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Objectives: To analyze the characteristics of oral microbiota in plateau and

plain youth and the possible function of the microbiome.

Materials and methods: A total of 120 healthy young males (80 on the plateau,

40 on the plain) completed this cross-sectional study. Oral microflora samples

were collected from all participants. The bacterial 16S rDNA was amplified

using PCR and sequenced using Illumina MiSeq high-throughput sequencing.

The data were analyzed to determine themicrobial distribution and community

structure of the oral microflora from the two groups. Metastats was used to test

differences in relative species abundance between the groups. The correlation

between the abundance of specific bacteria and blood indicators was also

analyzed.

Results: As demonstrated by alpha and beta diversity, the plateau group had

lower microbial richness and a less even distribution of oral microbiota than the

plain group. All predominant phyla and genera were qualitatively similar

between the two groups, but their relative abundances differed. The relative

abundance of bacteria in the phylum Firmicutes was significantly higher in the

plateau group than in the plain group. At the genus level, Streptococcus spp.

and Gemella spp. were also more abundant in the plateau group. The

functional prediction indicated vigorous microbial metabolism in the oral

bacterial community. We also found that the relative abundance of
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Streptococcus spp., the dominant genus, was positively correlated with

triglyceride levels in the plateau group.

Conclusions: With increasing altitude, the diversity of oral microbiota and the

relative proportion of predominant bacteria were altered. The distribution and

related function of Streptococcus spp. were prominent in plateau samples. This

comprehensive study of the relationship between oral microecology and

elevation provides a point of reference for studying the human body’s

adaptability or inadaptability to high altitude.
KEYWORDS

oral microbiota, high-throughput sequencing, biodiversity, altitude, relative
abundance, metabolic function, triglyceride
Introduction

The body has at least 10 times as many microbes as our own

cells (Lu et al., 2014). The human microbiome could be called

the second human genome, and its composition is closely related

to human disease and health. Microbiome imbalance, destroying

the stability of the symbiotic microbiota composition, has a

direct impact on human health, involving the host’s immune

response and metabolism (Duran-Pinedo et al., 2021). The

abundance of the human oral microbiome plays an important

role in maintaining the balance of the oral environment and

preventing tooth decay and other oral diseases, which is second

only to that of the gastrointestinal tract. In addition, the change

of oral microflora is associated with some diseases such as

diabetes, bacteremia, endocarditis and cancer. Owing to the

wide impact of oral microflora on the body and the

convenience of sampling, oral microbiome was used for

comparative study among different groups.

Many people live or travel to high altitudes and are exposed

to low barometric pressure and low oxygen, which leads to a

number of physiological responses, including changes in the

microbial community (Dong et al., 2021). In some cases,

however, adverse factors such as hypoxia can cause

maladaptive reactions, lead to various forms of acute and

chronic altitude disease, such as hypertension, heart failure,

asthma, high altitude pulmonary edema, and even cognitive

impairment (Mallet et al., 2021; Wuyam et al., 2022). The

etiological study and ecological prevention of altitude sickness

have gradually become the significant health issues. With the

continuous development of molecular biology techniques, high-

throughput sequencing has become an effective method for oral

microflora analysis, which can better research the relationship

between oral microbiota and high altitude.
02
Therefore, in this study, Illumina MiSeq high-throughput

sequencing was used to compare the diversity and structure of

oral microbial community between the healthy young people

living on the plateau for one year and those on the plain. The

study provides basic reference for further understanding of the

microbial changes in altitude adaptation and novel methods of

altitude diseases prevention and treatment (Harkins et al., 2020).
Materials and methods

