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Abstract: Cataracts remain the first or second leading cause of blindness in all world regions. In
the diabetic population, cataracts not only have a 3–5 times higher incidence than in the healthy
population but also affect people at a younger age. In patients with type 1 diabetes, cataracts occur
on average 20 years earlier than in the non-diabetic population. In addition, the risk of developing
cataracts increases with the duration of diabetes and poor metabolic control. A better understanding
of the mechanisms leading to the formation of diabetic cataracts enables more effective treatment and
a holistic approach to the patient.
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1. Introduction

Worldwide, over 285 million people suffer from diabetes. According to the Interna-
tional Diabetes Federation, this number is expected to increase to 439 million by 2030 [1].
Diabetic eye diseases comprise a number of pathological changes within the eye organ,
which include, among others: cataracts, retinopathy, diabetic macular edema, dysfunctions
of the tear film, and changes in corneal morphology.

Due to the steadily increasing number of people with type 1 and type 2 diabetes, the
incidence of diabetic cataracts has increased accordingly. Changes in the lens of diabetic
patients resemble age-related modifications in elderly patients. The only difference is that
these changes usually manifest themselves at a younger age.

A cataract is a form of opacification that develops in the translucent lens of the
eye, ranging from partial to complete. This condition reduces the translucency of the
lenses, which results in reduced visual acuity for the patient, while making it difficult
for the ophthalmologist to observe the posterior section of the eye and even making
treatment impossible, as in the case of the photocoagulation of the retina. The results of
clinical research have shown that cataract development occurs more frequently and at
an earlier age in diabetic compared to non-diabetic patients [2,3]. This fact is confirmed
by a study of Memon et al., according to which, under 40 years, 33.3% of diabetics, as
compared to 16.4% of non-diabetics, develop cataracts; the percentages were 41% and
14.5% in the 40–59 years age group, respectively. The same trend was followed in the
age group > 60 years, where 16.4% of non-diabetics develop cataracts compared to 47% of
diabetics [3]. Similar results were obtained by Becker et al. in a retrospective observational
study involving 56,510 diabetes patients [4]. The estimated incidence rates of cataracts
were 20.4 (95% CI, 19.8–20.9) per 1000 person-years (py) in patients with diabetes and 10.8
(95% CI, 10.5–11.2) per 1000 py in the general population.

There are three types of cataracts: cortical (CC), nuclear (NS), and posterior subcapsu-
lar (PSC). Each may occur independently, or, more commonly, they co-occur with each other.
Many studies have examined the likelihood of the occurrence of different types of cataracts
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in diabetic patients. Olafsdottir et al. showed that the prevalences of significant cortical,
posterior subcapsular, and nuclear cataracts were 65.5%, 42.5%, and 48.0%, respectively, in
the type 2 diabetes population [5]. These results are consistent with most of the previous
studies [6–10]. Two studies reported contrasting findings, that is, NS was identified as the
predominant subtype [3,11]. Cortical cataract occurrence is often independent of sugar level
fluctuations (Figure 1A) [5,12], while posterior subcapsular cataracts are usually associated
with poor glycemic control (Figure 1B,C) [5,13].
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Figure 1. Cataracts related to diabetes. (A) Cortical cataract. (B) Posterior subcapsular cataract.
(C) Posterior subcapsular cataract in retroillumination.

The association between T1DM and cataracts is well documented in the literature [14],
with the risk factors being the duration of diabetic symptoms before diagnosis, diabetic ke-
toacidosis, poor metabolic control, elevated HbA1c, possible genetic factors, and treatment
with glucocorticoids. Cataracts affect from 0.7% to 3.4% of type 1 diabetes patients from
different populations, and the average 10-year cumulative incidence of cataract surgery,
according to a study, is 8.5% [15–17]. Regarding the morphology of early diabetic cataracts,
Wilson et al. reported multiple morphologies, including posterior subcapsular, lamellar,
cortical, snowflake, and milky white types of early diabetic cataracts [17], while most other
authors discriminate fewer types with posterior subcapsular cataract described as the most
common type of diabetic cataract in childhood [18,19].

The impact of diabetes on the lens also presents itself in accommodation disorders,
leading to a decrease in its amplitude and the occurrence of presbyopia at a younger age in
comparison to those without diabetes.

