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Abstract

Pluripotent stem cells (PSCs) exist in multiple stable states, each
with specific cellular properties and molecular signatures. The
mechanisms that maintain pluripotency, or that cause its destabi-
lization to initiate development, are complex and incompletely
understood. We have developed a model to predict stabilized PSC
gene regulatory network (GRN) states in response to input signals.
Our strategy used random asynchronous Boolean simulations (R-
ABS) to simulate single-cell fate transitions and strongly connected
components (SCCs) strategy to represent population heterogeneity.
This framework was applied to a reverse-engineered and curated
core GRN for mouse embryonic stem cells (mESCs) and used to
simulate cellular responses to combinations of five signaling path-
ways. Our simulations predicted experimentally verified cell popu-
lation compositions and input signal combinations controlling
specific cell fate transitions. Extending the model to PSC differenti-
ation, we predicted a combination of signaling activators and inhi-
bitors that efficiently and robustly generated a Cdx2+Oct4� cells
from naïve mESCs. Overall, this platform provides new strategies
to simulate cell fate transitions and the heterogeneity that typi-
cally occurs during development and differentiation.

Keywords asynchronous Boolean simulation; embryonic stem cell; gene

regulatory network; heterogeneity; pluripotency

Subject Categories Development & Differentiation; Network Biology; Stem

Cells

DOI 10.15252/msb.20177952 | Received 24 August 2017 | Revised 21 November

2017 | Accepted 20 December 2017

Mol Syst Biol. (2018) 14: e7952

Introduction

Single-cell-level heterogeneity in gene expression is common in

pluripotent stem cells [PSCs; MacArthur et al, 2012; and indeed

other stem cell types (Gupta et al, 2011)]. There are two scenarios

from which this heterogeneity emerges. Either different closely

related cell types co-exist or individual cells transition dynamically

between different cell states (dynamic heterogeneity; Hoppe et al,

2014; Miyanari & Torres-Padilla, 2012; Schroeder, 2011). Regardless

of its origin, heterogeneity can result in families of gene regulatory

networks (GRNs), each with potentially unique responsiveness to

endogenous or exogenous perturbations (Eldar & Elowitz, 2010;

Rompolas et al, 2013; Singer et al, 2014). One manifestation of this

is that different subpopulations of cells may have higher probabili-

ties of generating specific types of differentiated cells following treat-

ment with differentiation-inducing ligands (Chambers et al, 2007;

Toyooka et al, 2008).

Distinct PSCs and their associated GRNs appear to be stabilized

through extrinsic signals (or signal modifiers; Ng & Surani, 2011),

which are typically either supplemented into the medium or endoge-

nously produced (Davey & Zandstra, 2006; Moledina et al, 2012).

For example, mouse embryonic stem cells (mESCs) will transition

into epiblast stem cells (EpiSCs) if LIF and BMP4 in the medium are

replaced with bFGF and Activin A. (Guo et al, 2009; Onishi et al,

2012). Additionally, dual small molecule inhibition of MAPK/ERK

kinase (MEK) and glycogen synthase kinase-3b (GSK3b; referred to

as the 2i condition) yields mESCs in a naı̈ve/ground state of pluripo-

tency, a state which closely resembles the early, pre-implantation

stage epiblast (Tesar et al, 2007; Nichols et al, 2009; Evans, 2011).

Notably, GRNs do not serve only as responsive elements to external

stimuli, but also as stimulus sources themselves via autocrine/para-

crine signaling, resulting in combined endogenous/exogenous feed-

back loops (Davey & Zandstra, 2006) that influence cell fate

transition probabilities.

Here, we hypothesize that PSCs transition between heteroge-

neous cell states under the constraint of signaling inputs. We

describe a simulation framework that depicts each PSC subpopula-

tion as a compilation of related heterogeneous gene expression pro-

files which emerge depending on the given signaling inputs. This

computational framework uses an mESC-GRN consisting of 29 key

genes to simulate the regulation of Oct4, Sox2, and Nanog (as well

as other mESC-associated genes) as a function of signaling inputs.
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Existing Boolean models that simulate the regulation of PSC-GRNs

treat each subpopulation as a discrete, steady-state gene expression

profile (i.e., attractor) derived from a unique or randomly set initial

profile after rounds of Boolean updates, where genes are toggled on

and off to satisfy the Boolean logic functions that make up the GRN

(Dunn et al, 2014; Xu et al, 2014; Okawa & del Sol, 2015). While

the steady-state attractor approach simulates the presence of dif-

ferent cell states (i.e., subpopulations) within a total PSC popula-

tion, it does not simulate gene expression variability within each

PSC subpopulation, nor capture the single-cell variability

(MacArthur et al, 2012; Xu et al, 2014) and subpopulation dynamics

(Kalmar et al, 2009; Filipczyk et al, 2015) that has been observed in

single-cell transcriptome data. We therefore aimed to group closely

related gene expression profiles into constructs that enabled the

prediction of subpopulation composition. To do this, we used a

random asynchronous Boolean simulation (R-ABS) strategy. While

in a synchronous Boolean paradigm, all genes in the GRN toggle

simultaneously to produce each condition, R-ABS randomly picks a

subset of genes at each time step and toggles individual genes asyn-

chronously, resulting in a wider catalogue of transitional expression

profiles (Di Paolo, 2001). We employed random asynchronous

updates assuming uniform average time delays on every gene

because this method not only accurately reflects the various biologi-

cal observations such as changes in cell compositions, but can also

represent both rhythmic and non-rhythmic phenomena (Di Paolo,

2001). Instead of depicting subpopulations as steady-state attractors,

we hypothesized PSC states in dynamic heterogeneity are recapitu-

lated as strongly connected components (SCCs), where all gene

expression profiles in the set can transition into each other

(Fig EV1a). Uniquely, this methodology allows the simulation

outputs to be quantitatively compared with experimental observa-

tions from both single cell- and population-level experiments

(Fig EV1b). In addition, our model also includes feedback loops

from the GRN to signaling pathway components, thus allowing for

the exploration of a broader and more nuanced array of GRN

outputs such as the exit from pluripotency as a consequence of the

activation and inhibition of different combinations of five major

pluripotency-related signaling pathways (LIF/pStat3, Wnt/b-catenin,
Bmp4/pSmad1/5/8, Activin A/pSmad2/3, and bFGF/pERK). Taken

together, our strategy represents a new platform, capable of simulat-

ing cell fate transitions and heterogeneity, that should have broad

applicability to many different biological systems.

Results

Simulation framework for PSCs

Our simulation framework took advantage of two key strategies. The

first is the R-ABS strategy, where Boolean updates are performed

asynchronously on randomly selected nodes (genes) in each simula-

tion update, such that each simulated gene expression state can tran-

sition to multiple possible successor states (Albert et al, 2008; Garg

et al, 2008). A profile transition graph, the accumulation of the tran-

sitions between unique expression profiles, is conceptually analo-

gous to transitions between single-cell states and is derived from an

iterative R-ABS. We believe that a binarized representation of gene

expression, which is a common simplification for Boolean-based

simulations, is relevant at the single-cell level given the accumulated

observations of bimodal distributions in single-cell gene expression

profiles in mESCs (MacArthur et al, 2012; Xu et al, 2014) and in

other cell types (Shalek et al, 2013). The relative transition frequen-

cies from one expression profile to its successor profiles can be calcu-

lated by counting the individual transitions from the source to the

target, which in turn determines the probability of traversing of each

profile.

