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The aim of this study was to evaluate, in a prospective study, the predictive role of p53 status analysed at four different levels in
identifying the response to preoperative radiotherapy in rectal adenocarcinoma. Before treatment, 70 patients were staged and
endoscopic forceps biopsies from the tumour area were taken. p53 status was assessed by total cDNA sequencing, allelic loss analysis,
immunohistochemistry, and p53 antibodies. Neoadjuvant treatment was based on preoperative radiotherapy or radiochemotherapy.
Response to therapy was evaluated after surgery by both pathologic downstaging and histologic tumour regression grade. In all, 35
patients (50.0%) had p53 gene mutations; 44.4% of patients had an allelic loss; nuclear p53 overexpression was observed in 39 patients
(55.7%); and p53 antibodies were detected in 11 patients (16.7%). In the multilevel analysis of p53 status, gene mutations correlated
with both nuclear protein overexpression (Po0.0001) and loss of heterozygosity (P¼ 0.013). In all, 29 patients (41.4%) were
downstaged by pathologic analysis, and 19 patients (29.2%) were classified as tumour regression grade 1. Whatever the method of
evaluation of treatment response, no correlation between p53 alterations and response to radiotherapy was observed. Our results do
not support the use of p53 alterations alone as a predictive marker for response to radiotherapy in rectal carcinoma.
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Preoperative radiotherapy for locally advanced rectal cancer is
used to reduce local recurrence rates and to improve survival rates
(Swedish Rectal Cancer Trial, 1997). The selection of patients for
neoadjuvant therapy is currently based on clinical and pathological
parameters, rectal endosonography, and CT-scan findings (Be-
couam et al, 1999). Nevertheless, these parameters do not predict
the response to neoadjuvant therapy. Predictor markers of
complete responses are thus needed for patients treated with
preoperative radiotherapy.

The p53 tumour suppressor gene has been demonstrated to
regulate cell cycle progression and apoptosis (Levine, 1997; Polyak
et al, 1997). Particularly, p53 plays a major role in the cellular
response to DNA damage and is an essential component of the
pathway leading from DNA damage produced by ionising
radiation to apoptosis (Canman et al, 1998; El Deiry, 2003).
Several in vitro (Lowe et al, 1994; Bunz et al, 1999) and in vivo (Lee
and Bernstein, 1993; Kemp et al, 2001) studies have demonstrated
that p53 dysfunction might restrict therapeutic efficacy. However,
depending on tumour site, type of therapy, and methods of p53
detection, controversial results have been obtained (Cote et al,
1997; Pai et al, 1998; Chiarugi et al, 1998; Pruschy et al, 2001).

p53 gene mutations have been found in a large number of
human cancers (Hainaut et al, 1997) with a frequency of about

60% in rectal cancer (Hollstein et al, 1991). The status of p53 is
frequently studied by immunohistochemistry (IHC). This method
is rapid and applicable to large-scale samples, but the clinical value
of this type of analysis is not always correlated with the data
obtained by cDNA sequence analysis (Sjogren et al, 1996; Bazan
et al, 2002). In addition, p53 autoantibodies (p53-Ab) have been
found in the serum of patients with a variety of human neoplasms
(Crawford et al, 1982; Soussi, 2000).

In this study, we attempted to assess whether a complete p53
status analysis, involving molecular, immunohistochemical, and
serological studies, correlates with response to preoperative
radiotherapy in a prospective study of 70 rectal carcinoma
patients.

MATERIALS AND METHODS

Patients

In all, 70 patients with rectal adenocarcinoma were included in this
study between 1996 and 2001. All of them were treated with
preoperative radiotherapy or radiochemotherapy at the Val
d’Aurelle Paul-Lamarque Cancer Institute in Montpellier. In this
prospective study, the patients were staged using the 1997 TNM
classification based on a clinical examination, endoscopic and
endorectal ultrasonography evaluation, and computed tomography
(CT) of the thorax and abdomen. There were 43 men and 27
women in this prospective study. The median age was 65 years
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(range 39–80 years). Clinicopathological characteristics of the 70
patients who underwent radiotherapy or radiochemotherapy are
presented in Table 1. All patients had a life expectancy greater than
3 months and a WHO performance status of 0, 1, or 2. Informed
consent was obtained from all patients before entering the study.