Subjects selection

Eighty healthy males living for 12 months on a plateau

(about 4000 meters above sea level, oxygen content 14.55%,

atmospheric pressure 61.7KPa), who came from different places

in China, were randomly selected as the group 1. In addition,

randomly selected forty healthy men who were together for 12

months because of work constituted the group 2 in an area of

North China (altitude 45 meters, oxygen content 20.87%,

atmospheric pressure 100.8KPa). The inclusion criteria: (a)

male between the ages of 18-25, (b) self-reported no organic

disease, (c) good oral hygiene without bad eating habits. The

exclusion criteria: (i) those who were taking lipid-lowering

drugs, (ii) antibiotics had been used for 5 days or more within

last 2 months, (iii) suffering from infectious diseases, contagion,

endocrine systemic disease, or abnormal immune function, (iv)

patients with benign and malignant tumors, (v) suffering from

various oral diseases such as mouth abscesses, (vi) long-term

heavy smokers. These participants were fully aware of the

purpose of the study and signed informed consent. This study

was reviewed by the Ethics Committee of PLA General Hospital

(S2020-363-01).
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Acquisition of oral microflora samples
and blood indexes

Routine blood measurements and biochemical analyses

were conducted on samples collected from all study subjects

(with their informed consent) during a physical examination.

Measurements included red blood cell counts, blood lipid

levels, total cholesterol (TC), triacylglycerol (TG), and

aspartate aminotransferase (AST) levels. Blood samples and

oral microflora samples were col lected from study

participants when they first awoke in the morning before

they ate, drank, or brushed their teeth. A sterile cotton swab

was thoroughly rubbed and rotated on the buccal mucosa, on

the root of the tongue, and in the saliva. The tip of the swab

was then placed in a cryopreservation tube and stored

at -80°C.
DNA extraction and PCR amplification

Total genomic DNA samples were extracted using the

OMEGA Soil DNA Kit (M5635-02) (Omega Bio-Tek,

Norcross, GA, USA), and stored at -20°C prior to further

analysis. The quantity and quality of extracted DNA were

measured using a NanoDrop NC2000 spectrophotometer

(Thermo Fisher Scientific, Waltham, MA, USA) and 1.2%

agarose gel electrophoresis, respectively. Forward primer 338F

(5’-ACTCCTACGGGAGgCAGCA-3’) and reverse primer 806R

(5’-GGACTACHVGGGTWTCTAAT-3’) were used for PCR

amplification of the V3-V4 region of the bacterial 16S rRNA

gene. Sample-specific barcode sequences were assigned. PCR

components included 5mL buffer (5×), 0.25mL Fast PFU DNA

polymerase (5U/mL), 2mL (2.5mM) dNTPs, 1mL (10uM) of each

forward and reverse primers, 1mL DNA template and 14.75mL
double-distilled H2O. The thermal cycle consisted of initial

denaturation at 98°C for 5 min, followed by 24 cycles of

denaturation at 98°C for 30 sec, annealing at 52°C for 30 sec,

and extension at 72°C for 45 sec, with a final extension of 5 min

at 72°C. PCR amplicons were purified with Vazyme V AHTSTM

DNA Clean Beads (Vazyme, Nanjing, China) and quantified

using the Quant-iT PicoGreen dsDNA Assay Kit (Invitrogen,

Carlsbad, CA, USA).
Illumina MiSeq sequencing

Amplicons were pooled in equal amounts, and the

sequencing was performed using the Illlumina MiSeq

platform (Illumina, San Diego, USA) with MiSeq Reagent Kit

V3 at Beijing Qinglian Biotech Co.,Ltd. To ensure the

sequencing quality, the optimal sequencing length of the

target fragment was 200-450 bp. Before sequencing, Agilent
Frontiers in Cellular and Infection Microbiology 03
High-Sensitivity DNA Kit was used to conduct quality

inspection on Agilent Bioanalyzer. Make sure the qualified

libraries had only one peak.
Data processing and analysis

FLASH (https://sourceforge.net/projects/flashpage/Version

1.2.11) (Magoč and Salzberg, 2011) was used to splice the

reads from each sample to obtain the original data. Then

Mothur (https://mothur.org/Version 1.35.1) (Schloss et al.,

2009) was used to remove sequences that were too short

(≤200bp) or too long (≥500bp). Chimera was removed using

UCHIME (Edgar et al., 2011) with GOLD dataset (Haas et al.,

2011) as a reference. A high-quality sequence was then obtained.