After generating the profile transition graph with R-ABS, the

second key element of our approach is to use SCCs to group unique

expression profiles. An SCC is defined as a subset of expression pro-

files where every profile is capable of transitioning into all other

profiles in the subset and returning to the original profile over an

indefinite number of Boolean updates. This is analogous to a

sustained PSC population containing multiple transitioning sub-

populations (Bao et al, 2009). In the context of population-level PSC

state transitions, SCCs represent a dynamically stabilized population

as a cluster of heterogeneous single-cell profiles where each transition

state can give rise to any of the other states within the SCC. In this

study, we considered an SCC as PSC subpopulation which fulfills two

criteria: the number of unique (heterogeneous) profiles in the SCC

and the stability of the SCC are above thresholds. The model predicts

the emergence of subpopulations (SCCs) in response to different

input conditions (Fig 1A and B). The gene expression level for any

given gene within a particular SCC is predicted by multiplying the

sum of expression profile probabilities where the gene is present

(ON) by the sum of probabilities of all the profiles in the SCC (Fig 1C

upper panel). The expression probabilities are then multiplied with

the probabilities of remaining within an SCC (i.e., 1 minus the outgo-

ing transition probability; Fig 1C lower panel, see Appendix Section 1).

The population-averaged gene expression level is thereby calculated

by taking the sum of these values within each SCC, which is weighted

by the proportion of subpopulations (the number of unique profiles

in each SCC).

Mouse ESC-GRN construction

Next, we applied the proposed simulation framework to mESC-

GRN. To build the model, we first selected 14 pluripotency-

associated genes [Oct4, Sox2, Nanog, Klf4, c-Myc, Esrrb, Tbx3, Klf2,

Gbx2, Jarid2, Mycn, Lrh1, Pecam1, and Rex1(Zfp42)] based on prior

knowledge (see Appendix Sections 2 and 3 for details on GRN

reconstruction; De Los Angeles et al, 2015; Kim et al, 2008). We

also included key lineage specifiers (Tcf3, Cdx2, Gata6, Gcnf), genes

known to drive the exit from pluripotency (Chickarmane &

Peterson, 2008; Tam et al, 2008). For computational efficiency, we

aggregated EpiSC-enriched transcription factors (TFs)—Fgf5, Eomes,

Otx2, and Brachyury (T)—into a single component in the model

termed EpiSC-enriched transcription factors (EpiTFs; Bao et al,

2009; Guo et al, 2009). We then specified regulatory relationships

among the genes by manual curation, including 19 regulations

encompassing double-positive or double-negative regulatory circuits

and known self-activations for seven genes (Appendix Table S1B).

We also introduced Dnmt3b to the model as an epigenetic switch

regulator of isoforms of Oct4 (Appendix Section 3-4).

We next set the key signaling pathways (LIF/pStat3, Wnt/b-
catenin, Bmp4/pSmad1/5/8, Activin A/pSmad2/3, bFGF/pERK, and

PI3K) as consequential effects of gene ON/OFF states by extending
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the gene list to link to signaling activities (Fgf4, Fgfr2, Bmp4, and

Activin A/Nodal) by manual curation. For example, to model FGF

activity and downstream MEK/ERK activation, we included stimulus

sources (bFGF or Fgf4) and receptor availability (Fgfr2) in our GRN.

To complete signal pathway integration, we then defined regulatory

edges from cytokine/receptor-level signaling to their downstream

effectors and feedback from genes to relevant signaling activities

(Fig 2, Table 1, and Appendix Section 3-3). Importantly, signal

activity is not updated asynchronously in our model. Instead, it is

calculated at every simulation step based on the ON/OFF states of

the genes and their update rules (Appendix Table S2). This simu-

lates signaling events as more rapidly occurring and deterministic

than gene regulation.

Previous studies have reverse-engineered the PSC-GRN to eluci-

date critical regulatory relationships (De Cegli et al, 2013; Kushwaha

et al, 2015). To mitigate biases that could arise from manual cura-

tion, we expanded the model to include potential gene regulations

inferred from publicly available mESC gene expression data. We

performed refined graphical Gaussian modeling (GGM; Ma et al,

2007) to infer direct connectedness among genes using a collection of

1,295 publicly available microarray expression datasets for mESCs

(Appendix Section 2 for the details and the justifications of the

method). This resulted in a network of 29 genes including genes

which are predicted to be highly correlated with the previously noted

core pluripotency genes (Lefty1, Pitx2, Dusp6, Smad6, and Smad7)

listed in Table 1. The network included 86 inferred pairwise gene

regulatory relationships (Appendix Table S1A). Directionality was

determined for 76 of these gene pairs by either experimental evidence

or gene function annotation. The directionality for the remaining 10

gene pairs was determined by subsequent model selection based on

fitting to reported single-cell gene expression frequency. Taken

together, manual curation supplemented with reverse engineering-

based GRN reconstruction led to an expanded GRN-signaling hybrid

model consisting of 29 genes, 105 regulatory interactions between

genes, seven signaling pathway activities, and 24 regulations down-

stream of the signals (Table 1 and Appendix Table S2).

Boolean logical functions of a target gene define the consequence

of the binary states of its regulators with AND, OR, and NOT logic

operators. Knowledge of all possible combinations and nesting of

the operators significantly increase the number of possible models.
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Figure 1. Strategy for modeling and simulation of stabilized PSCs.

A Experimental conditions can be set as simulation inputs by defining the
model variables (signal components with black-filled symbols and genes A,
B, and C) as either continuously ON, OFF, or variable.

B Random ABS generates a directed transition graph where binary gene
expression profiles are graph nodes and possible transitions from individual
profiles are edges with a certain probability. PSC populations are assumed
to be stabilized as a group of heterogeneous profiles, which is defined as an
SCC.

C Weighted, subpopulation-averaged gene expression and signaling activity
of a particular SCC are calculated based on transition probabilities and the
binary state of each model component in each heterogeneous profile.

Figure 2. A schematic of the defined PSC gene/signal regulatory
network model.
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Although this extends the capability of the model to describe a vari-

ety of regulatory topologies (Dunn et al, 2014; Xu et al, 2014), our

focus was on applying a test model to the R-ABS/SCC approach to

predict the response of PSC-GRN to a wide range of signaling inputs

involving heterogeneity. We used a biologically relevant and widely

adopted rule where positive inputs are combined using OR functions

and negative inputs are combined using AND functions. This rule

states that a target gene will be present when one of its activators is

present and concomitantly all of its repressors are absent. Excep-

tions were made from manual curation for genes whose coded

proteins likely make a complex and work synergistically in regulat-

ing target gene expression (e.g., Oct4-Sox2 and Oct4-Cdx2). This

resulted in 27,648 possible models including the unresolved direc-

tionalities of the above-mentioned 10 gene pairs, each of which has

a distinct GRN topology. Among these possible models, we selected

the top scoring model whose population-averaged gene expression

level minimized Euclidean distance from single-cell expression data

of mESCs (MacArthur et al, 2012; Kolodziejczyk et al, 2015) in stan-

dard culture conditions that contain LIF and fetal bovine serum (LS;

Appendix Section 3-5 and 3-6). The full representation of the model

is shown in Fig EV2, Table 1, and Appendix Table S2.

Model recapitulates distinct PSC states

Using our GRN model and simulation strategy, we assessed the abil-

ity to predict PSC responses to different input signals. Mouse ESCs

in LIF+serum medium (LS) were simulated by setting LIF as continu-

ously ON and allowing other endogenous signaling to undergo state

transitions based on the logic functions comprising the network

(Fig 3A). Using the LS input rule, we identified only one SCC which

Table 1. Boolean definition for genes in the model.

