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ation of three-parameter Weibull
probability model based on outlier detection†

Hang Zhang,‡ Zhefeng Gao,‡ Chenran Du, Shansong Bi, Yanyan Fang,*
Fengling Yun, Sheng Fang, Zhanglong Yu, Yi Cui and Xueling Shen

The Weibull probability model used in statistical analysis has become more popular in the inconsistency

evaluation of used Li-ion batteries due to its flexibility in fitting asymmetrically distributed data. However,

despite its better fitting of data with a non-zero minimum, the three-parameter Weibull model is less used

because of its complicated calculation. Additionally, the Weibull family is likely to overfit and shows

inference from outliers. Although conventional estimation methods for Weibull parameters based on

dispersion and symmetry of the overall distribution lead to derivation from the actual data features, there is

little research into methods to solve the contradiction between estimation accuracy and proper outlier

detection. In this study, a Weibull parameter estimation method was proposed that features simplified

computation and eliminates the interference from outliers. The outliers were identified based on the

obtained Weibull parameters and excluded from the sample data. The method was implemented for fitting

the capacity distribution of Li-ion batteries, which was verified by a chi-square test at a confidence of 95%

and the Anderson–Darling test. It showed a higher goodness-of-fit and less error than the results of the

maximum likelihood estimated Weibull model as well as the normal distribution. The optimal presetting of

column number and peak reference point selection were determined by parameter discussion.
Introduction

As Li-ion batteries become promising as power supplies for
vehicles, research interest in battery lifetime behavior is rising.
To better describe this, probability models have been used,
among which the Weibull model is a practical one.

The Weibull distribution1 has shown wide applicability since
its rst appearance. It is used in elds including survival anal-
ysis, reliability engineering, and extreme value theory. To
amplify the relevance of the Weibull, a regression structure can
be added to one of the parameters, i.e., the behavior of the
distribution may be explained from covariates (explanatory
variables) and unknown parameters can be estimated from the
observable data.

The Weibull probabilistic model is applied to the consis-
tency evaluation of lithium-ion batteries. It quantitatively
describes the distribution characteristics of battery capacity,
internal resistance, voltage and other parameters.2,3 Since
lithium-ion batteries are nonlinear systems, the parameter
distribution is not always symmetrical.4 When the mean value
deviates from the midpoint of the maximum and minimum
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values, the eigenvalues of the normal model cannot capture this
asymmetry. Regardless of whether the batteries are grouped or
not, the statistical values of the normal distribution model will
lead to deviations in predicting the battery consistency.
However, the asymmetric distributions of the battery parame-
ters usually reect important characteristics of the battery,
providing an effective statistical basis for the formation and
evolution of the consistency of the battery.5 Therefore, the
asymmetric distribution characteristics of the battery give an
accurate statistical understanding of the consistency charac-
teristics of the battery and provide a reliable foundation for
battery consistency prediction and control.6

In addition to the Weibull model, two other statistical
distributions have been used to describe the material data: the
normal distribution and the lognormal distribution.7–9

Comparatively, the two-parameter Weibull distribution is
mostly used because: (a) it is more accurate in describing glass
strength data than the normal distribution,2 and (b) it is always
more conservative in the tail of the distribution than the
lognormal distribution.3 Conservative estimates are preferred
for engineering design applications considering the safety
margin. As a result, the Weibull distribution is the established
way of describing battery capacity data in both academic
studies10,11 and engineering applications.12–14

The normal distribution is also widely used to describe
engineering data. Also known as the Gaussian distribution, it is
a symmetrical distribution. Some characteristics of Li-ion
© 2022 The Author(s). Published by the Royal Society of Chemistry
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batteries have been found to follow a normal distribution,
especially for newly produced batteries.15 Its usage has also
expanded to describe other characteristics of batteries. Speci-
cally, compared with new cells, retired battery cells behave less
consistently and have a more le-skewed capacity distribu-
tion.16 This asymmetrical tendency is likely to be better
described by theWeibull distribution, indicating its potential in
describing Li-ion battery data.