Numerous studies have indicated that refractive errors may be associated with glycemic
control in diabetic patients [20,21]. Sudden refractive changes toward myopia may indicate
undiagnosed or poorly controlled diabetes. On the other hand, in intensive therapy
lowering blood glucose levels, a significant number of patients have a tendency toward
hyperopia [22]. This effect is particularly pronounced in patients receiving better control
post hyperglycemia, who may develop a change in hyperopia ranging from 0.5 diopters (D)
to 3.75 D for 1–2 weeks after the beginning of their treatment [23]. Changes in refraction
observed during periods of unstable glucose levels are believed to be related to both
morphological and functional changes in the lens [24]. In addition, changes in corneal
topographic parameters during glucose fluctuations are a potential source of refractive
errors after cataract surgery [25]. An increase in central corneal thickness has been reported
in the eyes of diabetic patients, which may alter corneal power [26]. An extended duration
of diabetes (>15 years) was found to be a significant factor for astigmatism (aOR, 1.62;
95% CI, 1.15–2.27) and anisometropia (aOR, 1.87; 95% CI, 1.29–2.71) [27].

Currently, the main method of treating diabetic cataracts is the surgical removal of the
cataract with intraocular lens implantation. Approximately 20% of all cataract surgeries are
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performed in diabetic patients [28]. Even though cataract surgery is highly effective and im-
plantation of an artificial lens eliminates the possibility of refractive changes, unfortunately,
diabetic patients are at a higher risk of intraoperative and postoperative complications
compared to non-diabetic patients [29,30]. It has been shown that phacoemulsification
in diabetic patients can lead to a relatively rapid progression of diabetic retinopathy, ac-
celerate vitreous hemorrhage [31], and increase the thickness of the central retina [32].
Even uncomplicated cataract surgery leads to an increase in the concentration of inflam-
matory cytokines, vascular endothelial growth factor (VEGF), hepatocyte growth factor,
interleukin-1 (IL-1), and pigment-epithelium-derived factor [33]. It is not surprising that
diabetic patients show an increased risk of developing endophthalmitis [34]. Therefore,
both the underlying disease itself and the necessity to undergo surgery constitute a signifi-
cant health and economic burden for the patients, especially in developing countries where
diabetes treatment is insufficient and cataract surgery is often unavailable [35]. Therefore,
explaining the pathomechanisms that delay or prevent cataract development in diabetic
patients remains challenging.

1.1. Diabetic Cataract Pathogenesis

The pathogenesis of diabetic cataracts is still not fully understood and remains the
subject of many studies. It is worth noting that the pathomechanism of diabetic changes
in the lens is different from diabetic complications of tissues of the retina, the peripheral
nerves, the kidneys, or the heart. This is because the lens is not vascularized, and is supplied
with nutrients and oxygen via the aqueous humor [36]. This type of construction results
in obtaining energy mainly anaerobically. In turn, energy production in mitochondria
is not as essential as in vascular tissues and is limited to the mitochondria of the single-
layer lens epithelium [37]. The key role of hyperglycemia in the formation of changes in
the lens of diabetic patients is also important, whereas factors such as hypertension or
lipid metabolism disorders, which contribute to the formation of diabetic changes in the
vascularized tissues of the eye, are not significant in the pathogenesis of cataracts.

As clinical practice demonstrates, diabetic complications do not develop in a certain
percentage of patients, while in others, even with adequate metabolic control, the progres-
sion of complications is surprisingly fast. These observations indicate that there are several
risk factors that may affect the likelihood of developing diabetic cataracts [38].

In this review, we will develop the hypothesis that diabetic cataract formation can be
caused by multifactorial reactions and pathways interacting with each other.

1.2. The Sorbitol Pathway

Metabolism in the lens works to maintain its translucency. Glucose metabolism is the
main source of energy in the lens. Glucose enters the lens from the aqueous humor both
directly by means of simple diffusion and indirectly by facilitated diffusion. The majority
of the glucose entering the lens is phosphorylated and converted into glucose-6-phosphate
(G6P) by hexokinase. The resulting G6P undergoes further transformation in one of two
ways, of which anaerobic glycolysis constitutes approximately 80%. The glucose that
is not phosphorylated to G6P enters the sorbitol cycle, where it is converted to sorbitol.
Under normal conditions, approximately 4% of the total glucose concentration in the lens
is converted in this way [39].