Operational taxonomic units (OTUs) were clustered with a

97% similarity cutoff by USEARCH (http://www.drive5.com/

usearch/Version 7.0) (Edgar, 2013). The RDP classifier (Wang

et al., 2007) was used to systematically classify OTU sequences

based on Bergey’s taxonomy, with the SILVA database (Pruesse

et al., 2007) as a reference. Taxonomic classification can be

divided into six levels above the species level: kingdom, phylum,

class, order, family, and genus. The default threshold of

annotated species analysis was 80% (the frequency of an OTU

in the entire sample), below which a species was defined as

unclassified. Alpha and beta diversity analyses were conducted

on homogenized sample data based on OTUs. Phylogenetic

investigation of communities by reconstruction of unobserved

states (PICRUSt, version 1.0.0) (Langille et al., 2013) analysis

showed that the gene function spectrum of corresponding

bacteria could be predicted by the 16S rRNA gene sequence.

Samples from the two groups were compared using Student’s t-

test or the Mann-Whitney U test, and the proportions of

counting data between groups were compared using a Chi-

square test. Metastats (http://www.drive5.com/usearch/)

(White et al., 2009) was used to compare differences in the

relative abundance of species between plain and plateau groups.

Spearman correlation analysis was used to examine the

relationship between species abundance and blood-related

indices. SPSS 25.0 software (SPSS Inc, Chicago, IL, USA) was

used for all statistical analyses, with statistical significance

between groups defined as P < 0.05.
Results

General characteristics

Both study groups consisted of young Chinese males. There

were no statistically significant differences in age, education, or

teeth-brushing habits between group 1 (the plateau group) and

group 2 (the plain group). Most of the participants in both
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groups had high-school educations and brushed their teeth twice

daily (Table 1).
Species annotation of sequencing results

A total of 120 oral mucosal swab samples were collected

from 80 plateau males and 40 plain males. Through high-

throughput sequencing, the sequence was clustered into an

OTU with a similarity greater than 97%. The average sequence

number of oral microflora from all subjects was 83978, and the

mean sequence length was 466 bp. Then the OTUs number of

cluster was 4303, in which 38 phyla, 79 classes, 138 orders, 238

families and 406 genera were annotated.
The alpha diversity analyses between the
plateau and plain groups

The alpha diversity analyses between the plateau group and

the plain group are outlined in Table 1 and Supplementary

Figure 1. Compared to the bacterial biodiversity in plain group,

that in plateau group was observed to exhibit a significantly

lower level, which was reflected in a lower diversity indexes such

as shannon index (1.9 ± 0.7 vs 2.7 ± 0.9, P < 0.001), and

npshannon index (1.9 ± 0.7 vs 2.8 ± 0.9, P < 0.001). On the

contrary, the simpson index of the plateau group was higher

than that of the plain group (0.4 ± 0.2 vs 0.2 ± 0.2, P < 0.001).

As shown in Figure 1, the microbial species in the plain

group (the right third of the graph) were more evenly distributed

than in the plateau group. In Supplementary Figure 2, the rank

abundance curve reflects the richness and evenness of samples.

The larger the value on the horizontal axis, the higher the OTU

richness. The flatter the curve, the more even the OTU

distribution. These results show that the distribution of
Frontiers in Cellular and Infection Microbiology 04
microbial species in the plain group (group 2) was more

uniform than that in the plateau group (group 1).
The beta diversity analyses

Figure 2 shows that each sample was represented by a dot,

with circles of different colors representing different groups. The

similarity and dissimilarity of bacterial community structures

between the two groups were evaluated by PCoA that based on

Bray-Curtis distances at the OTU level at 97% identity. The

distribution of the two groups overlapped partially, but there

were also obvious separations. PC1 explained 8.8% of the

variation observed. PC2 and PC3 explained 5.8% and 4.3% of

the variation, respectively.
Comparison of bacterial composition of
two groups

As shown in Figure 1, there were similarities in the

compositions of phyla in the two groups, but meanwhile some

significant differences existed. Supplementary Figure 3 also

showed that, at phyla level, there were statistically significant

differences in the abundance of seven microorganisms between

groups. Firmicutes was enriched in the plateau group. However,

Proteobacteria, Bacteroidetes, Candidate division TM7,

Acidobacteria, Eukaryota_unclassified and Tenericutes were all

significantly more abundant in the plain group (all P <

0.05, Table 2).