Consistency evaluation methods for the asymmetric distri-
bution of batteries are mainly based on the two-parameter
Weibull distribution model, because it requires little calcula-
tion, and the asymmetry characteristics of the battery consis-
tency distribution can be indicated by the change of shape
parameters. The two-parameter Weibull distribution model
defaults the minimum value of the distribution as 0, but the
values of the capacity, internal resistance, and voltage of
batteries are usually non-zero. If 0 is used as theminimum value
of the distribution range, the Weibull size parameter and the
shape parameter will lose accuracy in describing the distribu-
tion characteristics. Adopting a three-parameter Weibull
distribution model will effectively avoid this problem. S. J.
Harris applied two- and three-parameter Weibull models to
consistency studies of battery life.17 The capacity distribution of
24 batteries was statistically analyzed using a Weibull distri-
bution, and the optimal estimation of Weibull parameters was
obtained using the great likelihood probability method. It was
found that the symmetry of the capacity distribution is
constantly changing during the cycling process. The location
parameters in the three-parameter Weibull model varied with
the distribution range, accurately describing the minimum
value of the distribution range.18 Based on the parameter
behaviors, the Weibull dimensional and shape parameters will
reect the discrete and symmetrical characteristics of the
distribution more accurately.

The symmetry of theWeibull distribution must be veried by
statistical inference. In the statistical inference, the Wald test is
oen performed to test whether the regression parameters are
statistically signicant. In the case of standard regularity, the
null hypothesis of the statistic is asymptotically chi-squared,
a consequence of the maximum likelihood estimators (MLE)
distribution.19 If the distribution is symmetrical, the skewness
coefficient g equals zero. However, there are asymmetrical
distributions with as many zero-odd order central moments as
desired,20 so the value of g must be interpreted with caution.

In statistical studies, several regression models do not have
closed-form estimation for the skewness coefficient g of the
MLE.21 Another researcher obtained a general expression for the
distribution of the MLE.22 The sample size was also taken into
account. Following previous achievements, several studies have
been conducted in order to obtain the skewness coefficient. One
research study determined the expression for the class of
generalized linear models.23 Another dened the coefficient for
the varying dispersion beta regression model and showed that
this coefficient for the distribution of the MLE of the precision
parameter is relatively large in samples of small to moderate
size.24 For the three-parameter Weibull distribution, the
formula for skewness and the parameters is complicated and
© 2022 The Author(s). Published by the Royal Society of Chemistry
relatively difficult to solve together with the estimation of the
mean value and the variance. Due to this complexity, numeric
experiment methods, such as the Monte Carlo method, have
been carried out in the studies, which is relatively costly in
terms of computation.25 To reduce the complexity and the
computational resource requirements of solving the problem,
this work proposes a novel method to estimate the three
parameters for a Weibull model used in Li-ion battery data.
Another indicator of the asymmetry will be used in this work,
which is dened to simplify the computation.

There have been studies using three-parameter Weibull
distribution in Li-ion battery data analysis. However, overtting
and failure to capture the features of the data were reported
when using the three-parameter model with MLE estimated
parameters.17,24 This indicated that the usage of the three-
parameter Weibull model for Li-ion battery data required
further investigation of other possible parameter estimation
methods. To explore the feasibility of the three-parameter
Weibull distribution in Li-ion battery analysis, a robust
parameter estimation method must be investigated and
validated.

The Weibull estimation is extremely sensitive to errors. The
properties of a distribution can easily be impacted. Outliers in
the data, especially in the censoring data, usually introduce
signicant error in the estimation algorithm and threaten the
accuracy of the estimation. However, only a few studies have
focused on error exclusion. One investigation identied outliers
using 6s theory to eliminate data far from the distribution
range.26 This method is Gauss-based and is not feasible in
Weibull distributions. Another excluded the data with which
the MLE value was more sensitive.27 However, the estimation
method requires primary knowledge of the number of the
outliers and assumes that the outliers occur on one side of the
distribution. Thus, it would be helpful to nd an outlier
detectionmethod that could automatically nd the location and
number of outliers.28

With the possibility of capturing asymmetrical features and
a exible minimum value of the random variable, the three-
parameter Weibull model has the potential to describe and
predict the behaviors of Li-ion batteries. It has been used in
some investigations to t the capacity data of Li-ion batteries,
and is especially suitable for used battery data. However, due to
the complexity between the model skewness and the statistics,
the overtting tendency of the MLE method results, and the
possibility of outlier inference, the performance of the three-
parameter Weibull model in Li-ion battery inconsistency anal-
ysis has been limited. Investigation of a more feasible and
robust parameter estimation method for the three-parameter
Weibull model is needed.