As the concentration of glucose in the blood increases, the amount of it in the aqueous
humor also increases, and consequently, the same happens in the lens. Hexokinase is
then inhibited in the feedback mechanism by glycolysis products, while the sorbitol cycle
becomes the main pathway involved in glucose metabolism. Aldose reductase (AR), which
reduces glucose to sorbitol, is the key enzyme in this cycle [40]. The sorbitol dehydrogenase
enzyme then catalyzes the conversion of sorbitol to fructose. Unfortunately, due to the low
affinity of the latter enzyme, a large portion of the sorbitol is accumulated in the lens before
further transformation. This property, combined with the poor permeability of the lens for
sorbitol, results in its deposition in the lens [39].
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The sorbitol pathway, also known as the polyol pathway, is the main pathway in-
volved in diabetic cataract formation. An increased accumulation of sorbitol and a lower
concentration of fructose in the lens result in a hyperosmotic effect, which results in the
fluid moving into the interior of the lens to equalize the osmotic gradient. Initially, the
energy-dependent lens pumps are capable of compensating for this but, eventually, become
overloaded. This results in liquefaction and swelling of the lens fibers, leading to their
degeneration and opacification [41,42]. This process is of particular relevance in young
patients with type 1 diabetes [43,44] due to extensive edema of the cortical lens fibers [45].

Numerous publications suggest that the main enzyme of the polyol pathway—aldose
reductase (AR)—plays a key role in the pathogenesis of diabetic cataracts. Snow et al.
demonstrated that an increase in the AR gene expression may increase the risk of cataract
development in diabetic patients [38]. Another study on the participation of AR in the
pathogenesis of diabetic changes was conducted by Oishi et al., showing a positive correla-
tion between the level of aldose reductase in red blood cells of patients under 60 years of
age, with short-term diabetes, and developed posterior subcapsular cataract [46]. On the
other hand, the correlation between the level of AR in erythrocytes and the density of lens
epithelial cells was negative [47]. Of course, the density of lens epithelial cells in diabetic
cataract patients is reduced, which is confirmed by, among others, Laspias et al. [48]. A
research-based conclusion was made about the possibility of treating diabetic cataracts
with AR inhibitors. Thus far, the effectiveness of such a procedure has been proven in
animal studies (rats and dogs) [49]. Animal models such as the streptozotocin (STZ) rat, a
model used to chemically induce type 1 diabetes by destroying pancreatic betacells, and
galactose-fed animals, a model for obese type 2 diabetes, have been used to understand the
mechanisms of diabetic cataract formation [50]. Unfortunately, it has not been confirmed in
humans. The failure of aldose reductase inhibitors to slow the progression of cataracts in
humans lies in the differences in AR activity and polyol accumulation between rats and
humans, with humans exhibiting low levels of AR activity relative to rats. Moreover, the
animal model mimicked the sudden onset of cataracts, as seen in patients with uncontrolled
hyperglycemia. However, in most patients, cataracts develop after several years into the
disease [50].

1.3. Oxidative Stress

Evidence of the involvement of oxidative stress in the development of diabetic cataracts
is also available [51–53]. The induction of this process in diabetes results from a variety of
mechanisms. Hyperglycemia may lead to auto-oxidation of glucose and non-enzymatic
glycation, collectively referred to as glycoxidation, resulting in the overproduction of free
oxygen radicals in the lens.

Non-enzymatic glycation of lens proteins leads to the formation of advanced glycation
end products (AGEs). Glycation alters protein conformation and stability [54,55], induces
protein aggregation and cross-linking, and increases susceptibility to proteolysis [55–58].
During the formation of AGEs, reactive oxygen species (ROS) are formed. Examples
of these include superoxide anion radicals (O2