Therapy

For radiotherapy, patients were treated in the supine position with
a three-field isocentric technique using 18 MV photon beams daily,
five times a week. The daily dose at the isocenter (in accordance
with ICRU 62) was 1.8 Gy; the total dose to the entire pelvis was
45 Gy. In 29 patients, the primary tumour received a boost dose of
up to 15 Gy, because a clinical response was observed during the

conventional course of treatment. The pelvic target volume
encompassed the posterior pelvis, the sacrum, the posterior half
of the bladder, the prostate/vagina, and the presacral and low
common iliac nodes up to the intervertebral space L4/L5. The
boost volume covered the primary tumour plus a 2-cm margin
using a three-field technique. Individually shaped blocks were used
to shield normal tissues. Four patients received concurrent
radiochemotherapy. The chemotherapy regimen consisted of
continuous infusion of 5-fluorouracil (5-FU) and intravenous
(i.v.) leucovorin beginning on the first day of radiation therapy.
One patient received two cycles of 400 mg m�2 day�1 of 5-FU with
10 mg m�2 of leucovorin (days 1 –5 and 29–33 of radiation
therapy). Three patients received three 48-h courses of 5-FU
(400 mg m�2 day�1) with 100 mg m�2 day�1 of leucovorin (days 1–
2, 15– 16, and 29–30 of radiation therapy). The median time
between the first day of radiotherapy and surgery was 10 weeks
(73.9 weeks).

Biopsy collection, processing, and histopathology

Endoscopic biopsies and rectal endosonography were performed
by the same physician. All patients were given 250 ml of PEG
enema before endorectal examination. Endorectal ultrasonography
was performed with an endosonic linear probe (Model EUB-33,
Hitachi). Patients were staged according to uTN criteria for
ultrasound staging. Four pretherapeutic endoscopic biopsies from
the macroscopic tumour area were performed in all cases. The
endoscopic biopsies were frozen immediately after resection in
liquid nitrogen (N2) and then embedded in Tissue-TeksOCT
compound (Sakura Finetech USA Inc., Torrance, CA, USA). Three
consecutive 5-mm-thick sections were cut. One slide was stained
with haematoxylin and eosin to estimate the percentage of tumour
cells, and the other slides were used for the IHC analyses. The
remaining biological material was stored in liquid N2 until nucleic
acid extraction. Two blood samples were collected from each
patient on the day of clinical diagnosis for allelic loss and
serological analyses.

Nucleic acid extraction

DNA was extracted from the blood sample with QIAamp DNA
Blood Maxi Kit (Qiagen, Hilden, Germany) according to the
manufacturer’s instructions. For biopsy samples, the OCT
compound surrounding the tissue was discarded avoiding thawing
in order to prevent RNA degradation. The biopsy was then placed
in a polypropylene tube containing 800 ml of extraction solution
(TRIZOLs Reagent, Invitrogen, France) and homogenised using
an Ultra-Turax apparutus. The RNA and DNA were then
coextracted according to the manufacturer’s recommendations.
The RNA pellet was dissolved in 50 ml of RNAse-free H2O, and
25 ml were used for the cDNA synthesis. The DNA pellet was
dissolved in 50 ml of Tris-HCl buffer, pH 7.4.

cDNA synthesis, PCR amplification, and direct sequencing

The tumour cDNA was obtained with a First-Strand cDNA
Synthesis Kit (Amersham Pharmacia Biotech, Uppsala, Sweden)
as specified by the manufacturer.

For all patients, the entire coding sequence (exons 2–11) was
examined for p53 mutations by direct sequencing. Four sets of
primers were designed to cover the entire p53 coding sequence.
The four overlapping PCR fragments generated were then solid
phase sequenced using an ALF expresst Automated DNA
sequencer (Pharmacia Biotech, Sweden). PCR primers and
sequencing oligonucleotides were synthesised based on the cDNA
sequence of p53 as described previously (Thirion et al, 2002).
Briefly, cDNA was subjected to PCR in a 50-ml reaction mixture
that contained 10 mmol l�1 Tris-HCl, pH 8.3, 50 mmol l�1 KCl,

Table 1 Patient characteristics

Parameter Number of patients (%) (n¼70)

Gender
Female 27 (38.6)
Male 43 (61.4)

Median age 65 years (39–80)

Differentiation
Well 36 (51.4)
Moderately 28 (40.0)
Poorly 6 (8.6)

uT
T1 1 (1.4)
T2 19 (27.1)
T3 47 (67.1)
T4 3 (4.3)

uN
N� 39 (55.7)
N+ 31 (44.3)

Metastases
M� 59 (84.3)
M+ 11 (15.7)