Gene Gene category Boolean definition

Activin A/Nodal Cytokine (SignalACT or Oct4) and (not Sox2) and (not Lefty1) and (not Gbx2)

BMP4 Cytokine SignalBMP or Gbx2 or Tbx3 or Myc

Dnmt3b Enzyme (Mycn or Tcf3 or EpiTFs) and not (Cdx2 or Klf4)

EpiTFs Lineage TF (SignalBMP or Pitx2 or Dusp6) and (not Cdx2) and not (Klf4 and Sox2)

Esrrb Pluripotency TF (Klf4 or Klf2 or Nanog or (SignalWNT and (not Tcf3))) and (not EpiTFs)

Fgfr2 Receptor ((SignalFGF) or Gcnf or Cdx2) and (not Nanog) and (not Oct4)

Gata6 Lineage TF (Gata6 or SignalERK) and (not Klf2) and (not Nanog) and (not Fgf4)

Gbx2 Pluripotency TF ((SignalWNT and (not Tcf3)) or SignalLIF) and ((Esrrb or Jarid2) and not (Tbx3))

Gcnf Lineage TF (Gata6 or Cdx2) and (not EpiTFs)

Jarid2 Pluripotency TF Klf4 or Oct4

Klf4 Pluripotency TF (SignalLIF or ((Klf2 or Klf4) and Nanog and Esrrb and (Oct4 and Sox2))) and (not EpiTFs)

Nanog Pluripotency TF (Nanog or SignalACT or (Oct4 and Sox2) or Tbx3 or Lrh1 or Klf4) and not (Tcf3 or Gata6)

Oct4 Pluripotency TF (((Oct4 and Sox2) or Nanog or Klf2 or Klf4) and not (Cdx2 and Oct4) and (not Dnmt3b or
Klf2)) or (((Oct4 and Sox2) or Nanog or Lrh1 or Klf2 or Klf4) and (not Gcnf) and (Dnmt3b and
(not Klf2)))

Smad6 Signal antagonist (SignalBMP or Gata6) and (not Oct4)

Smad7 Signal antagonist (Oct4 or Nanog or Esrrb or Klf4 or Tbx3) and (not Gbx2) and (not Jarid2)

Sox2 Pluripotency TF Nanog or (Oct4 and Sox2)

Tcf3 Lineage TF (Nanog or Oct4) and (not SignalWNT)

Cdx2 Lineage TF (SignalBMP or Cdx2) and not (Cdx2 and Oct4)

Dusp6 TF SignalERK

Fgf4 Pluripotency TF/Cytokine Esrrb or Nanog or (SignalWNT and (not Tcf3))

Klf2 Pluripotency TF ((Sox2 and Klf4) or Mycn) and (not Pitx2) and (not Dusp6)

Lefty1 TF (SignalACT or (SignalWNT(not Tcf3))) or Mycn or (Oct4 and Sox2)) and (not Jarid2) and (not
Fgf4)

Lrh1 Pluripotency TF (Tbx3 or Klf4 or (Oct4 and Sox2)) and (not Tcf3)

Mycn TF (Oct4 and Sox2) and (not Nanog)

Pitx2 TF (SignalACT or (SignalWNT(not Tcf3))) and (not Sox2) and (not Jarid2)

Tbx3 Pluripotency TF (SignalPI3K or Tbx3) and (Esrrb or Nanog or Klf4) and (not SignalERK) and (not Tcf3)

Myc Pluripotency TF ((SignalERK or (SignalWNT and (not Tcf3))) or SignalLIF or Gbx2) and (not Nanog)

Pecam1 Pluripotency Marker (Klf2 or Nanog) and (not EpiTFs)

Rex1 Pluripotency Marker (Nanog or Sox2 or Lrh1 or Klf2 or Esrrb) and (not EpiTFs)
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had no outgoing edges. Five distinct steady-state attractors were

also identified in LS conditions. The predicted population-averaged

gene expression levels of pluripotency-associated transcription

factors were comparable with those reported using single-cell RT–

PCR in LS conditions (Fig EV3A). Interestingly, the LS model also

predicted that Oct4 was likely to co-exist with EpiTFs, while Sox2

showed a strong negative correlation to EpiTFs, an observation

consistent with previous reports (Hayashi et al, 2008; MacArthur

et al, 2012; Fig EV3B).

To demonstrate the ability to predict alternate PSC states in

response to changes in input signaling, we next performed simula-

tions for EpiSCs (Brons et al, 2007; Tesar et al, 2007) and naı̈ve

mESCs (Ying et al, 2008) by changing only the input from LS to

bFGF+Activin A (bF+A) or to LIF combined with inhibition of MEK

and GSK3b (2iL), respectively (Fig 3A). Simulations of both bF+A

and 2iL conditions yielded only one PSC-associated SCC (Fig 3B; see

Materials and Methods and Appendix Section 5 for details). Notably,

despite the fact that EpiSC gene expression data were not used to

construct our generic PSC network, the bF+A simulation predicted

expression levels unlike those of mESCs in LS but closely resem-

bling experimental observations for the EpiSC state (Figs 3C and

EV3C). Meanwhile, simulations of the 2iL condition did not show

significant differences in expression compared to the LS condition,

including expression of major pluripotency-supporting factors

(Marks et al, 2012). This is consistent with the biological observa-

tion that LIF is sufficient to maintain mESC-specific gene expression

patterns (Smith et al, 1988). These data demonstrate that changing

model inputs can drive GRN states to those observed in population-

level in vitro experiments.

We next asked whether direct manipulation of the GRN nodes

would lead to shifts between PSC states. This was done by setting

individual genes ON (gain of function; GOF) or OFF (LOF), perma-

nently, regardless of their effector states. These simulations

predicted Klf4, Nanog, Esrrb, Myc, and Gbx2 as drivers of EpiSC to

ESC transition, and Tcf3 to be an inhibitor (Figs 3D and EV3D).

These de novo results are consistent with previous experimental

observations (Guo et al, 2009; Hanna et al, 2009; Bernemann et al,

2011; Festuccia et al, 2012; Martello et al, 2012; Tai & Ying, 2013;

Joo et al, 2014). The model also predicted that activating BMP4

while in bF+A conditions (i.e., EpiSC GRN) buoyed Oct4, Sox2, and

Nanog (OSN) levels (Fig EV3E), an observation that may explain

the positive role of BMP4 in early stages of EpiSC reversion

(Bernemann et al, 2011). Taken together, these findings demon-

strate that our model can be used to predict how manipulating both

extrinsic signals and/or endogenous GRN components yields gene

regulator network topographies associate with distinct PSC states.

LIF stabilizes pluripotency while 2i up-regulates OSN

The medium conditions LIF+serum (LS), 2i+LIF (2iL), and 2i with-

out LIF are all sufficient to support stable PSCs (Nichols et al, 2009;

Wray et al, 2011; Martello et al, 2012; Yeo et al, 2014) and their

GRNs (Nichols et al, 2009; Dunn et al, 2014). Yet, clear morphologi-

cal and phenotypic differences exist between cells cultured in base-

line LS versus those supplemented with 2i (Fig 4A). Therefore, we

searched for quantitative metrics from our Boolean GRN simulation

approach that could explain this observation. We mathemati-

cally defined three metrics: “pluripotency”, “susceptibility”, and

“sustainability” (Fig 4B and Appendix Section 4) as follows. Pluripo-

tency is the population-averaged OSN expression level (sum of Oct4,

Sox2, and Nanog levels). Sustainability is a score that reflects stability

of an SCC in the absence of further perturbation. Susceptibility quanti-

fies the difference between an unperturbed SCC and an SCC with a

perturbation of a GRN component (see “Calculation of population

properties based on SCC” section in Materials and Methods for full

formulations). These metrics facilitated quantitative comparisons of

GRN properties in the context of dynamically stabilized cell states.

Computationally, the SCCs identified in the 2iL and 2i�L (i.e., 2i

minus L, i.e., LIF input was set as OFF) conditions had a higher

pluripotency score than the SCCs identified in the LS condition

(Fig 4C-i). This prediction was validated in vitro with immunocyto-

chemistry for OCT4, SOX2, and NANOG (Fig EV4A) and is consis-

tent with data from previous reports (Kolodziejczyk et al, 2015).

Pairs of individual OSN components were more strongly correlated

in 2i-containing conditions than LS (Fig EV4B), indicating higher

self-sustenance and homogeneity of the core network.

Upon examining sustainability, our simulation scored the 2i�L

model lower than the 2iL and LS models (Fig 4C-ii). As the sustain-

ability score reflects the ability of a subpopulation in a given condi-

tion to maintain itself over time, the prediction infers that the

presence of LIF raises the intrinsic stability of the subpopulation.