−) and hydrogen peroxide (H2O2) [59,60].
Moreover, the binding of AGEs to a specific receptor for advanced glycation end-products
(RAGEs) on the cell surface activating the NADPH oxidase (Nox) and NF-κB [61] becomes
an additional signal for intracellular ROS formation [62]. Because the formation of AGEs
cannot be reversed, even if hyperglycemia improves, their accumulation in the lens will
continue to cause oxidative stress [63]. AGEs have been confirmed to occur both in the
epithelium [64] and in the lens fibers [65,66]. Numerous studies indicate an elevated level
of AGEs both in the lenses and in the serum of diabetic patients [67–71]. By binding with
each other and with long-lived proteins, AGEs form a network of cross-links. All of the
described processes concern proteins that constitute 33% of the total mass of the lens [39].
This is twice as much as in most other tissues [39]. Structural proteins called crystallins
largely determine the transparency of the eye lens. Therefore, the molecular damage they
undergo contributes to the formation of cataracts. Crystallins are water-soluble proteins
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categorized into two groups—α-crystallins and βγ-crystallins. α-crystallins are a class
of small heat shock proteins. In addition to their structural role, α-crystallins have been
shown to play a chaperone-like function by capturing unfolded or denatured aggregation-
prone proteins and maintaining their refoldable conformation [72–74]. The protective
function of α-crystallins relates to other crystallins, enzymes, and cytoskeletal proteins.
The chaperoning ability of α-crystallin is believed to be essential for the maintenance
of the transparency of the lens, thus, preventing the formation of cataracts [75]. There
are numerous reports on the reduced protective activity of α-crystallins in the lenses
of diabetic patients compared to the lenses of non-diabetic patients [76–78]. Therefore,
many studies [75,77,79] have aimed to develop protective factors for the specific qualities
of α-crystallins, with the goals of understanding the cause of cataracts and developing
potential treatments.

Damage to antioxidant enzymes, such as superoxide dismutase or catalase, by pro-
tein glycation, among others, is responsible for the additional intensification of oxidative
stress. The most dominant superoxide dismutase isoenzyme is copper–zinc superoxide
dismutase 1 (SOD1), which degrades superoxide anions (O2

−) to hydrogen peroxide (H2O2)
and oxygen [80]. The importance of SOD1 in protecting against cataract development in
the presence of diabetes has been demonstrated in various in vitro and in vivo animal stud-
ies [81–83]. Olofsson et al. observed that diabetic SOD1-null mice developed more cataracts
than diabetic wild-type mice or non-diabetic mice [82,83]. Behndiga et al. noted similar
results and, what is more, showed that the basal concentration of superoxide radicals is
doubled in lenses lacking SOD1 [81].

The formation of highly reactive free radicals leads to DNA damage, protein oxida-
tion, and lipid peroxidation, resulting in an increase in the amount of water-insoluble
proteins [39]. It is well established that in a healthy lens, water-soluble proteins predom-
inate, constituting up to 80% of all proteins. The fraction of water-insoluble proteins
increases with age, which is a physiological process. However, in diabetes, it may proceed
more rapidly and, as a result, lead to reduced lens translucency. The polyol pathway is
also a mediator of oxidative stress [84]. The mechanism which contributes to oxidative
stress is the usage of nicotinamide adenine dinucleotide phosphate (NADPH) during the
conversion of glucose into sorbitol with the participation of AR. NADPH depletion impairs
antioxidant defense because it is necessary for the formation of glutathione (GSH) from
glutathione disulfide (GSSG) [85], and GSH acts indirectly as the primary scavenger of free
radicals in the lens [39].

In addition, oxidative stress is generated during the conversion of sorbitol to fructose
by sorbitol dehydrogenase (SDH) (i.e., the second step of the polyol pathway). At this
stage, the nicotinamide adenine dinucleotide (NAD+) cofactor is reduced to NADH by
SDH. NADH is a substrate for NADH oxidase, leading to the production of superoxide
anions [86].

The polyol pathway of glucose metabolism and its relationship to oxidative stress is
shown in Figure 2.

Excessive levels of glucose may disrupt the electron transport chain in the mitochon-
dria. Therefore, the mitochondria found in the epithelial cells of the lens are another source
of ROS in the lens. Increased expression of pro-inflammatory cytokines was also demon-
strated in the lens epithelial cells of diabetic patients compared to the cells of non-diabetic
patients [87]. This contributes to the dysfunction of these cells, consequently leading to
their apoptosis, which has implications for the process of cataractogenesis [88,89].