Pretherapeutic TNM stage
Stage 1 11 (15.7)
Stage 2 23 (32.9)
Stage 3 25 (35.7)
Stage 4 11 (15.7)

pT
0 4 (5.7)
1 6 (8.6)
2 26 (37.1)
3 34 (48.6)

PN
0 48 (68.6)
1 20 (28.6)
2 2 (2.8)

pTN stage
0 4 (5.7)
1 21 (30.0)
2 18 (25.7)
3 16 (22.5)
4 11 (15.7)

Radiotherapy (Gy)
45 41 (59)
60 29 (41)

uT, uN¼ ultrasonographic tumour stage; pT, pN, pTN¼ pathologic tumour stage.
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0.1% Triton X-100, 1.5 mmol l�1 MgCl2, 1 U Taq DNA polymerase
(Invitrogen, France), 6 pmol of each primer, and 200 mmol l�1 of
each dNTP. PCR were carried out in a Touch Down Thermocycler
(Hybaid, UK) for 38 cycles: denaturation (15 s at 941C), annealing
(30 s at 581C), and elongation (45 s at 721C). A final 5-min
elongation was performed at 721C.

The Thermo Sequenase Fluorescent-Labelled Primer Cycle
Sequencing Kit with 7-deaza-dGTP (Amersham Pharmacia Bio-
tech) was used for direct sequencing as described previously
(Thirion et al, 2002). Resolved sequencing products were analysed
with the ALFwin Sequencer Analyser 2.00 software (Amersham
Pharmacia Biotech); then, the SB mutation analyser software
(Amersham Pharmacia Biotech) was used to compare the data
obtained with the wild-type p53 sequence. Each mutation
identified was confirmed by sequencing an entirely new PCR
product, starting from the corresponding cDNA.

Detection of loss of heterozygosity (LOH)

DNA was examined for LOH with four p53 intragenic markers: two
restriction sites, namely, MspI in inton 6 (McDaniel et al, 1991) and
BstUI in exon 4, (Ara et al, 1990), and two variable numbers of
tandem repeats (Jones and Nakamura, 1992; Hahn et al, 1993) as
described previously (Thirion et al, 2002). A patient was classified as
informative when normal DNA demonstrated heterozygosity for one
of the four markers. LOH was evaluated by comparing normal and
tumour DNA band intensities by two independent readers. LOH was
considered effective when the intensity of one allele in the tumour
DNA represented less than 50% of the intensity of the other allele.

IHC analysis

The overexpression of the p53 protein was evaluated on two
consecutives 5-mm frozen sections that were fixed in 50%
methanol/acetone for 10 min at �201C and then air-dried. Two
monoclonal antibodies: Pab 1801 (1 : 25 dilution; Oncogene
Research Products, Cambridge, MA, USA) and DO7 (1 : 25 dilution;
Dako, Glostrup, Denmark) were used. The alkaline phosphatase
and monoclonal anti-alkaline phosphatase staining procedure was
used as described previously (Thirion et al, 2002). For each series
of IHC analysis, a negative and a positive p53 control slide was
included. Nuclear staining of the tumour tissues was scored as
follows: o5, 45 –10, 410–25, and 425%. A specimen was scored
positive when more than 5% of the tumour cells showed nuclear
staining with at least one of the anti-p53 antibodies (Pab 1801 or
DO7). The same pathologist, blinded to the results of the other p53
analyses, reviewed all slides.

Serological analysis

Serum p53-Ab were detected by a semiquantitative enzyme-linked
immunosorbent assay commercially available (PharmaCell,
France).

Assessment of radiotherapy effects

Rectal endosonography is considered as the standard medical
examination for parietal infiltration evaluation before treatment.
Reliability determinations of this method, carried out by experts, is
about 80 and 75% for uT and uN, respectively (Heriot et al, 1999).
In our study, all staging were assessed by the same expert.
Response to radiotherapy was based on both comparison of the uT
stage vs the pT stage (pathologic downstaging) and histologic
tumour regression grade of the surgical samples (Rectal Cancer
Regression Grade (RCRG)). For the pathologic staging, patients
were considered as responders to neoadjuvant therapy when a
downstaging of one T stage was obtained. For the RCRG, the
staging proposed by Wheeler et al (2002, 2004) was used. In the

RCRG staging, RCRG 1¼ ‘good’ responsiveness, with a sterilised
tumour or the presence of remaining microscopic foci of
adenocarcinoma; RCRG 2¼marked fibrosis but with macroscopic
tumour still present; and RCRG 3¼ ‘poor’ response, little or no
fibrosis in the presence of abundant macroscopic tumour. In our
study, RCRG 1 patients were considered as histological responders,
while histological non-responders corresponded to patients with
RCRG 2 or RCRG 3. The same pathologist, blinded to the result of
the p53 analysis, classified all tumours.