This is consistent with previous observations that LIF does not affect

the pluripotency of mESCs in 2i-supplemented conditions, but

enhances colony-forming efficiency (Wray et al, 2010; Martello

et al, 2013).

Finally, to measure the susceptibility metric upon perturbations

to GRN topology in silico, we removed individual regulatory rela-

tionships from the original model and quantified the resulting

change in the population-averaged expression profile. This analysis

demonstrated that the GRN in 2i�L was more susceptible to

perturbations to GRN topology than in conditions containing LIF

(Figs 4C-iii and EV4C). For example, removal of the positive regula-

tory link from Nanog to Esrrb decreased OSN expression levels in

2i�L but not in LS and 2iL. This indicates that this link lacks the

inherent redundancy to sustain OSN levels in the absence of LIF

signaling. This finding confirmed the results from Dunn et al (2014)

that dual LOF of Nanog and Esrrb results in significant loss of

pluripotency in 2i�L but not in 2Il. Additionally, our model recapit-

ulated the outcomes of the single- and double-gene LOF studies

presented in their report (Dunn et al, 2014). Taken together, our

simulations suggest that 2i drives PSCs into a naı̈ve state expressing

homogeneous levels of OSN, in part by supporting the OSN subnet-

work. Furthermore, the addition of LIF to 2i increases sustainability

and decreases susceptibility of the overall GRN to perturbations

which, potentially by functional redundancy or additive effects

(Martello et al, 2013; Fig 4B), are predicted to create barriers to the

exit from pluripotency.

Based on our quantitative metric-based analysis, we next hypoth-

esized the pluripotency GRN supported by different input conditions

(2iL and 2i�L) would be differentially susceptible to exogenous

molecular perturbations. Indeed, simulation of all possible signal

inputs (Fig 4D) predicted that although 2i-containing conditions

(red and blue) give higher overall OSN expression levels than +LIF

(orange) or �LIF (black) conditions without 2i, the 2i�L condition

has a higher variance of OSN levels (F = 0.064, P-val = 8.0e-4;

F = 0.011, P-val = 2.2e-4; F = 0.136, P-val = 1.1e-2 for Oct4, Sox2,
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and Nanog, respectively). Notably, OSN levels were predicted to

decrease in the 2i�L condition only when combined with high

BMP4 and low Activin A/Nodal (2i�L+B�A). To test these

predictions, we measured core pluripotency GRN responses to

combinations of four signaling inputs (LIF, BMP, WNT, and Activin

A/Nodal), both in silico (Fig 4E) and in vitro (Fig EV4E). To fully
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Figure 3. Simulation recapitulates distinct PSC states.

A Simulation inputs for LIF+Serum (LS: orange), 2i+LIF (2iL: red), and bFGF+Activin (bF+A: green) conditions.
B Condition-dependent pluripotent cell populations correspond to strongly connected components (SCCs) in the state transition graphs of asynchronously updated

Boolean models. Gray dots represent unique profiles, and edges represent state transitions among the profiles. Colored edges indicate the transitions within population-
specific SCCs. The number of simulations and the number of steps in each simulation were 300-100, 300-100, 300-300 for LS, 2iL, and bF+A condition, respectively.

C Pinwheel diagram of relative population-averaged expression levels in predicted states (shaded area) under different input conditions (red—mESC conditions, green
—EpiSC conditions) recapitulates experimental gene expression data (solid lines) from microarray and RNA-seq studies.

D In silico single gene GOF/LOF analysis of mESCs and EpiSCs was performed by fixing each gene in the GRN as ON or OFF, in either mESC (LS—orange) or EpiSC (bF+A
—green) conditions. The calculated gene expression levels following each manipulation were mapped onto principle component analysis (PCA) metrics. The individual
gene perturbations that resulted in the changing of overall gene expression of EpiSCs to a more mESC-like one (green dots in orange shaded space) were predicted
candidates for driving reversion from EpiSCs to mESCs.
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recapitulate simulation inputs, all signals that were turned OFF were

validated with a corresponding small molecule inhibitor as listed in

Appendix Table S4 [e.g., �L in simulations = Janus kinase (JAK)

inhibitor; JAKi (J) in experiments]. Because LIF and WNT contri-

bute to the maintenance of naı̈ve mouse pluripotency (Smith et al,

1988; ten Berge et al, 2011), we categorized each condition by the
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Figure 4. Dual inhibition (2i) supports the pluripotency core network (OSN), while LIF stabilizes PSCs.

A Representative bright-field microscope images of mESC colonies in LIF and 2iL conditions with serum. The 2i condition consists of CHIR99021(CH) and PD0325901(PD).
B Schematic illustration of the PSC metrics. The frequency of OSN-high cells reflects the population-level pluripotentiality. Sustainability reflects the intrinsic network

stability during maintenance of the PSC state in the absence of extrinsic stimuli. Susceptibility measures the change of expression profiles to perturbations such as
gene manipulations and signaling inputs and predicts the chance of PSC fate change. The link width among OSN in each condition represents the Pearson’s
correlations among OSN.

C (i) Pluripotency level (OSN expression) of each PSC-associated SCC. (ii) Sustainability scores for each PSC-associated SCC. (iii) Susceptibility of gene expression profiles
against minimal perturbation to GRN topology was assessed in silico by measuring the change of variance in all genes. The error bars represent s.d. of five
independent simulations.

D Predicted population-averaged gene expression levels of OSN in SCCs from all possible combinations of signal inputs (white—without LIF, orange—with LIF, red—
with 2iL, and blue—with 2i�L).

E Four signaling pathways are manipulated in 16 conditions that are divided into four groups based on LIF and Wnt signal manipulations: +L+W (red, 2iL), �L+W (blue,
2iJ), +L�W (orange), and �L�W (white). Note that 2i+JAKi (2iJ) is the in vitro counterpart to the in silico 2i�L.

F High content screening results of gene-expressing cell frequency (x-axis) and predicted population-averaged expression levels (y-axis) of OSN. Each condition is tested
under activated and repressed Activin A/Nodal and BMP signals by addition of cytokines or inhibitors (�A�B). The symbol + indicates the addition of cytokines or
small molecules that results in activation of the signaling pathway, and the symbol � indicates the addition of inhibitors to pathway activity. Circles are 16
combinatorial signal conditions, and triangles are the three control PSC conditions and are colorized using the same scheme outlined in (E). Experimental data are
represented as mean and s.d. of three experiments, each performed in two replicates, and simulation data represent five independent simulations.

Source data are available online for this figure.
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presence or absence of LIF and WNT signaling. Conversely, OSN

levels were high for conditions containing LIF or WNT, both in

simulated and in vitro conditions (Fig EV4F). One notable exception

where OSN levels were low even in the presence of WNT was the

2iJ+B�A condition which is supplemented with BMP4 and ALKi,

the inhibitor for Activin signaling receptor (Activin receptor-like

kinase 4/5/7, ALK4/5/7). Importantly, there was a high degree of

correlation in OSN levels between in silico simulations and in vitro

validations for all conditions tested (Fig 4F). In conditions without

LIF and with high WNT signaling (2iJ), OSN levels were sustained

as high as the conditions with LIF and with low WNT signaling

(Fig EV4G). Interestingly, however, susceptibility of 2iJ conditions

to perturbation by BMP and Activin signaling increased (Fig EV4G,

blue bars). These observations were conserved regardless of the

presence of serum (Fig EV4H). Overall, these studies demonstrate

that pluripotent cell states maintained under different input signal-

ing conditions are differentially susceptible to destabilization of the

pluripotency GRN, with the 2iJ conditions being particularly sensi-

tive to perturbation. Note that a control consensus interactions-only

model which excludes the 10 predicted interactions but includes

those validated from literature or ChIP-based genome interaction

studies did not accurately predict the OSN levels in the various

signal combinations in Fig 4F (Appendix Section 5-4).