Venn diagram can be used to depict the number of common

and unique OTU or species, which can intuitively show the overlap

of core microbiome between the two groups. Each group contained

multiple samples, and if the number of samples of a certain OTU or

species detected reached more than half (≥50%) of the total number
TABLE 1 Comparison of general characteristics and Alpha diversity between the two groups.

plateau group plain group t or c2 P value

Age,year 19.6 ± 1.5 19.9 ± 1.0 -1.33 0.185

Ethnic Han,n(%) 73(91.3) 39(97.5) 0.820 0.365

Completion of high school,n(%) 69(86.3) 35(87.5) 0.036 0.849

Brush teeth twice a day,n(%) 69(86.3) 34(85.0) 0.276 0.871

nseqs 63657.8 ± 11781.0 57057.4 ± 11720.9 2.89 0.004

sobs 568.2 ± 138.4 619.1 ± 149.7 -1.85 0.067

Chao index 799.3 ± 178.4 828.4 ± 173.2 -0.85 0.397

Ace index 885.6 ± 197.7 890.9 ± 167.7 -0.15 0.884

coverage 99.7 ± 0.1 99.6 ± 0.1 1.79 0.075

Shannon index 1.9 ± 0.7 2.7 ± 0.9 -5.06 <0.001

Npshannon index 1.9 ± 0.7 2.8 ± 0.9 -5.05 <0.001

Simpson index 0.4 ± 0.2 0.2 ± 0.2 5.31 <0.001
front
nseqs, the number of sequences clustered to OTUs; sobs, the number of observed species.
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of samples in the group, this group was considered to contain this

OTU or species. We identified 114 species in each group. Among

them, 107 species were uniform, occupying 88.43% of all the species

detected, which suggested a steady composition of the microbiome

in oral taken from both plateau and plain males. The other 14

species were not shared in two groups, and were considered to be

variable microbiomes. 7 species could be found only in the plateau

group, and they were Blastococcus, Gemmatimonadaceae

unclassified, Lactobacillus, Sphingomonas, Rhodobium,
Frontiers in Cellular and Infection Microbiology 05
Akkermansia, and Bacteroides. while there were also 7 species

unique to the plain group, which were Allisonella, Frankiales

unclassified, Micrococcales unclassified, Hyphomonadaceae

unclassified, Butyrivibrio, Spirochaetaceae unclassified, and

Acinetobacter (Supplementary Figure 4).

The volcano map showed the statistical differences in the

species distribution at genera level between the two groups

(Figure 3). We took the top 10 bacteria genera in abundance for

comparative analysis, which accounted for more than 90% of the
FIGURE 2

UniFrac ranking diagram based on principal coordinate analysis [2A (Left): three-dimensional, 2B (Right): two-dimensional. group 1: plateau
group; group 2: plain group) The similarity and dissimilarity of bacterial community structures between the two groups were evaluated by PCoA
that based on Bray-Curtis distances at the OTU level at 97% identity. The distribution of the two groups overlapped partially. PC1 explained 8.8%
of the variation observed, and PC2 explained 5.8% of the variation.
FIGURE 1