In their study using a human lens epithelial cell line (HLEB3), Du S. et al. found that
high glucose levels can directly induce oxidative stress and cell apoptosis. They also studied
the effect of decorin on the p22phox–p38 pathway of HLEB3 cells under the conditions of
high glucose levels. p22phox and p38 have been described as important signaling factors
responsible for the production of ROS under oxidative stress conditions in the mitochondria
and have shown significantly increased expression of these proteins in the anterior lens
capsule of patients with diabetic cataracts compared to patients with age-related cataracts.
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Their research suggests that decorin has a potential therapeutic role in the treatment of
diabetic cataracts [90].
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Currently, numerous studies confirming the inhibitory effect of antioxidants on the
formation of diabetic cataracts in animals are being published. These are both exogenous
antioxidants, such as alpha-lipoic acid [91] and vitamin E [92], and endogenous antiox-
idants, such as pyruvate [93]. Unfortunately, clinical observations in humans suggest
limited effects of antioxidant compounds on the development of cataracts and indicate they
might not be clinically significant [94].

1.4. Autophagy Lysosomal Pathway

Recent studies on the autophagy lysosomal pathway indicate its great importance in
the formation of cataracts in hyperglycemia. This pathway is known to play an essential
role in lens embryogenesis, being responsible for the autophagy of the nucleus and cell
organelles during the differentiation of lens epithelial cells (LECs) into lens fiber cells
(LFCs), ultimately forming the organelle-free zone. This pathway is also crucial in the
process of removing damaged organelles and misfolded proteins, which are absorbed by
autophagosomes and then degraded by lysosomal enzymes [95]. If these macromolecules
cannot be digested by lysosomes, cells overloaded with autophagic substrates cause tissue
malfunction. Researchers initially observed that autophagy was impaired in the LECs
following exposure to hyperglycemic conditions [96].

Sun Y. et al. showed, for the first time, that hyperglycemia interferes with normal
lysosomal degradation mediated by means of the transcription factor EB (TFEB) in a
ROS-dependent manner, leading to autophagy blockage and, ultimately, lens opacity [97].
TFEB is a major lysosomal biogenesis gene playing a key role in maintaining LEC cellular
homeostasis. The fact that the activation of TFEB by the curcumin analog, C1, increases
lysosomal function, promotes autophagic flux, and eliminates oxidative molecules, thus,
restoring the epithelial properties of the LEC and the transparency of the lens in conditions
of elevated glucose levels [98], constitutes a valuable practical finding.

Studies have shown that the epithelial–mesenchymal transition (EMT), which is re-
sponsible for LECs losing their original polarity and tight junctions, occurs in a mouse
model of diabetic cataracts (ENG number 63), and high glucose levels promote the EMT
LEC processing both in vivo and in vitro [37,99]. EMT is the transdifferentiation of epithe-
lial cells into mesenchymal cells with the activation of mesenchymal biomarkers such as
α-smooth muscle actin (α-SMA) and the inhibition of epithelial cell biomarkers such as
E-cadherin [100,101]. Abnormalities in the EMT process lead to the formation of LEC with
the phenotypic features of mesenchymal cells with increased migration capacity, resistance
to apoptosis, and the production of a greater amount of the extracellular matrix component
(EMC), which also contributes to the formation of cataracts [102–104].
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The autophagy and EMT processes may interact with each other through complex
reactions [105]. It has been reported that they have common molecular mediators such as
transforming growth factor beta (TGF-β), signal transducer and activator of transcription 3
(STAT3), integrins, and focal adhesion kinases (FAKs) [106]. The selective degradation of
specific EMT proteins, such as Snail, appears to be the main molecular mechanism by which
autophagy controls EMT [96]. Normally, Snail degrades rapidly, and its expression remains
low. Similarly, p62 protein levels in cells are also very low as it is degraded in selective
autophagy. However, autophagy is inhibited in a high-glucose environment, resulting
in the accumulation of p62 in HLEB3. p62 may interact with Snail and protect it from
degradation and, thus, increase its levels in cells. Snail moves from the cytoplasm to the
nucleus and promotes the EMT process.

Li J. et al. demonstrated these complex relationships by reversing the processes caused
by elevated glucose levels by the use of rapamycin. As a result, the autophagy-EMT
pathway becomes a potential point of inhibition of diabetic cataracts [96].