More permissive loss of pluripotency from 2i in the absence
of LIF

We next set out to characterize the exit of PSCs from pluripotency

using the susceptible 2iJ-induced state. We first confirmed that

mRNA levels of OSN are decreased in 2iJ+B�A (2i-L+B�A in silico)

after 2 days of culture in the respective conditions (Fig 5A). Further-

more, we found that the population-averaged gene expression levels

of genes typically scored as extraembryonic lineage specifiers (Cdx2

and Gata6) were significantly higher in the 2iJ+B�A condition

versus control conditions (2iL or 2iJ/2i�L) both in simulations and

in qRT–PCR experiments (Fig 5A). Furthermore, deletion of any

combination of two genes from the pluripotency supportive genes

(Esrrb, Gbx2, Klf2, and Jarid2) in the model failed to predict the up-

regulation of Cdx2 in the 2i�L+B�A condition. Differentiation of naı̈

mESCs to trophoblast stem (TS) cell-like cells occurs upon the

forced expression of the trophoblast master regulator Cdx2, through

the addition of medium components (Niwa et al, 2005; Hayashi

et al, 2010). Moreover, apparent totipotency from mESCs derived in

2i (Morgani et al, 2013) has been reported, and BMP signal activa-

tion helps drive trophoblast gene expression from mouse and

human primed PSCs (Brons et al, 2007; Vallier et al, 2009; Bernardo

et al, 2011). We thus asked whether we could use our increased

understanding of pluripotent cell state susceptibility to specifically

direct the exit from pluripotency and access gene expression profiles

normally reticent to differentiation from mESCs.

Taking advantage of our framework’s capacity to predict dif-

ferentiation trajectories upon exit from pluripotency, we scored indi-

vidual SCCs and steady-state attractors as candidates for lineage

bias based on both high expression of lineage markers and low

expression of Oct4. We considered the lineage markers Cdx2 (tro-

phectoderm-associated—TE), Gata4/6 (mesendoderm-associated—

ME or primitive endoderm-associated—PE), and EpiTF genes (post-

implantation epiblast; Figs 5B and EV5A).

To explore conditions predicted to induce TE-associated genes,

we measured Cdx2 protein expression. As Cdx2 can also emerge

during primitive streak development (Bernardo et al, 2011), we also

co-stained with Oct4 and lineage markers Gata4 (endoderm) and

Brachyury (mesoderm; Fig 4C). There was a marked increase in the

Cdx2 single-positive subpopulation in 2iJ+B�A, but not in the

conditions lacking 2i, Jaki, BMP4, or ALKi (Fig 5D). The robust

contribution of 2iJ+B�A toward a Cdx2-high state over time was

confirmed by the frequency of Cdx2+/Oct4� cells after extending

treatment to 5 days (Fig EV5B). To further investigate this Cdx2+

state, we assayed a supplementary panel of TE-associated markers

by flow cytometry and qRT–PCR. We observed that TE-associated

genes, such as Trop2 and Hand1, also showed marked increase in

expression in 2iJ+B�A relative to controls (Fig 5E). Increased

expression of both TE-associated surface markers CD40 and CUB

domain-containing protein 1 (CDCP1; Rugg-Gunn et al, 2012) was

observed in 2iJ+B�A (Figs 5F and EV5C). Importantly, however,

RNA-seq and subsequent PCA demonstrated that there exists a sepa-

ration between mESCs in 2iJ+B�A and trophoblast stem cells (TSCs;

Fig 5G). This suggests that the fate transition of mESCs in 2iJ+B�A

to a TE-like state is incomplete. Nevertheless, this analysis demon-

strates overall consistency between the simulation outputs and the

differential expression profiles of mESCs in 2iJ+B�A from those in

2i�L. The significantly up- or down-regulated genes in 2iJ+B�A

were highly predictable (Fig 5H), a notable achievement for this

complex cell-transition process.

Our analysis thus far demonstrates the strong predictive power

of the simulation framework. We next tested whether 2iJ-treated

mESCs, which we predicted are in an unstable and signal-respon-

sive pluripotent state, would contribute to developing in vivo

embryogenesis differently from other pluripotent conditions. We

aggregated 2iJ-treated (2d) mESCs to totipotent host embryos

(8-cell stage embryos) and allowed endogenous cues to guide dif-

ferentiation of these cells during pre-implantation development.

We noted an increased frequency of 2iJ-treated cells localizing to

TE positions in the blastocyst compared to 2iL conditions (Fig 5I,

left panel), which was confirmed with different cell line (Morgani

et al, 2013; Fig EV5D). However, these TE-positioned cells did not

express Cdx2 at the time they were assayed in vivo and many

seemed to have initiated apoptosis (Fig 5I, right panel). These

results suggest 2iJ-treated cells are in an altered state of pluripo-

tency, but are not fully competent to undergo trophoblast differen-

tiation in vivo, either due to incomplete in vitro programing to a

TSC like state (such as suggested by our RNA-seq analysis) or due

to competing signals received in vivo. These differences between

2iJ/2iJ+B�A-treated mESCs and TSCs, as well as the contradic-

tions between simulations and measurements, suggest a require-

ment for additional TE-lineage specification beyond the Oct4-low/

Cdx2-high state.

Discussion

Pluripotent stem cells represent a powerful platform for the simula-

tion of cell fate transitions (Morris et al, 2014). A variety of methods

have been used to model pluripotency. Prior models of mESC-GRNs

with ordinary differential equations yielded mechanistic insights

into cell fate transitions, but included only a small number of
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network components (Glauche et al, 2010; Herberg et al, 2014).

More recent work has expanded network components in GRN

models by moving from ODEs to logical models and has derived

network connectivity from either population-level knock-in/knock-

down data (Dunn et al, 2014) or single-cell expression data (Xu

et al, 2014). These models, however, were restricted in their ability
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Figure 5. A culture-induced TE-like subpopulation.

A Predicted population-level gene expression levels (left panel) and qRT–PCR-measured relative expressions (right panel; shown in fold-change from the levels of 2iL) of
OSN and lineage markers. Data represent the mean and s.e.m. of three or four biological replicates, the differences between 2iJ and 2iJ+B were examined using a two-
tailed unpaired Student’s t-test, and asterisks indicate *P < 0.1 and **P < 0.05.

B In silico subpopulation analysis via threshold-based characterization for individual SCCs under the input condition of 2i�L+B�A. Stable grouped profiles enriched as
either PSC, TE, ME, PE, or epiblast-like subpopulations were traced in color-coded circles. The circles with solid line indicate SCCs with no outgoing edges
(sustainability score = 1.0), and those with dashed line indicate SCCs with lower sustainability.

C Confocal images of immunostaining of mESCs for Oct4/Cdx2/Gata4 (top) or Oct4/Cdx2/Brachyury (T) (bottom panels) cultured in the given conditions for 2 days.
D Quantification of frequency of subpopulations that exhibit features of differentiation lineages. Data are means and the error bars represent s.d. of three replicates,

and the results were confirmed in two independent studies.
E Comparison pluripotency and extended TE-lineage gene expression levels in various conditions. Data represent the mean of three replicates.
F Flow cytometry histograms showing fluorescence intensity of CDCP1 and CD40 in individual samples of mESC in LS, TS, and mESCs cultured in 2iJ+B�A for 2 days.

Percentage listed is that of positive cells in the 2iJ+B�A condition.
G PCA plot of RNA-seq data for the top 40% of genes that show highest variance across all samples. Distinct cell types and conditions are indicated with different

colors. Circles include day 2 and day 5 samples for 2i�L and 2iJ conditions, and 2 day two samples, day 5 and 11 for 2iJ+B�A condition. Diamonds indicate stable cell
type no culture time defined. Meso indicates mesoderm progenitors.

H Comparison of predicted gene expression levels and RNA-seq-measured gene counts in 2iJ+B�A relative to 2iJ (equivalent to 2i�L in simulation) for 29 genes involved
in the model. The experimental mean relative gene expressions of day 2 samples for the two conditions and the mean relative predicted levels are shown. Black dots
indicate genes significantly up- or down-regulated (P < 0.05) in three 2iJ+B�A-treated samples compared with two 2iJ-treated samples. Genes in blue are up-
regulated in TSC, and those in red are down-regulated in TSC compared with 2iJ-treated samples.

