstly, the CT
data was collected from clinical setting, where the pa-
tient positioning was not standardized, and a density
calibration phantom was not used. Hence, all CT slices
were aligned to a vertical plane to standardize the
pelvic orientation before VOIs were placed at their
designated anatomical locations. In addition, due to
the absence of a density calibration phantom bone
mineral density matching was not possible. Secondly,
because of the low-resolution detailed trabecular
microstructure measurements were not possible.
However, texture analyses provided information rele-
vant to microstructure.6,39 Thirdly, the sample size for
females was limited as was evident in variation in AUC
suggesting possible under-or over-estimations. In
addition, we were not able to perform trabecular
analysis of the fractured acetabulum and used the
contralateral side for the analysis. Further studies are
needed for final confirmation of the findings.

In conclusion, we were able to discriminate
acetabular fractures from controls using clinical low-
resolution CT. Differences in trabecular architecture
within acetabulum and femoral head were found
between the fracture and control groups. In addition,
the trabeculae within the femoral head of the cases
with acetabular fracture differed in structure, density
and texture with their corresponding control side fe-
murs. These results suggest that lower density both at
acetabulum and at femoral head, in combination with
abnormal structure and texture at the femoral head,
are associated with low-energy acetabular fractures in
elderly subjects. We also demonstrated that machine
learning approach can discriminate acetabular fracture
subjects from controls using trabecular architecture
and/or PFG as input variables. There is a gap in
research that investigate the etiology of low-energy
acetabular fractures. In this study, using clinically
available data, we attempted to address some of the
associated structural risk factors. Future work is still
needed to further investigate the trabecular micro-ar-
chitecture at higher resolutions, and the independent
role of trabecular architecture beyond BMD.
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