1.5. Changes in the Metabolic Compositions in the Aqueous Humor

The aqueous humor (AH) not only supplies nutrients but also carries away metabolic
wastes from avascular tissues in the eye. So far, little research has been conducted on the
components of AH. Several studies have been performed to determine the differential
profiles of lipid species in the AH between normal subjects and glaucoma patients [107,108].
Apart from glaucoma, distinct lipid profiles in AH have also been found in patients with
conditions such as Fuchs endothelial corneal dystrophy [109] and polypoidal choroidal vas-
culopathy [110]. Promising conclusions were drawn by Wang et al. after having examined
the differences in the lipid profile of the AH of patients with diabetic cataracts compared to
the control group, which consisted of patients with normal glucose levels [111]. A multi-
variate analysis of lipid types showed significantly elevated concentrations of triglycerides
(TGs) and diacylglycerol (DG), while ceramide-1-phosphates were significantly lower in
AH in patients with diabetic cataracts. Moreover, TG concentration in AH was positively
correlated with serum TG concentration in diabetic patients. On the basis of the conducted
research, they hypothesized that AH lipid changes may contribute to the formation of
cataracts, and lipid-targeted therapy may be a potential therapeutic strategy in diabetic
cataracts [111].

An interesting metabolomic study was conducted by Pietrowska et al. in which they
analyzed differences in AH small molecule composition between diabetic and non-diabetic
patients with cataracts [112]. In the study, several molecules (methyltetrahydrofolic acid,
taurine, niacinamide, xanthine, and uric acid) known for their antioxidant capabilities
were found decreased in AH of diabetics. Another large group of metabolites significantly
different between AH samples obtained from studied patients are amino acids (AA) [113]
and their derivatives. The majority of these metabolites were significantly lower in AH of
diabetics in comparison to non-diabetics. In general, AA may protect from cataracts or delay
their development due to their antiglycating properties [114]. Differences that have been
noticed confirm that increased oxidative stress and perturbations in amino acid metabolism
in AH may be responsible for earlier cataract onset in diabetic patients. Additionally, the
researchers paid special attention to tryptophan-related metabolites belonging to the AA
group, which, except for their antiglycating properties, are efficient physical filters for the
ultraviolet range.

Assuming that tryptophan degradation products play an important role in the forma-
tion of senile cataracts, Andrzejewska-Buczko et al. examined the involvement of these
compounds in the formation of diabetic cataracts. Their study found that in individuals
with diabetes, the levels of kynurenine, 3-hydroxykynurenine, and anthranilic acid in
the aqueous humor were higher compared to those without diabetes, while the levels of
tryptophan and kynurenine were found to be similar in both groups. An accumulation of
tryptophan and all its designated metabolites has been observed in the lenses of diabetic
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patients. The findings of this study also suggest that tryptophan degradation products may
play an important role in the formation of diabetic cataracts [115].

1.6. The Influence of Diet on the Development of Cataracts

The complexity of diabetic cataract pathogenesis was taken into account by Cheng X. et al.
in their study on the molecular mechanism of Protocatechualdehyde (PCA) in the treatment
of diabetic cataracts [116]. PCA is a phenolic compound of plant origin with antioxidant
and antiproliferative properties that may inhibit protein glycosylation [117,118]. It can also
prevent the expression of AGE and TGF-β1 receptors in human lens epithelial cells cultured
under diabetic conditions [119]. Based on the Network Pharmacology Study method, the
study evaluated the multidirectional impact of PCA on the treatment of diabetic cataracts.
The study has found that certain molecules—AKT1, MAPK3, and HDAC3—have been
identified as potential targets for PCA, and they are associated with molecular functions
such as protein kinase activity, protein kinase binding, and serine/threonine protein kinase
activity. AKT1 plays an important role in the regulation of cell survival and can be activated
by PI3K in diabetic cataracts [120]. MAPK, mitogen-activated protein kinase [121], HDAC3
(histone deacetylase 3) is a type of protease that plays an important role in the structural
modification of chromosomes and the regulation of gene expression. HDAC is activated in
age-related cataracts, and cataract formation is attenuated by HDAC inhibition [122–124].
It is possible that the concentration of HDAC in the eye increases in the presence of diabetic
ocular complications [125]. Furthermore, the signaling pathways involved in these targets
have been shown to mainly include the MAPK signaling pathway, the PI3K-Akt signaling
pathway, and the AGE-RAGE signaling pathway in diabetic complications [116]. In the
last stage of the study, an in vitro verification experiment was performed to improve the
reliability of the results. AKT1, MAPK3, and HDAC3 transcription levels in glucose-
induced human lens epithelial cells were significantly increased, and PCA treatment
significantly inhibited AKT1, MAPK3, and HDAC3 mRNA levels in glucose-induced
cells. In conclusion, the study’s results indicate that PCA may show a therapeutic effect
on diabetic cataracts through various targets and signaling pathways. Additionally, it
highlights the intricate nature of the pathogenesis of diabetic cataracts.