Statistical analyses

To investigate the association between parameters, univariate
statistical analyses were performed using Pearson’s w2 test with
exact P computation for categorical variables or Fisher’s exact test
if applicable.

Multivariate analyses for response, by logistic regression, were
carried out to evaluate the effect of interactions between the
different variables.

Owing to the small number of patients and the fact that some
patients did not have measurements for all variables, the power of
analysis was reduced.

All P-values reported are two-sided. For all statistical tests,
differences were considered as significant at the 5% level.
Statistical analyses were performed on an IBM PC-compatible
personal computer using the STATA 7.0 software.

RESULTS

Biological data on preradiotherapy samples

Pathological examinations of slides from pretreatment biopsies In
order to obtain a sufficient amount of tumour cells, a preliminary
study was performed with three to six endoscopic biopsies from
each rectal carcinoma patient. The quality of each endoscopic
biopsy was evaluated by histopathological examination of a
haematoxylin- and eosin-stained slide. For each patient, dysplasia
lesions as well as specimens with o5% of tumour cells were
excluded. We decided that four biopsies were necessary to carry
out the complete p53 status analyses (sequencing, LOH, and IHC).

Total cDNA sequencing Among the 70 patients analysed, 35 cases
(50%) revealed p53 mutations (Table 2). All mutations but one
were localised in the central region of p53, exons 5 –8. There was a
vast majority of point mutations (31 of 35, 88.6%) with 83.8% (26
of 31) of transitions and 16.2% of transversions (five of 31). In all,
16 (51.6%) of the 31 point mutations were located on the
mutational hotspot codons 175 (31.2%), 245 (31.2%), 273
(18.7%), 248 (12.5%), and 282 (6.4%).

LOH analysis Among 53 patients studied, the use of four
intragenic markers allowed us to identify 45 informative cases
(84.9%). LOH was detected in 20 patients (44.4%) and each LOH
was confirmed by a new PCR.

Immunohistochemistry All the 70 patients were analysed for p53
overexpression. A total of 31 patients (44.3%) were p53 IHC
negative. p53 protein nuclear accumulation was detected in 39
cases with five patients (7.1%), three patients (4.2%) and 31
patients (44.4%) in categories 45�10, 410�25, and 425%,
respectively.

Anti-p53 antibodies Serum samples were obtained from 66
patients. In all, 11 patients (16.6%) were positive for the presence
of p53-Ab. p53-Ab were recorded in 15.8% (three of 19), 14.9%
(seven of 47), and 33.3% (one of three) of patients with uT2, uT3,
and uT4 tumours, respectively. Among the 10 metastatic patients
analysed for p53-Ab, four were positive.
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Multilevel p53 analysis Side-by-side univariate comparison of the
four analyses: sequencing, LOH, IHC, and serology revealed a
strong correlation between the sequencing results and immuno-
histochemical data (Po0.001) (Table 3). Nevertheless, seven
patients were p53 mutated without p53 overexpression and 11
patients were positive immunohistochemically without any p53
mutation. A significant correlation between p53 LOH and p53
mutations was observed (P¼ 0.013) (Table 3); mutated patients
display majorly an LOH (65%), whereas 72% of nonmutated
patients were LOH negative. Association between p53 antibodies
positivity in the serum and p53 protein expression in the
corresponding rectal carcinoma tissue was assessed. A trend to a
correlation between the presence of p53 antibodies and p53
protein overexpression was observed: 72.7% of p53-Ab-positive
patients had p53 tumour overexpression vs 56.3% of p53-Ab-
negative patients. We noticed that one patient with circulating p53-
Ab had no gene alteration and no p53 nuclear overexpression. One
p53-Ab-positive patient was IHC positive with a wild-type gene,
and one patient was IHC negative with a codon 175 mutation.

