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Background. The COVID-19 pandemic highlighted the need for early detection of viral infections in symptomatic and
asymptomatic individuals to allow for timely clinical management and public health interventions.

Methods. Twenty healthy adults were challenged with an influenza A (H3N2) virus and prospectively monitored from 7 days
before through 10 days after inoculation, using wearable electrocardiogram and physical activity sensors. This framework allowed
for responses to be accurately referenced to the infection event. For each participant, we trained a semisupervised multivariable
anomaly detection model on data acquired before inoculation and used it to classify the postinoculation dataset.

Results. Inoculation with this challenge virus was well-tolerated with an infection rate of 85%. With the model classification
threshold set so that no alarms were recorded in the 170 healthy days recorded, the algorithm correctly identified 16 of 17
(94%) positive presymptomatic and asymptomatic individuals, on average 58 hours postinoculation and 23 hours before the
symptom onset.

Conclusions. The data processing and modeling methodology show promise for the early detection of respiratory illness. The
detection algorithm is compatible with data collected from smartwatches using optical techniques but needs to be validated in large
heterogeneous cohorts in normal living conditions.

Clinical Trials Registration. NCT04204493.
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The coronavirus disease 2019 (COVID-19) pandemic high-
lights the need for early detection of viral respiratory infections.
When infected persons are alerted before symptoms manifest,
they can pursue timely diagnosis and treatment (particularly
important with antivirals where earlier treatment is associated
with better outcomes) and take precautions to limit the disease
outbreak. Commercially available wearable sensors (wearables)
have been used to monitor individuals under normal living
conditions, providing information about their health and be-
havior [1–5]. Only recently have such sensors been employed
in detecting respiratory infections such as COVID-19, influen-
za, and other influenza-like illnesses [6–15], providing a nonin-
vasive method to complement blood-based gene-expression
assays [16, 17].

Retrospective studies used data from Fitbit devices to evaluate
population trends of seasonal influenza-like illnesses including
COVID-19 [6, 7]. The investigations, subsequently replicated
with Huami smart watches [8], showed an association between
the number of individuals who displayed a significant increase
in daily resting heart rate (HR) and the officially reported
influenza-like illness infection rates. Average HR data acquired
by wearables were also used in a study aimed at detecting
COVID-19 in real time. Using metrics provided through the
Garmin Connect app, the investigators showed that 15 of 24
(63%) COVID-19 cases could have been detected before symp-
tom onset [9]. Working with a much larger cohort, other re-
searchers developed a predictive model for COVID-19
infection based on HR and heart rate variability (HRV) metrics
derived from data acquired by Fitbit devices [14]. The model
correctly identified 15% of 1257 monitored symptomatic cases
before symptom onset and 72% by the third day of symptoms
[14]. Similar performance was achieved by amodel based on res-
piration rates derived from theWHOOP sensor and system [11].
In contrast to the work referenced above, our influenza-

focused study used a human challenge framework [16, 18,
19], where the immune response is monitored on a timeline ref-
erenced to the infection event rather than the onset of
symptoms. This enables one to investigate asymptomatic
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presentations, which field studies are usually unable to identify.
In place of optical HR monitoring sensors that are commonly
found in fitness trackers or smartwatches, we employed wear-
able electrocardiogram (ECG) sensors to inform initial algo-
rithm development [20]. Although optical sensors can
provide data concordant with ECG, they are sensitive to wrist
movement and skin tone differences that can introduce varia-
tion among healthy subjects [21, 22].

In the present study, we developed an end-to-end data pre-
processing and HR and HRV feature extraction and standard-
ization methodology. We used the standardized metrics as
inputs to semisupervised machine learning algorithms devel-
oped to detect the viral respiratory infection in presymptomatic
and asymptomatic individuals.