I Left panel: In vivo lineage contribution frequency and chimera efficiency of H2B-GFP mESCs treated with either 2iL or 2iJ in the presence of serum. Lineage contribution
efficiencies were calculated as number of chimeras with cells in epiblast (EPI) or TE positions/total number of chimeras. Note that cells scored as “TE position” did not
express TE marker Cdx2. Chimera forming efficiency was calculated as number of chimeras/number of total aggregates made. Right panel: Representative images of
aggregation chimeras at E4.5. We observed a number of cells in TE positions in chimeras. The appearance of these cells ranged from viable to apoptotic; however, none
expressed Cdx2 and thus were not considered as viable, integrated contributions to the TE lineage. The arrowheads indicate the Cdx2-cells in TE position in chimera.

Source data are available online for this figure.
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to simulate transcriptional heterogeneity and exit from the pluripo-

tent state, in part due to the absence of signaling inputs to GRNs. To

address this limitation, we used expression data from mESCs to

examine our GRN framework and to produce a model of pluripo-

tency that, when perturbed in silico, could recapitulate the signal-

dependent emergence of cell subpopulations observed under analo-

gous in vitro and in vivo conditions. Additionally, by applying

concepts from graph theory to our asynchronous Boolean model of

pluripotency, we demonstrated the ability to model both exit from

pluripotency and heterogeneity (Karwacki-Neisius et al, 2013;

O’Malley et al, 2013; Marucci et al, 2014). Importantly, asynchronous

updates from a small set of initial random profiles can give a robust

prediction of PSC-GRN profiles, and the predictions for each PSC

condition were insensitive to the changes in SCC selection criteria

[i.e., thresholds for SCC size and sustainability (Appendix Sec-

tion 5-3)].

The hierarchical differentiation process of PSCs is often illus-

trated by trajectories of cells, such as in Waddington’s metaphorical

landscape (Goldberg et al, 2007) in which cells bifurcate into dif-

ferent downstream attractors that reflect differentiated cell types

(Yamanaka, 2009; Iovino & Cavalli, 2011). Based on the pluripo-

tency, susceptibility, and sustainability metrics in our model, we

propose that 2i conditions support a population of cells at the top of

this landscape. Activation of the LIF-mediated JAK-STAT pathway

stabilizes cells within the stable local valley of the landscape by

reinforcing the pluripotency GRN, increases the threshold required

to induce differentiation, and participates in shaping the landscape

with regard to preferential (embryonic) versus non-preferential

(extraembryonic) routes. Conversely, inhibition of JAK-STAT signal-

ing destabilizes the pluripotency GRN and allows the expression of

TE-lineage genes specifically in response to activation of BMP4 and

inhibition of Activin A/Nodal signaling.

Although previous reports have demonstrated the apparent abil-

ity of human and mouse primed pluripotent cells to differentiate

into TE-like cells upon activation of BMP signaling (Vallier et al,

2009; Bernardo et al, 2011), these results may be condition- and cell

line-dependent and have not been connected to the underlying

molecular structure of the pluripotency GRN. To date, there has

been no evidence for the ability of cytokines and small molecules to

drive TE differentiation from naı̈ve pluripotent cells. A recent report

from Morgani et al (2013) demonstrated that mESC derived in 2i

conditions, especially 2iL, increased the potential to contribute to

extraembryonic lineages like TE in vivo. However, we observed that

active inhibition of JAK-STAT signaling in the presence of 2i, with

Bmp4 signal activation and Activin A/Nodal signal inhibition,

enhanced the induction of TE-lineage genes due to destabilization of

the PSC-GRN in a modified feedback signaling network environ-

ment. Our cells may require additional signals [such as Notch and

Hippo (Rayon et al, 2014)] or TE-specific transcription factors (such

as Elf5) that were not used here to complete the cell fate transition

to fully functional TE cells. Contexts such as DNA methylation of

Elf5 or inclusion of a FGF signaling positive feedback loop between

CDX2 and Eomes represent possible areas of study in our model (Ng

et al, 2008). Moreover, a higher epigenetic barrier may separate the

TE-lineage and mESCs even in the hypomethylated ground state in

2i (Cambuli et al, 2014).

We anticipate that our graph theory-based Boolean simulation

approach, which predicts changes in gene expression of sustained

cell populations in response to signaling inputs, can be broadly

applied in studies aimed at understanding the key control nodes

triggering cell fate transitions. For example, beyond pluripotency,

this strategy could help to predict aberrant cell fate transitions in

normal or transformed somatic stem cells. In these systems, the

exogenous influences typically described as components of the

stem cell niche serve to further broaden regulatory feedback (Qiao

et al, 2014).

The concept of dynamic heterogeneity that is explored here is

experimentally supported by single-cell tracking studies (Singer

et al, 2014; Filipczyk et al, 2015) and has been applied in stochastic

ODE models of transcriptional noise (Kalmar et al, 2009), as well as

in the inference of stem cell fate (Feigelman et al, 2016). We assume

that heterogeneous populations of stem cells correspond to SCCs in

the state transition graphs of asynchronously updated Boolean

models. However, empirical validation of this assumption would

require live cell tracking of multiple genes and cells. A recently

reported in silico technique (Moignard et al, 2015), which derives

GRNs by retracing measured single-cell expression profiles associ-

ated with asynchronous Boolean transitions, may possibly be used

to evaluate how each SCC reflects inter-cell variability. However,

such methods present ongoing technical challenges with respect to

thresholding continuous gene expression and the quality of the

single-cell expression analysis itself.

To encourage further study using our mESC network and

Boolean simulation strategy, we have implemented our modeling

framework in Garuda. Garuda (http://garuda-alliance.org) is an

open software platform where bioinformatics tools can be discov-

ered and connected into pipelines with other databases and devices

(Ghosh et al, 2011). Through this platform, the research community

will be able to explore and extend our modeling framework without

any software coding requirements. We anticipate future extensions

of the model into a spatio-temporal setting could predict self-orga-

nizing expression patterns in a system where dynamic stability of

state transitions drives dynamic equilibrium. We demonstrated the

power of the model to predict the cell fate outcomes of PSCs

exposed to complex exogenous signals by employing transition

graph analysis of random asynchronous Boolean simulation with

the new metrics for the stability of the subpopulations. As the

framework is amenable to incorporating other levels of biological

control, such as epigenetics or metabolism, it provides great oppor-

tunities to test models of heterogeneity at both the genetic and cellu-

lar (i.e., tumor) levels (Heng et al, 2009; Meacham & Morrison,

2013; Qiao et al, 2014).

Taken together, our in vitro studies confirm the power of our

model to predict cell fate outcomes of PSCs exposed to complex

exogenous signals. We demonstrate that the model can reveal new

biology between different pluripotent cell states including EpiSCs.

We also employ new metrics to demonstrate that mESCs cultured in

2i�L represent a unique cell state that exhibits high OSN levels

(pluripotency) but are simultaneously highly responsive to a broad

array of differentiation-inducing signals (susceptibility). These

metrics represent broadly applicable quantitative strategies for GRN

scoring in biological systems. Our system also predicts changes in

PSC gene expression associate with TE-like cells, an observation

validated by robust single-cell gene and protein expression. Interest-

ingly, our analysis also reveals that typical metrics associated with

changes in cell state in vitro may not translate to in vivo
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functionality where additional signals context or maturation steps

may be required to fully cross cells across fate barriers.

Materials and Methods

Random asynchronous Boolean simulation (R-ABS)

Random asynchronous Boolean simulation (R-ABS) was performed

using two assumptions: (i) Every combination of model variables is

equally likely to be updated in a given step, and (ii) the state-space

is generated with all the transition history of a sufficient number of

consecutive steps from a sufficient number of random initial states.

R-ABS was performed using the BooleanNet ver.1.2.6 Python pack-

age (http://code.google.com/p/booleannet/), with 700 consecutive

update steps from each of 700 random initial states per condition.