Tumour response to preoperative radiotherapy

All patients underwent surgical resection after neoadjuvant
treatment. Using the UICC TNM classification, a downstaging
score was calculated for each patient by subtracting the
ultrasonographic tumour stage (uT) from the pathologic tumour

stage (pT). Downstaging scores were �3, �2, �1, 0, and 1 for one
(1.4%), five (7.1%), 23 (32.9%), 37 (52.9%), and four patients
(5.7%), respectively. In all, 29 patients (41.4%) were considered as
responders (downstaging scores of �3, �2, and �1). In total, 41
patients (58.6%) were considered as non-responders (Table 4).
Histopathological evaluation using RCRG staging could be
performed on 65 patients. A total of 19 patients (29.2%)
demonstrated a ‘good’ responsiveness. The pT stage correlated
with the histological response (P¼ 0.005) (Table 5). Nevertheless,
among 12 patients staged as RCRG 1, five patients were staged pT2
and seven patients pT3. Moreover, a significant correlation was
observed between pathologic downstaging and the RCRG stage
(P¼ 0.025).

Response to neoadjuvant therapy and clinicopathological para-
meters We used a w2 test to determine whether any of the
clinicopathological covariates predicted the response to neoadju-
vant therapy. By using pathologic downstaging, only gender and
radiotherapy dose correlated with response (Po0.04 and Po0.05,
respectively) (Table 6). In multivariate analysis, sex remained a
significant predictor with an odds ratio of 0.33 (95% confidence
interval (CI), 0.11–0.95; P¼ 0.04). By using the histologic tumour
regression grade, no correlation was observed.

Table 2 Location and type of mutation in the p53 gene

Number Exon Codon Mutation LOH Serology IHC

810 7 248 CGG (Arg)-CAG (Gln) � � +
100267 8 306 CGA (Arg)-TGA (Stop) NA NA �
101644 8 273 CGT (Arg)-CAT (His) � + +
101655 6 190 CCT-CC�del (3b) NA � +
8200177 8 273 CGT (Arg)-TGT (Cys) NI � +
9204069 5 175 CGC (Arg)-CAC (His) NA � +
9601783 8 280 AGA-AG�del (6b) NA � +
9602097 7 245 GGC (Gly)-GTC (Val) + + +
9602836 5 164 AAG (Lys)-GAG (Glu) NI + +
9603209 6 213 CGA (Arg)-TGG (Trp) + � +
9605412 8 272 GTG (Val)-ATG (Met) NI � +
9605686 8 273 CGT (Arg)-TGT (Cys) + � +
9605908 8 272 GTG (Val)-TTG (Leu) NI � +
9700728 7 242 TGC (Cys)-TAC (Tyr) + � +
9700951 6 204 Ins (4b) NA � �
9700984 7 245 GGC (Gly)-AGC (Ser) + � +
9800986 5 175 CGC (Arg)-CAC (His) � + �
9801082 8 284 CGG (Arg)-TGG (Trp) + � �
9801303 5 175 CGC (Arg)-CAC (His) + � +
9801337 6 213 CGA (Arg)-TGA (Stop) NA - �
9801474 11 392 TCA-TC�del (4b) NA � �
9803237 7 245 GGC (Gly)-AGC (Ser) + + �
9803954 7 248 CGG (Arg)-CAG (Gln) � � +
9804115 7 234 TAC (Tyr)-CAC (His) + � +
9805071 5 175 CGC (Arg)-CAC (His) + � +
9900522 7 245 GGC (Gly)-AGC (Ser) NA + +
9902985 5 175 CGC (Arg)-CAC (His) NA � +
9903004 8 281 CAG (Gln)-AAC (Asn) NA � +
9903551 5 159 GCC (Ala)-GAC (Asp) NI � +
9904431 5 158 CGC (Arg)-CAC (His) + � +
9904676 5 161 GCC (Ala)-ACC (Thr) + + +
9904929 8 282 CGG (Arg)-TGG (Trp) + � +
9905447 5 163 TAC (Tyr)-AAC (Asn) � + +
9905492 5 173 GTG (Val)-ATG (Met) � � +
9905904 7 245 GGC (Gly)-AGC (Ser) � � +

� LOH¼ no loss of heterozygosity; + LOH¼ loss of heterozygosity; �
serology¼ absence of p53-Ab; + serology¼ presence of p53-Ab; � IHC¼ negative
immunostaining; + IHC¼ positive immunostaining; NA¼ not available; NI¼ not
informative.

Table 3 Univariate analysis of the four levels of p53 analysis

Parameter p53 mutated p53 wild type P for trend

p53 IHC
Negative (n¼ 31) 7 (23%) 24 (77%) o0.001
Positive (n¼ 39) 28 (72%) 11 (28%)

p53 LOH
No LOH (n¼ 25) 7 (28%) 18 (72%) 0.013
LOH (n¼ 20) 13 (65%) 7 (35%)

p53 serology
Negative (n¼ 55) 26 (47%) 29 (53%) NS
Positive (n¼ 11) 8 (73%) 3 (27%)

No LOH¼ retention of heterozygosity; NS¼ nonsignificant.