METHODS

Study Enrollment

The protocol was approved by the London-Fulham Research
Ethics Committee and the Health Research Authority of the
United Kingdom (reference 19/LO/1441, clinical trial
NCT04204993). Healthy persons aged 18–55 were eligible.
Exclusion criteria included chronic respiratory disease, recent
upper respiratory infection, immune deficiency, pregnancy,
and close domestic contact with high-risk populations. After
informed consent was obtained, individuals were prescreened
bymicroneutralization assay to ensure that they did not already
possess high levels of antibodies against the influenza A strain.
Individuals meeting prescreening criteria were evaluated in a
screening visit that included a review of medical history, lung
function tests, a chest X-ray, an ECG assessment, and blood
tests to check for underlying illness. Twenty individuals passed
all screening criteria and completed the study.

Virus Inoculation and Symptom Reporting

Participants checked into the quarantine unit 1 day before in-
oculation and remained in confinement for 10 days after inoc-
ulation. All participants were inoculated with Influenza A/
Belgium/4217/2015 (H3N2) at a dose of 5× 105 50% tissue cul-
ture infectious dose (TCID50) in a volume of 0.5 mL by drops
divided between nostrils between 8 AM and 10 AM on their sec-
ond day in the unit. To assess safety, data on adverse events that
occurred or worsened during the 28 days postinoculation, and
serious adverse events that occurred or worsened during the 28
days postinoculation were collected and their causal relation-
ship to the challenge virus assessed. Expected symptoms were
not deemed adverse events unless protracted and severe or at
the discretion of the study clinicians and Chief Investigator, ac-
cording to protocol-defined clinical severity guidelines.

While in confinement, participants recorded their symptoms
twice daily according to the following scale: 0= absent, 1=mild,
2=moderate, 3= severe. Based on the Jackson symptom scoring

system [23], 8 symptoms were scored: nasal obstruction, nasal
discharge, sore throat, sneezing, cough, malaise, headache, and
chills. An individual was identified as symptomatic according
tomodified Jackson criteria [23, 24] if the followingwere present:

• A cumulative clinical symptom score of 6 or greater over a
6-day period AND

• Nasal discharge is present on 3 or more days over the 6-day
period after viral inoculation OR the subjective impression of
a cold or flu.

For each symptomatic individual, we identified the onset of
symptoms as the day during which total symptom score ex-
ceeded 6 for the first time.

Laboratory Testing

Nasal and blood samples were obtained up to twice a day dur-
ing quarantine, and diagnostic polymerase chain reaction
(PCR) tests were performed on nasal lavage to determine if
the inoculation produced an infection. We required 2 positive
tests beginning at least 24 hours after inoculation.

Data Acquisition

The study participants were monitored with Bittium Faros 180
devices (Bittium Corporation), each consisting of a single-lead
ECG sensor (250 Hz sampling frequency) and a 3-axis acceler-
ometer (25 Hz sampling frequency) [25]. Devices were at-
tached using 2 disposable ECG electrodes spanning the heart,
according to the manufacturer’s instructions which were pro-
vided to the participants. Acquired ECG and accelerometer
data were stored in the European data format in the memory
of the sensor and downloaded to a PC throughout the monitor-
ing period. Participants began wearing the sensor 7 days before
inoculation and removed the device to shower (or other activ-
ities such as swimming when the device could get wet) and for
charging.We did not collect feedback related to device usability
or comfort.

Data Preprocessing and Feature Extraction

ECG signals were processed in 5-minutes epochs at 1-minutes
steps using Kubios HRV Software. For each 5-minutes epoch,
we calculated the average interbeat interval (IBI), and
frequency-domain HRV metrics: high-frequency (HF) power,
low-frequency (LF) power, and the LF/HF ratio [26, 27]
(Table 1). Frequency-domain measures of HRV collectively
capture the balance of the sympathetic and parasympathetic
branches of the autonomic nervous system [28]. Data process-
ing settings in the Kubios software are provided in the
Supplementary Material. We reproduced results of the HRV
metrics extraction using open-source Python scripts obtained
from the GitHub [29].
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We wrote MATLAB (MathWorks, Inc.) scripts to align the
accelerometer and HRV data. The accelerometer data were fil-
tered to the range of humanmovement (0.25–7 Hz), and an ac-
tivity metric A was computed on 1-second intervals as the
square root of the sum of squares of the 3 individual axes of ac-
celeration. The average activity was calculated over the same
5-minute window as was used in HRV analysis (Table 1). To
mark sleep periods, we first considered a period to correspond
to rest if the activity level was ≤0.3 for at least 10 minute. All
rest segments with less than 15 minutes of separation were
then merged, and merged rest segments of at least 75 minutes
duration were marked as sleep regardless of time of day to ac-
count for the possibility of napping while in the clinic.