Histogram of flora distribution (taking phyla for example) The points on the horizontal coordinate represented individual objects of study.
Different colors indicated different phyla, and the length of each colored band suggested the amount of specific phylum in an individual.
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total (Figure 4). Streptococcus and Gemella were significantly

enriched in plateau group, while Haemophilus, Prevotella,

Veillonella, Neisseria, Fusobacterium and Porphyromonas all

exhibited relatively higher abundance in the plain group (all P <

0.05, Supplementary Table 1 and Figure 5).
Function prediction

The PICRUSt program was performed to help obtain

information about the function profile of the microbiome in

oral by 16S rRNA gene sequence. As shown in Figure 6, the

function distribution of each sample in the plain group (the right

third of the graph) was significantly different from that in the
Frontiers in Cellular and Infection Microbiology 06
plateau group (the left two-thirds of the figure). After the

correlation analyses between different bacteria and gene

functions, we revealed immune system was positively

correlated with the relative abundance of Prevotella (r=0.78,

P < 0.05). And the relative abundance of Streptococcus was

positively correlated with carbohydrate metabolism, cell growth

and death, digestive system, infectious diseases, membrane

transport, signaling molecules and interaction, xenobiotics

biodegradation and metabolism, nucleotide metabolism,

transcription and translation, respectively (all r > 0.7, all P <

0.05), negatively with the possibility of cancers (r=-0.74, P <

0.05). Besides, Neisseria relative abundance was positively

associated with circulatory system and neurodegenerative

diseases (both r > 0.8, both P < 0.05, Supplementary Table 2).
FIGURE 3

The volcano map showed the difference at genera level {Red dot: met log2[mean(A)/mean(B)] > 1 and p < 0.05 and q < 0.05 (advanced
standard). green dot: only met log2[mean(A)/mean(B)] > 1 and p < 0.05 (primary standard). Gray dot: Taxonomy that did not meet any of the
above criteria.}.
TABLE 2 Comparative table of the abundance of each phylum between two groups (top 10 phyla).

taxonomy mean total plateau group plain group P value

Firmicutes,% 58.57 75.01 ± 1.40 48.15 ± 3.66 <0.001

Proteobacteria,% 14.86 11.84 ± 0.84 22.35 ± 1.82 <0.001

Bacteroidetes,% 12.01 6.77 ± 0.77 20.45 ± 2.57 <0.001

Actinobacteria,% 4.32 4.17 ± 0.55 5.27 ± 0.68 0.184

Fusobacteria,% 1.21 0.84 ± 0.19 1.59 ± 0.72 0.399

Synergistetes,% 0.52 0.41 ± 0.07 0.71 ± 0.23 0.206

Candidate division TM7,% 0.41 0.33 ± 0.05 0.59 ± 0.11 0.044

Acidobacteria,% 0.17 0.14 ± 0.02 0.23 ± 0.03 0.013

Eukaryota_unclassified,% 0.10 0.05 ± 0.01 0.15 ± 0.03 0.005

Tenericutes,% 0.09 0.07 ± 0.01 0.13 ± 0.02 0.043
front
P < 0.05, the differences between groups were statistically significant.
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Correlation analysis between oral
microbiota and common blood
indicators

In the plateau group, Streptococcus relative abundance was

positively correlated with triglyceride level significantly (r=0.247,
Frontiers in Cellular and Infection Microbiology 07
P=0.027). In the plain group, hemoglobin level was negatively

correlated with the relative abundance of Prevotella (r=-0.558)

and Veillonella (r=-0.347), both P < 0.05. Similarly, the number

of RBC correlated negatively with Rothia relative abundance (r=-

0.388, P=0.013), and the eosinophil ratio negatively with

Gemella relative abundance (r=-0.325, P=0.041). In addition,
FIGURE 5

Comparison of the abundance of each genera between two groups (top 10 genera) The symbol above the columnar band indicated that the
difference between groups was statistically significant. ***P < 0.001, **P < 0.01. No statistical differences were found between groups without
symbols.
FIGURE 4