Table 5 Pathologic downstaging compared with RCRG staging

RCRG (n¼ 65)

Pathologic staging 1 2+3

pT0 3 (100%) 0 (0%)
pT1 4 (66.7%) 2 (33.3%)
pT2 5 (20.8%) 19 (79.2%)
pT3 7 (21.9%) 25 (78.1%)

RCRG¼Rectal Cancer Regression Grade.

Table 4 Pathological response

Pathologic downstaging (%) (n¼ 70)

Echo uT pT0 pT1 pT2 pT3

uT1 0 (0%) 0 (0%) 1 (100%) 0 (0%)
uT2 3 (15.8%) 5 (26.3%) 8 (42.1%) 3 (15.8%)
uT3 1 (2.1%) 1 (2.1%) 16 (34%) 29 (61.7%)
uT4 0 (0%) 0 (0%) 1 (33.3%) 2 (66.7%)
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Response to neoadjuvant therapy and p53 status Uni- and
multivariate analyses did not reveal any correlation between p53
abnormalities and response to therapy, whatever the staging used
to evaluate tumour response (Tables 7 and 8).

Nevertheless, studies of the four p53 levels analysed on sterilised
surgical samples (pT0N0) and microscopic residual tumours
(pT1N0) vs other postsurgical stages demonstrated a trend to
correlation (P¼ 0.059) for LOH detection. Only 12% of patients
(one of eight) with a pT0N0 or pT1N0 stage demonstrated an LOH,
whereas for advanced stages, there was no difference.

DISCUSSION

The aim of this prospective study was to assess the role of p53
complete analyses in the response to radiotherapy or radio-
chemotherapy in rectal carcinoma patients. Many other studies

have searched for predictive criteria of tumour responsiveness to
radiotherapy. In particular, the role of p53 has been investigated,
but despite the clear contribution of p53 to the molecular
pathogenesis of colorectal tumours, its role in the response to
therapy is still unclear. Since the clinical ambiguity of p53 status is
largely due to the method used to detect p53 abnormalities, a
multilevel analysis of p53 (molecular, protein, and serological) was
thus performed to detect all p53 alterations.

Endoscopic biopsies were used as starting material for sequen-
cing, LOH determination, and protein overexpression studies.
Owing to the small size of the biological specimens, an
anatomopathological analysis of four different biopsies was
performed to prevent contamination by normal cells, which would
lead to sequencing or LOH misinterpretations. Biopsies with the
highest cellularity and the highest number of tumour cells were
selected.

In this study, 50% (35 of 70) of the patients demonstrated a p53
gene mutation. The vast majority of observed mutations (34 of 35)
were found to be located in the p53 core domain, affecting the
principal functions of p53 as transcription factor. These results are
in agreement with other reports where p53 gene mutation rates in
colorectal cancers varied from 30 to 63% (Iacopetta, 2003). This
wide range of p53 gene alterations depends not only on the
sensitivity of the technique used to detected mutations and the
number of exons covered but also on the stage of development of
the cancer lesions and the localisation of the tumour. Frequently,
colorectal cancers are considered as a unique entity, but recent
evidence suggests that different genetic pathways are involved in
colorectal cancer (Frattini et al, 2004). Particularly, p53 mutation
rates vary between the two forms of genomic instability associated
with colorectal cancers: microsatellite instability and chromosomal
instability (Tang et al, 2004).

Analysis of nuclear p53 protein accumulation was based on the
use of two monoclonal antibodies, Pab 1801 and D07 (Baas et al,
1994). We detected 55.7% (39 of 70) of IHC-positive cases when the
cutoff value for p53 positivity was set at 5%. The frequency of the
positive p53 staining observed was consistent with reported data,
ranging from 44.8 to 60.8% (Bosari et al 1994; Poller et al, 1997). In
this study, association between p53 protein nucleic overexpression
and p53 gene mutation was obtained for 28 patients (71.8%). This
percentage is around 70% for colorectal cancer studies reported in
the literature (Bosari et al, 1994). Our results revealed 25.7% of
nonconcordant results with 11 IHC false-positives and seven IHC
false-negatives. p53 protein overexpression analysed by IHC is the

Table 6 Response to preoperative radiotherapy evaluated by down-
staging according to the characteristics of the patients