Data Analysis and Modeling

Average IBI and frequency-domain HRV features were stan-
dardized for each individual, using the time period before inoc-
ulation as a reference dataset. Before standardization, all data
points (and the following data point) where A exceeded a
high activity threshold (eg, during intentional exercise) were
removed (1.86% of points/participant on average; range,
0.04%–3.88%). Additionally, all data points where activity level
exceeded a threshold indicating night awakenings (0.7% of
points/participant on average; range, 0.2%–2.39%) were re-
moved. We calculated z-scores for each individual for each ob-
servation i and metric j using the formula:

zXij(A) = Xij(A)− μj(A)

σj(A)
,

where Xij is the observation i of metric j at the activity A, and
μj(A) and σj(A) are, respectively, the mean and standard devia-
tion of Xij calculated from the reference dataset that represent-
ed the same “sleep” state (ie, asleep vs awake) and were within
±0.20 of the current log-transformed activity level.
Standardized metrics were down-sampled to 1 point every 5
minutes and then smoothed using a 1-hour moving average
with the requirement that there were at least 30minutes of valid
data in the previous hour to report a value.

To characterize changes in individual metrics and the cumu-
lative change in the multidimensional space of all extracted fea-
tures over time, we applied open-source multivariable process

control (MVPC) techniques [30–32]. We built a principal com-
ponent model using data acquired prior to the inoculation to
reduce the dimensionality of the data. In a model with m prin-
cipal components, Hotelling T2 statistic for datapoint i is calcu-
lated as

T2
i =

t2i1
l21
+ . . .+ t2im

l2m
,

where tik is the principal component score for the kth principal
component of the ith datapoint, and lk is the standard deviation
of tik [32]. The control limits (CLs) are calculated for an as-
sumed value of significance level α [32]. In our model, we re-
tained 3 principal components and calculated CLs for α
varying from 0.001 upward.
We then applied the model to “new” data (postinoculation)

to monitor the process over time. To reduce the effect of short-
term changes in the variables, such as fight-or-flight response,
we smoothed T2 as a function of time, using a moving-average
filter based on the previous 4 hours of data. A variation in T2

that exceeded the CL (the threshold) signaled an anomaly in
the process. We denoted the first time this alert was issued
for the given participant as the detection time.
We characterized the performance of the model by calculat-

ing the sensitivity and specificity for fixed threshold values and
the area under the receiver-operating-characteristic (ROC)
curve, AUC [33]. The ROC curve analysis was performed using
MedCalc Statistical Software version 20.009 (MedCalc
Software, Ltd).

RESULTS

Study Overview

We enrolled 20 healthy adult participants who were inoculated
with influenza A and monitored with a wearable device capable
of detecting HR and activity level. Seventeen individuals (85%)
tested positive for H3N2 (1 also tested positive for rhinovirus),
and 3 tested negative by PCR. Of the 17 positive individuals, 14
were characterized as symptomatic and 3 were asymptomatic.

Table 1. IBI, HRV, and Activity Metrics Used in the Present Study

Metric Unit Definition

IBI s Interval between R peaks in consecutive QRS complexes

LF … Log of low-frequency power (0.04–0.15 Hz)

HF … Log of high-frequency power (0.15–0.40 Hz)

LF/HF % Ratio of LF to HF

A g A =
���������������
x2 + y2 + z2

√
, where x, y, z are the filtered values of

acceleration along x, y, and z axes

Abbreviations: A, activity; HF, high frequency; HRV, heart rate variability; IBI, interbeat
interval; LF, low frequency.