Scale map of the top 10 genera in abundance (all samples) The map displayed the proportion of several kinds of genera with richer contents directly.
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the relative abundance ofHaemophilus correlated positively with

levels of aspartate transaminase (r=0.365) and mean corpuscular

volume (r=0.314), both P < 0.05. Fusobacterium relative

abundance and the neutrophil ratio also had a positive

correlation (r=0.419, P=0.007). The above results were shown

in Table 3.
Discussion

Researchers are continually learning more about human

microbes. Currently, microorganisms in the human body are

thought to participate in physiological processes such as

regulating body metabolism, promoting nutrient absorption,

and adjusting immune function, and are thought to be

associated with the occurrence and development of various

local and systemic diseases (Dominguez-Bello et al., 2019). Li
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et al. (2019) found that oral microflora could colonize the

intestinal tract of sterile mice through physical and chemical

barriers. Evidence suggests that oral microbiota can either

directly affect health or can indirectly affect health by

changing the structure of intestinal microbiota (Lamont

et al., 2018). Compared with intestinal flora, oral flora can be

sampled more conveniently and is more amenable to direct

intervention (Zhang et al., 2015). This study examined the

composition and structure of oral bacterial communities in

humans living at different altitudes and ambient oxygen levels,

allowing us to better understand human adaptation or non-

adaptation to living on the plateau versus the plain. The

relationship between oral microbiota and common blood

indices was also explored. Because the oral microbiome

changes as people age (Jiang et al., 2018), we selected

research subjects who were all young men of approximately

the same age.
TABLE 3 Correlation between bacteria abundance and blood indices in different groups.

subgroup taxonomy blood indices r P value

Plateau group Streptococcus TG 0.247 0.027

Plain group Prevotella Hb -0.558 <0.001

Rothia the number of RBC -0.388 0.013

Veillonella Hb -0.347 0.028

Haemophilus AST 0.365 0.021

MCV 0.314 0.049

Gemella EOSR -0.325 0.041

Fusobacterium NEUR 0.419 0.007
front
TG, triglyceride; Hb, haemoglobin; RBC, red blood cell; AST, aspartate transaminase; MCV, mean corpuscular volume; EOSR, eosinophil ratio; NEUR, neutrophil ratio. P < 0.05: the
correlation between the two variables was statistically significant.
FIGURE 6

Bar diagram of the distribution of pathways and functions (the left two-thirds of the abscissa: plateau group, the right third: plain group.) Each
position on the horizontal axis represented separate object. Different colors indicated different pathways or functions, and the length of each
color stripe indicated the proportion of a particular pathway (function) in somebody.
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In addition to age, other potentially confounding factors

such as ethnicity and teeth-brushing habits were similar between

the two groups, which allowed us to eliminate extraneous

variables in our investigation of altitude as a factor. Our

results showed that the oral microbiota in the plain group was

both more diverse and more evenly distributed among species

than the oral microbiota in the plateau group. These findings

were consistent with the results of a previous study on ocular

microbiota (Li et al., 2021). Other studies have shown that more

diverse bacterial communities may correspond to healthier

ecosystems (Xiao et al., 2016). Because the higher species

diversity buffered the variability of ecosystem function,

biodiversity is essential for promoting the sustainability and

productivity of many ecosystems (Bannar-Martin et al., 2018).

Principal coordinates analysis (PCoA) on unweighted UniFrac

distances revealed that different species within the bacterial

community characterize the two altitudes. However, no more

than 10% variation between the two groups was displayed in any

coordinate direction, indicating that the plateau and plain

groups had similar, although not identical, oral bacterial

community structures. A Venn diagram showed the same

species accounted for about 85% of the total number of species

detected, also suggesting that the species composition of the oral

microbiome was similar between the two groups.

The dominant bacteria in any one part of the body generally

remain relatively stable. The species that occur more frequently,

in greater abundance, and more consistently over time are

referred to as the “core microbiome” of that particular part of

the body (Hu et al., 2013). Firmicutes was the most abundant

phylum in both the plain group and the plateau group,

indicating the bacterial community structure is relatively

consistent in the oral cavity, but the altitude factor may affect

the abundance of Firmicutes (75% in the plateau group vs 48% in

the plain group). This finding is similar to that of a previous

study, which found that cold acclimation resulted in significant

changes in microbiota composition (Bo et al., 2019). However,

the abundance of Firmicutes in the plain group was lower than

that in the plateau group, which is consistent with the higher

richness and more even species distribution of the oral

microbiota in the plain group. Some scholars believe that

Firmicutes can encode enzymes related to energy metabolism,

and produce a variety of digestive enzymes which decompose

various substances (Turnbaugh et al., 2006; Li and Zhao, 2015).