Parameter
Responders

(n¼ 29)
Non-responders

(n¼ 41) P for trend

Gender
Male 22 21 o0.04
Female 7 20

Age (mean, s.d., years) 65.278.9 63.07710.19 NS

Differentiation
Well (n¼ 36) 17 (47%) 19 (53%) NS
Moderately (n¼ 28) 11 (39%) 17 (61%)
Poorly (n¼ 6) 1 (17%) 5 (83%)

Pretherapeutic TNM stage
Stage 1 (n¼ 11) 4 (36%) 7 (64%) NS
Stage 2 (n¼ 23) 10 (43%) 13 (57%)
Stage 3 (n¼ 25) 11 (44%) 14 (56%)
Stage 4 (n¼ 11) 4 (36%) 7 (64%)

Radiotherapy (Gy)
45 (n¼ 41) 13 (32%) 28 (68%) o0.05
60 (n¼ 29) 16 (55%) 13 (45%)

NS¼ nonsignificant.

Table 7 Response to preoperative radiotherapy evaluated by pathologic
downstaging according to p53 alterations

Variable Responders Nonresponders P for trend

p53 sequence
Wild type (n¼ 35) 17 (49%) 18 (51%) NS
Mutated (n¼ 35) 12 (34%) 23 (66%)

p53 IHC
Negative (n¼ 31) 9 (29%) 22 (71%) NS
Positive (n¼ 39) 20 (51%) 19 (49%)

p53 LOH
No LOH (n¼ 25) 11 (44%) 14 (56%) NS
LOH (n¼ 20) 9 (45%) 11 (55%)

p53 serology
Negative (n¼ 55) 22 (40%) 33 (60%) NS
Positive (n¼ 11) 7 (64%) 4 (36%)

NS¼ nonsignificant; no LOH¼ retention of heterozygosity.

Table 8 Response to preoperative radiotherapy evaluated by RCRG
according to p53 alterations

Variable RCRG 1 RCRG 2+RCRG3 P for trend

p53 sequence
Wild type (n¼ 31) 11 (35%) 20 (65%) NS
Mutated (n¼ 34) 8 (24%) 26 (76%)

p53 IHC
Negative (n¼ 28) 8 (29%) 20 (71%) NS
Positive (n¼ 37) 11 (30%) 26 (70%)

p53 LOH
No LOH (n¼ 23) 6 (26%) 17 (74%) NS
LOH (n¼ 19) 9 (47%) 10 (53%)

p53 serology
Negative (n¼ 50) 17 (34%) 33 (66%) NS
Positive (n¼ 11) 2 (18%) 9 (82%)

RCRG¼Rectal Cancer Regression Grade; NS¼ nonsignificant; no LOH¼ retention
of heterozygosity.
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main technique used for the detection of p53 abnormalities in
clinical specimens. Nevertheless, the equation ‘p53 DNA
mutation¼ p53 protein overexpression’ has not always proven to
be valid. Particularly, the immunohistochemical analysis had a
75% sensitivity and a 63% positive predictive value for p53
mutations (Greenblatt et al, 1994). IHC-false-negative cases could
be due to nonsense mutations or genetic alterations unable to
stabilise sufficiently the protein. On the other hand, IHC-false-
positive samples may be attributed to (i) normal cell cycle
fluctuations (Delmolino et al, 1993) when a low percentage of
nuclear staining was observed or (ii) alternative stabilisation of the
protein by alterations of p53 regulatory genes implicated directly
in the negative feedback loop such as Mdm2 (Yin et al, 2002) or
indirectly such as p14ARF (Esteller et al, 2000).

Overexpression of p53 protein in tumours induces an immune
response, and among cancer patients, those with colorectal cancer
have the highest prevalence of p53-Ab ranging from 13 to 32%
(Angelopoulou et al, 1997). In our series, 16.6% of patients (11 of
66) had detectable levels of p53-Ab. The use of antibodies against
p53 as serological marker in the clinical management of colorectal
cancer patients has been reported, but the prognostic value of such
antibodies (Kressner et al, 1998) and their potential use for
prediction of curability (Takeda et al, 2001) or response to
adjuvant chemotherapy (Lechpammer et al, 2004) are conflicting.
Concerning the detection of p53-Ab in the serum of patients, in
our study no clear correlation between tumour progression and
p53-Ab presence was found. Lechpammer et al (2004) in a series of
220 colorectal cancer patients detected p53-Ab mainly in Dukes’ B
and C stages. Moreover, Tang et al (2001), in a large study of 998
colorectal patients demonstrated that the presence of p53-Ab
correlates with tumour progression in colorectal carcinogenesis
and an increase with advanced node metastasis. However, in these
studies, both colon and rectal cancers were analysed as a single
entity, whereas our work was focalised only on rectal carcinoma.