Figure 1. Mean daily total symptom score for symptomatic, asymptomatic, and
uninfected individuals. Day 0 is the day of inoculation. Error bars represent standard
deviation.
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Figure 1 shows the daily mean total symptom score for the in-
fected symptomatic, infected asymptomatic, and uninfected
individuals.

The onset of the symptoms happened on average on day +2
following the inoculation. The symptoms peaked on day +3 and
subsided by day +9. There were no adverse events considered
possibly, probably, or definitely related to inoculation with
the influenza A (H3N2) challenge virus or serious adverse
events.

Trends in RR Interval and HRV Metrics

Figure 2 presents IBI, total symptom score, activity, and
z-score of IBI (z-IBI), as functions of time for a symptomatic
individual. The physical activity level changed significantly
after the study participants entered the quarantine
(Figure 2C), making the activity matching important. The
z-score plot (Figure 2D) highlights a downward shift in IBI
in days after the inoculation; this change is masked in the
absolute IBI data (Figure 2A) by the decrease in the activity
level.

Figure 3 presents z-scores for HRV metrics as a function of
time for a positive symptomatic, a positive asymptomatic, and a
negative individual. In the positive cases, LF and HF both de-
creased following the inoculation, while the LF/HF ratio

increased. For the negative individual, values of the metrics re-
main close to the baseline.

Figure 4 shows the trends in IBI and HRV metrics averaged
across all 17 persons who tested positive for influenza. Mean
parameter values were computed on 24-hour increments, prior
to averaging across the cohort. The small upward shift in the
metrics when participants enter quarantine (day −1) indicates
that standardization did not completely eliminate changes as-
sociated with the lower activity level in the clinic setting. On av-
erage, the IBI and HF responses were of a similar magnitude,
but there were individuals with significant HRV changes in
the absence of a strong IBI response.
To capture the combined effect of IBI and HRV variables, we

calculated the Hotelling T2 statistic as a measure of temporal
change in the multidimensional variable space. Figure 5 shows
plots of the statistic as a function of time for a symptomatic, an
asymptomatic, and a negative individual. The horizontal line
shows the CL of 15 (α of .003) averaged for all participants (in-
dividual CLs were within 1% of the mean). The values of the
statistic exceed the CL for the positive individuals, but remain
below threshold for the negative individual.

Detection Algorithms

We constructed detection algorithms for all 20 participants us-
ing data prior to the inoculation to define each individual’s
baseline. We then applied the models to the data acquired after
the inoculation. Because the CL value was consistent across the
cohort, we used a universal threshold to determine alerts. We
consider that we have 23 healthy periods (ie, 20 preinoculation
periods and 3 postinoculation periods from the negative indi-
viduals) and 17 sick periods.
For a threshold of 11, the algorithm correctly identified all

positive cases in the cohort but registered 4 false positives dur-
ing preinoculation days. At a threshold of 15, no false alerts
were recorded, and the algorithm issued the alerts for 16 of
17 (94%) positive participants. AUC was calculated to be 0.97
(95% CI, .91–1.0; Supplementary Figure 1). Figure 6 shows
the timing of the alert, compared to symptom onset, for all
study participants.
For the majority of the participants, the alert was before

symptom onset. There were no alerts for the 3 negative partic-
ipants or during any preinoculation days. The mean alert time
was 58 hours after inoculation and 23 hours before the onset of
symptoms (Supplementary Table 1).
In Supplementary Table 1 and Supplementary Figure 1, we

compare the performance of the MVPC model to a univariable
algorithm based on thresholding of z-IBI smoothed with the
4-hour moving-average filter. In the univariable case, there
were no false alerts in any of the healthy days for the threshold
value of−2.7. The algorithm issued an alert for 10 of the 17 pos-
itive individuals (59%), and 4 of these were before symptom on-
set. The mean alert time was 91 hours after inoculation. AUC

Figure 2. Acquired data plotted as functions of time for a symptomatic partici-
pant FC001; t= 0 marks the timing of the inoculation. (A) Interbeat interval (IBI) av-
eraged in 5-minute epochs; (B) total symptom score (TSS); (C ) activity averaged in
5-minute epochs and timing of sleep (S), acceleration due to gravity (g); and (D)
z-score for IBI, matched for activity.
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for the univariable algorithm was calculated to be 0.79 (95% CI,
.67–.91).