Five independent simulations per condition were performed and

consistently resulted in similar population-average expression

probabilities.

Calculation of population properties based on strongly
connected components (SCCs)

Strongly connected components (SCCs) are defined as clusters of

unique expression profiles wherein all profiles are mutually reach-

able. SCCs were identified in the profile transition graph generated

by R-ABS using the NetworkX ver 1.9 Python package.

For a particular SCC with n unique expression profiles, the tran-

sition matrix (M) with n rows and columns is defined. Each element

(mij) of M in row i and column j holds the value of the edge proba-

bility (i.e., accessibility from a source profile j to its target profile i)

ranging from 0 to 1, which represents the relative transition frequen-

cies from a specific expression profile to one of its target profiles

among all transitions from the source profile. The profile probability

vi of profile i indicates the chance that a certain cell resides at profile

i in the SCC. The matrix product of mij and vj indicates the profile

probability (vj) of the source profile j, which has a transition path to

i. The distribution approaches a limiting distribution v, where

v = M × v is satisfied. Assuming the cell population is a sum of

probabilities of heterogeneous single-cell states (profiles), Σn(vn) is

equal to 1. Solving v under these constraints gives the principal

eigenvector of M that tells us the expected population average when

the system reaches a dynamic steady state after a certain number of

simulation steps from any profile in the SCC.

For each SCC, we define the transition matrix M with elements

mij as follows. For any source profile j and target profile i within a

particular SCC, the probability of transitioning from j to i (mij) can

be calculated as the observed frequency of transitions from j to i

divided by the observed frequency of transitions from j to any pro-

file in the SCC. Thus:

mij ¼ fijP
k2K fik

;

where K is the set of all profiles in the SCC.

Sustainability for a particular SCC indicates the probability of

remaining within an SCC, that is, 1—probability of outgoing pro-

file transition from the SCC, reflecting a quantitative measure of

the intrinsic stability of the GRN within the SCC. The sustainabil-

ity score (Sscc) is defined as Sscc = 1 � (Σj(vj) × Σk(vjk)), ranging

from 0 to 1, assuming profile j (inside the SCC) has outgoing

edges toward profile k (outside the SCC). The expression

frequency (p) of model component (g) in a particular SCC can be

calculated as a summation of all v with ON expression of the

gene:

pg;scc ¼ Sscc �
Xn

j

vj � f1ðjg ¼ ONÞj0ðjg ¼ OFFÞg;

where jg denotes the binary state of g in the profile j. To avoid

overestimation of v and to maintain calculation accuracy of popula-

tion-averaged expression level, we defined the thresholds for SCCs

to be considered in the analysis as the number of profiles > 10 and

sustainability score > 0.7. As a larger dynamic stable state of PSCs

is more likely to exist over time, it will become a larger determi-

nant of population-averaged expression levels. Consequently,

population-level gene expression level is calculated by averaging

multiple SCCs:

pg ¼
P

scc pg;scc � nsccP
scc nscc

;

where r is the number of SCCs found under the given condition

satisfying the predefined threshold, and n is the number of unique

profiles involved in the SCC. A small constant value for p (p =

1e-5) was applied where necessary to avoid zero division.

We classified each SCC into one of four lineage identities based

on the SCC-averaged expression levels of lineage and pluripotency-

associated genes (Cdx2, EpiTFs, Gata6, and Oct4) in the associated

SCC. Each SCC and steady-state attractor are classified based on the

thresholds on the SCC-averaged expression levels (Cdx2: 0.7,

EpiTFs: 0.2, Gata6: 0.5 and Oct4:0.3). High expression of individual

lineage markers in separate SCCs is used to classify TE (Cdx2),

epiblast (EpiTFs), PE (Gata6), and PSC (Oct4), while ME is classified

by high co-expression of Cdx2, EpiTFs, and Gata6 in the same SCC

(Morgani et al, 2013). The population-averaged subpopulation

frequency is calculated proportionally to the size and sustainability

of each SCC, as follows:

pA ¼ nA � SAP
scc nscc � Sscc ;

where the number of unique profiles in the SCC A and sustainabil-

ity of A are indicated as nA and SA, respectively. The population-

averaged gene expression and sustainability scores for simulated

pluripotent populations are shown in Dataset EV2.

GRN inference

We collected mESC expression data on 1,295 genes using the Affy-

metrix Mouse 430 2.0 Array from the Gene Expression Omnibus

(GEO) database at the US National Center for Biotechnology Infor-

mation (NCBI) and ArrayExpress at the European Bioinformatics

Institute (EBI; Dataset EV1). Graphical Gaussian modeling (GGM)

was employed to infer direct regulatory networks between gene

pairs based on partial correlations. Data from all 45,101 probe sets
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were quantile normalized with the R/Bioconductor limma package.

The probe sets were then collapsed into 13,879 unique genes by

taking mean values of probes annotated to the same gene. For each

of the 20,000 iterations, 1,000 genes were randomly sampled for

pairwise partial correlation analysis with the GeneNet package in R.

The GGM score of each gene pair was defined as the lowest partial

correlation for the pair over all iterations satisfying an absolute

Pearson correlation > 0.3 and P < 0.05. Gene-to-gene links with

positive/negative-high GGM scores (> 0.03 or < �0.03) were

considered as candidate regulatory edges.

Model selection

The candidate models were evaluated by comparing the Euclidean

distance between predicted population-averaged expression levels

and observed frequency of gene-expressing cells in single-cell data-

sets (MacArthur et al, 2012; Kolodziejczyk et al, 2015). Both the

simulation and the experiment were performed in the control LS

condition. The mRNA expression levels of single cells were bina-

rized by k-means clustering across all samples with k = 2, from

which the frequency of gene-expressing single cells in the popula-

tion was calculated. The Python SciPy package was used to perform

k-means clustering. As there are two sets of single-cell transcrip-

tomic reference profiles, the average values of the frequencies from

both datasets were used.

Cell culture

Maintenance of R1 mouse embryonic stem cells (mESCs) was

carried out in serum-containing and feeder-free conditions as

described previously (Chang & Zandstra, 2004). Validation of

predicted responses to exogenous signaling was performed in

serum-containing medium supplemented with combinations of the

following cytokines/small molecules: LIF (Millipore ESG1107—

10 ng/ml), JAK inhibitor (EMD Millipore 420097—2.0 lsM), BMP4

(R&D Systems 314-BP-010—10 ng/ml), LDN193189 (Reagents

Direct 36-F52—0.1 lM), CHIR99021 (Reagents Direct 27-H76—

3 lM), Dkk1 (R&D Systems 1765-DK-010—275 ng/ml), bFGF

(Peprotech 100-18B—20 ng/ml), PD0325901 (Reagents Direct 39-

C68—1 lM), Activin A (R&D Systems 338-AC-050—20 ng/ml), and

ALK5 inhibitor II (Enzo Life Sciences ALX-270-445—10 lM and

Cedarlane ALX-270-445 for RNA-seq). Trophoblast stem cells (TSCs)

were cultured as described previously (Tanaka et al, 1998). Meso-

derm progenitor cells were generated from embryoid bodies (EBs)

in differentiation medium containing Iscove’s modified Dulbecco’s

medium (IMDM; Thermo Fisher Scientific) and Ham’s F-12 nutrient

mix (Thermo Fisher Scientific) supplemented with 1× B-27 supple-

ment (Thermo Fisher Scientific), 1× N-2 supplement (Thermo Fisher

Scientific), 2 mM Glutamax (Thermo Fisher Scientific), 100 U/ml

penicillin–streptomycin (Thermo Fisher Scientific), 0.05% bovine

serum albumin (BSA; Wisent), 150 lM monothioglycerol (MTG;

Sigma), and 0.5 mM ascorbic acid (Sigma). On day 2, EBs were

harvested, dissociated into single cells, and re-aggregated in 100-

mm Petri dishes (BD Biosciences) with differentiation medium

further supplemented with BMP4 (1 ng/ml), Activin A (2 ng/ml),

and Wnt3a (3 ng/ml). Mesoderm progenitors were isolated either

before or 24 h after addition of IWP-2 (Reagents Direct 57-G89—

2 lM) to each Petri dish on day 3.

mRNA quantification with qRT–PCR

Primer sequences were obtained from PrimerBank (Spandidos et al,

2010) and are listed in Table 2. Gene expression levels were

measured by qRT–PCR as described previously (Onishi et al, 2012).