Resveratrol (RSV), belonging to the stilbene family, is another compound that demon-
strates multidirectional possibilities of action. It exhibits a wide range of biological char-
acteristics, including anti-glycation, antioxidant, anti-inflammatory, neuroprotective, and
anticancer properties [126,127]. Resveratrol has been proven to inhibit the formation of
selenite-induced cataracts due to the stimulation of increased levels of reduced glutathione
(GSH) and by reducing the levels of malondialdehyde (MDA), which is a lipid peroxidation
marker in rat lenses [128]. A study conducted on human lens epithelial cells has shown that
RSV reduces cell death and ROS accumulation following an acute state of H2O2 oxidative
stress. This protective effect in cells is due to the increased expression of enzymes such
as superoxide dismutase-1 (SOD-1), catalase, and heme oxygenase-1 (HO-1) [129]. RSV
has been shown to be effective in preventing and treating diabetic cataracts, as well as
suppressing high-glucose-induced oxidative damage by activating p38 MAPK signaling
to promote autophagy in HLECs [130]. These results suggest that RSV can be utilized in
the prevention and treatment of diabetic cataracts [130]. Posterior capsule opacification
has been shown to be possibly inhibited by RSV after cataract surgery [20]. It is worth
noting that RSV supplementation is also effective in inhibiting the progression of diabetic
retinopathy, including proliferative retinopathy [34].

2. Challenges and Future Directions

The increasing incidence of diabetes and an aging society require further research
into the pathogenesis and potential targets of cataract therapy. Recent reports on the in-
volvement of pyroptosis in eye diseases seem promising, including cataracts extensively
discussed by Chen et al. [131], describing pyroptosis as an inflammatory form of cell death
executed by gasdermins, a family of transmembrane pore-forming proteins activated via
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inflammasome-dependent or inflammasome-independent pathways. During the explo-
ration of different types of cell death, they found that the relationship between cell death
forms is complicated, and a myriad of ties between pyroptosis and other cell death in ocular
diseases remain to be discovered. In addition, gene therapy and nanodrugs (i.e., drugs en-
capsulated with nanoparticles) targeting the pyroptosis pathway will also have satisfactory
application prospects and are some of the research directions that are expected to achieve
clinical breakthroughs in the future.

In recent years, an interesting subject is artificial intelligence (AI), which has had
a profound and increasing impact on ophthalmology. AI has the potential to be a use-
ful adjunctive tool for cataract management. First, AI can be applied as a telediagnostic
platform to screen and diagnose patients with cataracts using slit-lamp and fundus pho-
tographs. The key challenges include ethical management of data, ensuring data security
and privacy, demonstrating clinically acceptable performance, and improving the trust of
end-users [113].

3. Conclusions

In summary, hyperglycemia induces oxidative stress, generating the formation of
reactive oxygen species, increasing cell metabolism, intensifying the conversions in the
polyol pathway, and the formation of advanced glycation end products (AGEs). Activation
of all these processes is closely linked and is based on the principle of feedback loops [132].

Understanding these mechanisms is also important in everyday ophthalmological
practice. The number of patients suffering from diabetes is constantly rising, and thus, the
number of patients referred for cataract surgery is increasing. Thus, the question arises if
we can offer non-surgical methods of treatment. This is all the more important because
cataract surgery in diabetic patients is associated with a greater risk of both intra and
postoperative complications. The moment of qualifying a patient for cataract surgery is
often one of the stages of treatment of diabetic eye disease, whereas lens translucency plays
a key role in both the diagnosis and the treatment of diabetic eye complications, such as
diabetic macular edema or diabetic retinopathy.
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