DISCUSSION

To complement previously conducted field investigations tar-
geted at presymptomatic detection of influenza-like illness in-
fections, we conducted an influenza challenge study where
the timing of the immune response to the pathogen could be

accurately referenced to inoculation, rather than to symptom
onset. Data were acquired using a wearable ECG sensor with
an integrated accelerometer, and data preprocessing and met-
rics extraction algorithms were established and run on local
networks with no connection to third-party cloud servers.
Because IBI and HRV vary widely from individual to indi-

vidual [34], we converted IBI and HRV metrics into z-scores
using subject-specific means and standard deviations calculat-
ed from the data acquired before inoculation. To account for

Figure 3. Standardized values of IBI and selected HRV metrics: (left) positive symptomatic participant FC001; (center) positive asymptomatic participant FC007; (right)
participant FC002 who tested negative for the H3N2 virus. Abbreviations: TSS, total symptom score; z-HF, z-score high frequency; z-IBI, z-score interbeat interval; z-LF, z-score
low frequency.

Figure 4. Twenty-four–hour mean values of z-scores for interbeat interval (z-IBI),
low frequency (z-LF), high frequency (z-HF), and z-LF/HF ratio averaged across all
H3N2-positive subjects in the study. Error bars indicate standard error of the mean.

Figure 5. Examples of Hotelling T2 statistic plotted as a function of time for s-
ymptomatic (FC001) and asymptomatic (FC007) positive participants, and for a neg-
ative (FC002) participant. Abbreviation: CL, control limit.
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the effect of physical activity, we used a subset of the baseline
data matched to the activity level in the z-score calculations.

We observed a decrease in the z-IBI metric from the baseline,
beginning during the first 2 days following infection in the ma-
jority of individuals who tested positive for influenza; this was
followed by a return to baseline as the patients recovered
(Figure 2 and Figure 4). This behavior is similar to trends in
the daily average HR (inverse of IBI) reported in earlier field
studies [6, 8].

We also observed changes in HRV metrics following the in-
oculation. Values of HF and LF decreased, while the LF/HF ra-
tio increased (Figure 3 and Figure 4). With the possible
exception of the LF/HF ratio, these trends are similar to the di-
rection of changes observed in hospital patients who developed
sepsis. For example, Yien et al reported that the progressive de-
crease in the LF and HF values was indicative of the patient’s
deterioration [35], while Piepoli et al analyzed frequency-
domain HRV in 12 critically ill patients during septic shock
and recovery and reported 10 patients who recovered from
the infection with normalization of the LF component [36].

To analyze temporal changes in all monitoredmetrics collec-
tively and construct an illness detection algorithm, we used the

MVPC technique. With the threshold set at 15, the algorithm
detected infection in 16 of 17 positive cases while correctly clas-
sifying the 3 negative cases and rendering no false positives in
the preinoculation period.
For the majority of symptomatic individuals, the model is-

sued alerts before the onset of symptoms. On average infection
was detected 23 hours before symptoms were first noted. In this
study, symptomatic determination was based entirely on sub-
jective reports because no study participants developed a tem-
perature rise greater than 0.6°C. The onset of symptoms reflects
the earliest time when individuals would notice becoming un-
well, which would likely be some time before they present to a
health care professional.
Early diagnosis of respiratory viral infections is important

both in terms of clinical management and public health inter-
vention. For influenza, antivirals such as oseltamivir, zanami-
vir, and baloxavir are widely approved. Although the
literature regarding effectiveness in hospitalized cohorts has
been mixed [37], administration of these drugs early in the
course of infection has been widely shown to be efficacious
[38]. In a study of 2124 critically ill patients, oseltamivir treat-
ment within 48 hours of symptom onset improved survival