So it is convenient to save the body energy consumption and

promote metabolism, suggesting that higher energy harvest and

expenditure existed in populations at higher altitudes.

The other four phyla among the top five were Proteobacteria,

Bacteroidetes, Actinobacteria, and Fusobacteria. Among them,

the proportion of Proteobacteria and Bacteroidetes in the plain

group was higher than that in the plateau group, while the

proportion of Actinobacteria and Fusobacteria in the two groups

showed no statistical difference. At the genus level, Streptococcus

spp. was most abundant, accounting for 70.76% and 40.44% of
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the total abundance in the plateau group and the plain group,

respectively. In order of abundance, the other dominant genera

were, Haemophilus, Gemella, Prevotella, Veillonella, Neisseria,

Rothia, Fusobacterium, Porphyromonas, and Actinomyces.

Among these nine genera, the relative abundance of Gemell

spp. was higher in the plateau group than in the plain group,

whereas the abundances of the other eight genera in the plateau

group were either lower than or not statistically different from

those in the plain group. The microbiome differences found in

this study were broadly consistent with those in other studies

(Senapati et al., 2019; AlShahrani et al., 2020). However, unlike

our study, Das B et al. (Das et al., 2018) found that the

abundance of Prevotella spp. was higher in the plateau

population. This difference may be related to race and/or oral

health. Our findings regarding variations in abundance among

different species should be further verified by conducting a

follow-up study using a larger sample size.

The reasons for the difference in the abundance of bacteria

between the two groups were attempted to analyze. Firstly, the

microbial flora, richer in the high altitude environment, can

convert materials into short-chain fatty acids (SCFA) through

microbial fermentation. SCFA is an important energy source for

epithelial cells, providing about 10% of human energy

(Tremaroli and Bäckhed, 2012). Increased abundance of

specific flora in the plateau appears to compensate for reduced

energy intake and increased energy expenditure. Secondly, low

temperature reduces the activity of microorganisms and

enzymes at high altitude, which may limit the abundance of

some bacteria (Wang et al., 2015). And the increase in the

abundance of Bacteroidetes, Candidate division TM7 and other

bacteria may be the result of their increased nutrient utilization

with the warming of temperature (Schostag et al., 2019). Thirdly,

hypoxia can induce and activate oxidative stress and

inflammatory responses in the host, resulting in changes in the

composition and decrease diversity of the microbiome (Lucking

et al., 2018). Moreover, the decrease in Bacteroidetes in the

plateau group may be related to the lower intake of fruit (Wu

et al., 2020), that is, the objective restriction of food storage and

production conditions resulted in different dietary habits in the

two regions. Therefore, we hypothesized that dietary structure,

maximal oxygen uptake, cold and hypoxia contributed to the

differences in microbial abundance at different altitudes.

The abundance of bacteria only present in one of the two

groups was very low, so their presence may have no obvious

effect on the human body. The possible reasons that some

microbiome have only been found to exist in certain altitude

include: Allisonella belongs to the nutritional fastidious group

(Seshadri et al., 2018). And it tends to be found in plain

areas where material conditions are abundant; Frankiales

unclassified and Acinetobacter were more abundant in the

plastic (Wright et al., 2021), moreover, people on the plains

are more likely to have access to household or industrial

plastics; Hyphomonadaceae unclassified is an aerobic,
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heterotrophic bacteria genus, which is generally isolated from

surface drainage (Podell et al., 2020); Aciditerrimonas,

Blastococcus and Sphingomonas were found in the desert

(Wang et al., 2017). In most habitats, environment had a

strong influence on bacterial community composition,

suggesting that selection may play an important role in

shaping the biogeographic pattern of microorganisms in the

cold plateau regions; The survival of Lactobacillus and

biological fermentation may correspond to the hypoxic

environment of the plateau (Call et al., 2018). In conclusion,

we suspect that the occurrence of these bacteria only in one

group may be related to the dry, cold and oxygen-deficient

environment and residents’ living habits.