Allelic loss of 17p is a frequent event associated with colorectal
carcinogenesis (Baker et al, 1989). In most cancers, one allele
carries a missense mutation and the other allele is lost (Baker et al,
1989; Nigro et al, 1989). Our series demonstrated that LOH at the
p53 locus occurred in combination with sequence alterations.
Nevertheless, disruption of p53 function has been described
without any loss or inactivation of the intact allele (Inga et al,
1997; Gualberto et al, 1998).

As evaluation of response to therapy is still a matter of debate
(Wheeler et al, 2002, 2004), we analysed response to therapy by
both pathologic downstaging and histologic tumour regression
grade. Our data demonstrated a significant correlation between
downstaging and the RCRG stage. Two different doses of radio-
therapy were used in our study population (45 and 60 Gy).
Regarding p53 abnormalities, these two subgroups were similar.
When downstaging was used, a significantly better response was
observed for patients receiving high-dose irradiation. This
correlation was lost when RCRG stage was used. This discordance
may be related to patients demonstrating a ‘good’ responsiveness
(RCRG 1), although residual tumour cells remained in the
muscularis and mesorectal tissue leading to an absence of
downstaging.

In our multilevel detection of p53 abnormalities, no p53 analysis
showed a significant influence on response to preoperative
irradiation when pretreatment tissues were analysed, whatever
the method used to evaluate treatment response. In the literature,

the role of p53 gene mutations in sensitivity or resistance to
radiation therapy is still a subject of discussion (Chiarugi et al,
1998).

Rebischung et al (2002) showed by sequence analysis in a
retrospective series of 86 rectal tumours with 41% responders that
the presence of p53 mutations correlated with sensitivity to
radiotherapy. However, Rodel et al (2002) analysed the histo-
pathological response to radiotherapy in a series of 44 patients and
demonstrated that neither the p53 nor the bcl-2 status was
correlated with a response to radiotherapy, but they found that the
apoptotic index may help to tailor therapy with regard to
neoadjuvant treatment of rectal cancer. Similarly, Saw et al
(2003), in a series of 60 low rectal tumours locally advanced,
concluded that neither p53 by IHC and PCR– SSCP (single-strand
conformation polymorphism), nor DCC (deleted in colon cancer)
by IHC was associated with tumour downstaging.

Although no correlation was obtained for pretreated tissues in
our study, a trend to correlation was observed on surgical samples
where retention of heterozygosity was associated with pT0–pT1
stages.

When cells are exposed to ionising radiation, a complex
response is initiated including cell cycle arrest in the G1 and the
G2 phases, apoptosis, and DNA repair. Wild-type p53 is a cell cycle
checkpoint determinant following irradiation (Kuerbitz et al,
1992); and in response to ionising radiation (Buschmann et al,
2000), p53 is stabilised through phosphorylation, inhibition of
Mdm2-mediated degradation, and reduction in Mdm2 sumoyla-
tion. The consequence is promotion of either cell cycle arrest or
apoptosis. Following gamma-irradiation-induced cell death, strik-
ing tissue specificity is observed, with distinct regulation of target
p53-induced genes (Fei and El Deiry, 2003). Instead of static
analyses, dynamic immunohistochemical studies, comparing
expression of apoptosis-releated genes (Tannapfel et al, 1998;
Rau et al, 2003) in pretherapy biopsies and the final resected
specimen after neoadjuvant treatment, could contribute to
molecular marker positioning. Furthermore, other components
such as EGFR and cyclin D1 could play active roles in tumour
response to radiotherapy (Milas et al, 2004).

Our analysis of rectal cancers investigated the implication of
p53 dysregulation with relation to the response to neoadjuvant
therapy. The strength of our study was three-fold. First, p53
was analysed at four different levels; second, it was a prospective
study with the criteria for inclusion being (i) a pretreatment
biopsy (ii), a complete course of radiotherapy, and (iii) surgical
resection. Finally, two methods of response to treatment were
used, namely, pathologic downstaging and histologic tumour
regression grade. Our results based on a multilevel p53 analysis
approach confirm that although p53 appears to be a major
regulator, nevertheless it is certainly not the major indicator of
tumour radiosensitivity.
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