Figure 6. Timing of alerts (triangles) relative to symptom onset for all study participants using a threshold of 15.
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[39], while early treatment in the community shortened the
time of illness by 1–2 days and reduced the risk of hospitaliza-
tion [40]. Similarly, baloxavir has been shown to shorten the
duration of symptoms by approximately 24 hours along with
reduction in viral load [41], with modelling studies suggesting
almost double the effect if the treatment is given within 24
hours rather than 48 hours [42].

The impact of early antiviral treatment has also been shown in
other respiratory viral infections, most notably during the
COVID-19 pandemic, where the efficacy of outpatient antiviral
treatment in limiting disease progression and hospitalization
has beenmarked [43–45]. In addition, theCOVID-19 pandemic
saw an unprecedented use of public health interventions with
widespread implementation of self-isolation as a strategy for
combating pandemic spread. Here, based on mathematical
modelling, earlier diagnosis of infection with more rapid self-
isolation (with a difference of as little as 1.4 days) resulted in sig-
nificantly lower transmission rates [46]. For these reasons, even
bringing forward diagnosis by 23 hours (and likely longer in
practice) could have an impact on treatment efficacy and inter-
ruptionof transmission. Furthermore,withH3N2 influenza, the
time between inoculation and development of symptoms was
short; future studies will investigate the detection timing for in-
fections with a longer incubation period, like COVID-19, where
there is an increased opportunity for presymptomatic detection
andpotentially evengreater impact by early treatment and inter-
rupting transmission by asymptomatic shedding.

The influenza-challenge study provided an advantageous
framework for the development of presymptomatic illness de-
tection algorithms: the time of the infection was known exactly,
and both symptomatic and asymptomatic cases were identified.
However, the cohort was small, and its heterogeneity was fur-
ther restricted by the study exclusion criteria. While the high
infection prevalence rate helped limit the number of individu-
als who needed to participate, more and longer healthy time pe-
riods are needed to better gauge the false-positive rate.

Additionally, participants in the current study were quaran-
tined following the inoculation. This setting limited their phys-
ical activity and their exposure to environmental and
psychological stressors that may act as confounders for the in-
fection detection algorithm. Future work will need to apply the
algorithm to datasets collected from groups that are monitored
in normal living conditions throughout the study.

These real-world scenarios will require adjustments to the
methodology of data collection and analytics. While the ECG
sensors are not compatible with months-long periods of
wear, smartwatches or wristbands have a more user-friendly
form factor. Some modifications to the detection algorithms
may be required given subtle differences in physiological as-
pects of the optical and ECG measurements [22].

Future work will also optimize the duration of the baseline
period. In this study, the period was equal to 7 days for all study

participants. We will determine the minimum duration of the
baseline dataset as a function of the device-wear compliance,
artifact level, and any other factors influencing the continuity
of the data stream.
Finally, the physical infrastructure for the data collection and

analytics will need adjustments in real-world scenarios. Instead
of downloading data from the sensor to the laptop as in the cur-
rent study, the data flow will be managed by a mobile applica-
tion loaded on the user’s smartphone. This approach is similar
to the one used in field studies [6–9], with one important dis-
tinction: the data would be transmitted from the phone to a lo-
cal computer or to a storage and analytics node on a cloud
server, bypassing the device vendor cloud. We have tested the
end-to-end data collection and processing pipeline on a system
architecture of the type described above and verified that the
data storage and computing requirements aremodest and com-
patible with commodity hardware in both local or cloud net-
work configurations (DS Temple et al unpublished).

Supplementary Data

Supplementary materials are available at The Journal of
Infectious Diseases online. Supplementary materials consist of
data provided by the authors that are published to benefit the
reader. The posted materials are not copyedited. The contents
of all supplementary data are the sole responsibility of the au-
thors. Questions or messages regarding errors should be ad-
dressed to the author.
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