These results suggest that the effect of altitude on the oral

microbiome is mainly due to changes in the community

structure of the hosts’ existing internal microorganisms, rather

than to new microbial colonization. The PICRUSt program was

used for function prediction. All groups showed similar

microbial functional characteristics, which may be influenced

by the widely distributed core microbiome. By comparing the

relative abundance of functional categories, we found that

membrane transport, replication and repair, carbohydrate

metabolism, and amino acid metabolism were abundant,

indicating that microbial metabolism was vigorous in the oral

microbiome. At high altitudes, low oxygen levels and high

ultraviolet exposure can lead to DNA and protein damage

(Foll et al., 2014), and enrichment of genes related to

translation, amino acid metabolism and other functions

mentioned above may help reduce biomolecular damage.

Streptococcus spp., with the highest abundance in the plateau

group, was closely related to a variety of metabolic pathways.

This finding is consistent with the commonly held opinion of

many researchers that the microbiota in people living at higher

altitudes is more energy-efficient than the microbiota in their

counterparts living at lower altitudes (Li et al., 2016; Li et al.,

2021). This suggests the oral microbiome may be one potential

mediator of plateau hypoxia-mediated metabolic imbalance

(Pasiakos et al., 2021).

Because the core microbiome is relatively stable in a specific

segment of the population, it raises the possibility of using oral

microbiota as biomarkers for changes in common blood

parameters. In this study, we found that the abundance of

Streptococcus spp. was positively correlated with triglyceride

levels in the plateau group. Given that triglycerides are closely

associated with cardiovascular disease (CVD) (Crea, 2021), this

result indicates that changes in the abundance of this bacterium

are not only related to altitude adaptation but could also be

related to CVD induced by altitude (Ha et al., 2021). Similar

studies have suggested that the microbiome may play an

important role in changing lipid levels (Fu et al., 2015). In a

study investigating the effects of the Mediterranean diet on

microbiota, Wang et al. (2021) found that high Prevotella spp.
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abundance was often accompanied by high triglycerides. It

remains uncertain whether this change in blood lipid levels is

merely a derivative adaptation to a harsh hypoxic environment

or is directly caused by specific microbial changes. In general, the

effects of bacterial flora on blood lipids may be related to dietary

fermentation and the resulting metabolites. Nevertheless, in the

plain group, we found that Prevotella spp., Rothia spp., and

Veillonella spp. were negatively correlated with erythrocyte-

related indicators, which could coincide with the decrease in

activity of erythrocyte Na+/K+-ATPase (Yin et al., 2021). We

found a positive correlation between the abundance of

Haemophilus spp. and aspartate transaminase (AST) levels,

while Sun et al. (2021) reported a negative correlation between

the abundance of Saccharomyces cerevisiae in the Chinese urban

population and levels of AST related to liver function. The

specific functions of these bacterial species and their

relationships to human health need further study.

We acknowledge the limitations in this preliminary study.

First, our method of collecting oral samples did not distinguish

among the different areas of the oral ecological region, so it was

impossible to study specific oral sites and examine the unique

flora characteristics of subgingival plaque, saliva, or other parts

of the subject’s mouth. Second, participants’ periodontal and

dental health assessment was not complete, which may have

affected the analysis of bacterial flora structure. Third, the study

only included young men, so the conclusions cannot be applied

to all populations. Finally, this study cannot exclude the

influence of dietary structure and individual differences in

saliva flow on oral microbiota.
Conclusion

In summary, this study comprehensively analyzed the

microbiota of different ecological niches, the influence of

altitude on oral microbiota, and the possible correlation

between specific bacteria and blood indicators. Our results

showed that the diversity of oral microbiota was higher in the

plain (low altitude) group than in the plateau (high altitude)

group, and the difference between the two groups was mainly

reflected in the relative proportion of predominant bacteria in

each region. This study provides a point of reference for studying

the biological mechanism of acclimatization or maladaptation to

high altitude.
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