Briefly, cells were lysed and RNA was isolated using the PureLink�

RNA Mini Kit (Life Technologies). The RNA was converted to cDNA

using SuperScript III Reverse Transcriptase (Life Technologies) and

amplified in FastStart SYBR Green Master Mix (Roche) using the

7900HT Fast Real-Time PCR System (Thermo Fisher) with an

annealing temperature of 60°C. Each dataset was normalized to

b-actin in each condition and then normalized to the control.

In vitro immunostaining and quantification

Cells were fixed and stained as described previously (Onishi et al,

2012). The following antibodies were used at a 1:200 dilution: Oct4

(BD Biosciences 611203), Oct4 rbIgG1 (Cell Signaling 2840S), Sox2

(R&D Systems MAB2018), Nanog (eBiosciences 14-5761-80), Cdx2

(BioGenex MU392-UC), Gata4 (Santa Cruz Biotechnology sc-1237),

and Brachyury (R&D Systems AF2085). Stained cells were quantified

using the Cellomics (ThermoFisher) high content screening plat-

form. The frequencies of positive cells for single genes were

assessed by counting the single cells whose expression levels are

above certain threshold (assessed based on the bimodal distribution

of the expression level in LIF+Serum conditions) which is common

across each technical replicate (i.e., each plate) including two

biological replicates for each condition.

Flow cytometry

Cells (mESCs and TSCs) were first stained for surface markers

CDCP1 (R&D Systems AF4515) and CD40 (BD Biosciences 562846)

using antibodies at 1:100 dilutions and assayed using flow

Table 2. Primer sequences used in the study.

Gene Forward Primer Reverse Primer

Oct4 AGTTGGCGTGGAGACTTTGC CAGGGCTTTCATGTCCTGG

Nanog TTGCTTACAAGGGTCTGCTACT ACTGGTAGAAGAATCAGGGCT

Sox2 GCTCGCAGACCTACATGAAC GCCTCGGACTTGACCACAG

Otx2 TATCTAAAGCAACCGCCTTACG AAGTCCATACCCGAAGTGGTC

Eomes GGCCCCTATGGCTCAAATTCC CCTGCCCTGTTTGGTGATG

Gata6 GGCAGTGTGAGTGGAGGTG TGGTACGTTCCGTTCAGCG

Gata4 CCCTACCCAGCCTACATGG ACATATCGAGATTGGGGTGTCT

Trop2 GTCTGCCAATGTCGGGCAA GTTGTCCAGTATCGCGTGCT

Fgf5 TGTGTCTCAGGGGATTGTAGG AGCTGTTTTCTTGGAATCTCTCC

Bry (T) GCTGGATTACATGGTCCCAAG GGCACTTCAGAAATCGGAGGG

b-actin GAAATCGTGCGTGACATCAAAG TGTAGTTTCATGGATGCCACAG

Furin TCGGTGACTATTACCACTTCTGG CTCCTGATACACGTCCCTCTT

Gata3 AAGCTCAGTATCCGCTGACG GTTTCCGTAGTAGGACGGGAC

Elf5 GACTCCGTAACCCATAGCACC GCTGAACAGATCGGTCCAAGG

Tfap2c TACCAGCCGCCTCCTTACTT TCCAGCCCTGAAATATGGGGT

Hand1 GGCAGCTACGCACATCATCA GCATCGGGACCATAGGCAG
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cytometry (BD LSRFortessa). Cells were also stained with a live/

dead stain (LIVE/DEAD Fixable Far Red Dead Cell Stain Kit for fixed

cells, 7-AAD for live cells—Life Technologies) and gated for live

cells. Final graphs were generated using FlowJo software.

RNA-seq

The extraction of RNA was conducted using the PureLink RNA Mini

Kit (Ambion, Life Technologies, Cat no. 12183018A and 12183025)

according to the manufacturer’s instructions. Cells were homoge-

nized using a QIAshredder (Qiagen, Cat no. 79654). Cell pellets were

frozen at the treatment-specific time points, and RNA was extracted

from all pellets at the same time for each analysis. Quality control of

total RNA was done on an Agilent Bioanalyzer 2100 RNA Nano chip

following Agilent Technologies’ recommendation. Next, RNA

libraries were sequenced on an Illumina HiSeq 2500 platform using

a High Throughput Run Mode flowcell and the V4 sequencing chem-

istry following Illumina’s recommended protocol to generate paired-

end reads of 126-bases in length. Reads were trimmed for adapters

and a phred33 quality cutoff of 20 using TrimeGalore with cutadapt

and mapped to the Ensembl NCBIM37 mouse genome using STAR

2.4.2a. To adjust batch effects between experiments of two distinct

days, COMBAT, an R package for Empirical Bayes method (http://

statistics.byu.edu/johnson/ComBat/) was utilized.

Chimera generation and analysis

Joshua Brickmann (Copenhagen) provided the E14 Ju09 HV H2B-

Tomato mESCs (Morgani et al, 2013) and CAG H2B-eGFP ESCs were

derived from mice (Hadjantonakis & Papaioannou, 2004). These

mESCs were maintained in mESC medium containing 2i/LIF/serum.

Cells were passaged twice with 2iL on mouse embryonic fibroblasts

and inactivated with no growth factor medium. Cells were then

treated for 48 h with 2i/LIF/serum or 2i/Jaki/serum on mouse

embryonic fibroblasts. Chimeric embryos were generated by morula

aggregation. Clusters of 5 to 10 mESCs were aggregated with wild-

type CD1 morulae and cultured in potassium (K) simplex optimized

medium (KSOM; Chemicon) under paraffin oil at 37°C and 5% CO2

until the late blastocyst stage (embryonic day 4.5). Blastocyst

embryos were subjected to immunofluorescent staining using anti-

Cdx2 (1:600, Abcam ab76541), anti-Gata4 (1:100, Santa Cruz

Biotech sc-9053), anti-Sox2 (1:100, R&D Systems AF2018), anti-GFP

(1:400, Abcam ab13970), and anti-RFP (1:100, Abcam ab65856)

antibodies. Imaging was performed using a Quorum WaveFX spin-

ning disk confocal system and Volocity acquisition software (Perkin

Elmer). The frequency of cells localizing to extraembryonic—

trophectoderm (TE) positions in the blastocyst was counted. The

investigators were not blinded to allocation during outcome assess-

ment, and the experiments were not randomized.

Data and statistical analysis

We assumed that each well of a culture dish behaves as a biological

replicate. No statistical methods were used to predetermine sample

sizes. Images including immunostaining experiments shown repre-

sent at least three independent runs. Simulation data were derived

from five individual runs for the indicated inputs. For the calcula-

tion of P-value, Wilcoxon exact rank test (R: coin package) was used

for comparison of data groups unless otherwise stated. All tests of

statistical significance were two-sided.

Data and software availability

RNA-seq data have been deposited in the Gene Expression Omnibus

(GEO) under the accession number of GSE88928.

The simulation framework developed in this study is imple-

mented as a set of downloadable Garuda gadgets (http://www.ga

ruda-alliance.org). Garuda is an open platform that enables interop-

erable connections between bioinformatic software, databases, and

devices into complete pipelines. We have provided gadgets for the

Boolean network simulation including R-ABS (http://50.112.254.

186/node/88), the SCC profile calculation (http://50.112.254.186/

node/87), and the binarization of gene expression data (http://50.

112.254.186/node/86). The Python source code is also available at

(https://gitlab.com/stemcellbioengineering/garuda-boolean).

Expanded View for this article is available online.
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