In this work, a method of parameter estimation was
proposed to predict the three-parameter Weibull distribution
based on the data excluding possible outliers. The approxi-
mately linear feature of theWeibull cumulative distribution was
used to derive the parameters of the Weibull distribution of the
symmetry, as well as to recognize and exclude outliers in the raw
data. Using the simply dened asymmetry indicator avoided the
need to solve complex equations or numeric experiments. The
RSC Adv., 2022, 12, 34154–34164 | 34155
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proposed method is promising for estimating the three-
parameter Weibull model without costly computations or
inference from outliers. It aims to provide a reliable and simple
way to estimate the three parameters for the Weibull model and
then extend the application of this model to Li-ion battery
inconsistency evaluation.

In this paper, the above method was implemented in the
processing of Li-ion battery capacity data. The relevant three-
parameter Weibull model was obtained and validated using
the chi-square test and the Anderson–Darling test. The tting
result with the Weibull distribution was compared with the
parameters estimated by MLE and the normal distribution.

Theory and methods
Three-parameter Weibull probability model

The Weibull model is constructed by the Weibull probability
density function (PDF) and cumulative density function (CDF),
which are expressed using the scale parameter A, shape
parameter B and location parameter C, as shown in formula (1)
and (2).29 The Weibull CDF is the integral of Weibull PDF for x
from 0 to 1.

f ðxÞ ¼
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The plots of the Weibull PDF and CDF are presented in
Fig. 1, while only the Weibull model with B larger than 1 is
discussed and applied in this paper.

To be used for the distribution evaluation, the statistical
implication of the three Weibull parameters must be claried.
The scale parameter A reects the dispersion of a distribution.
In Fig. 1(a), the PDF and CDF curves are stretched as A
Fig. 1 Weibull PDF (solid line) and CDF (dashed line) plots with various
parameter C.
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increases. The shape parameter B reects the symmetry char-
acteristic of a distribution. In Fig. 1(b), the PDF curve with
a smaller B (B = 2) has a peak closer to the le limit of the x
range and a longer tail on the right side, indicating that more
random variables are distributed in the low-value region. Given
the le-skewed distribution, the CDF slope grows more quickly
than the others before x = A and slows down aer. As the value
of B grows larger, the PDF peak moves to the right and the rapid
rise in the CDF occurs later, but it approaches 1 more quickly,
which means that the major variables are concentrated on the
right side. According to ref. 13, when B is between 3 and 5, the
PDF indicates a symmetric distribution. Otherwise, when B is
smaller than 3, the distribution is supposed to be le-skewed.
When B is larger than 5, the distribution is right-skewed. The
location parameter C controls the start point of the x range. It is
the lower limit of the random variables. In Fig. 1(c), the PDF and
CDF curves move along the x axis without morphing as the C
value varies. When C is equal to 0, it is called the two-parameter
Weibull model as well, as shown in Fig. 1(a) and (b). Hence, the
Weibull parameters are supposed to describe the exible
features of a Weibull distribution. The statistical nature can be
quantied using the estimated Weibull parameters.
Weibull parameter deduction

To support a more denite expression for the Weibull distri-
bution, reparameterization was developed by deducing the
Weibull function with three parameters. Based on the principle
of a symmetry distribution, the exact location of the PDF peak
can be obtained. In this paper, the x value corresponding to the
Weibull peak is denoted as xp, which can be solved by the
derivative of Weibull PDF, as shown in formula (3).
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values of (a) scale parameter A, (b) shape parameter B and (c) location
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Fig. 3 CDF curve related to shape parameter B.

Paper RSC Advances
The expression for xp can be obtained when the expression in
formula (3) equals 0, as shown in formula (4).

xp ¼ A

�
1� 1

B

�1
B þ C (4)

Value of Weibull PDF and CDF at xp:
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Formula (4) shows that xp is expressed as a variable close to
A. The difference between A and xp is determined by a factor
related to the shape parameter B, which can be discussed in
form of (xp − C)/A as shown in Fig. 2.

Symmetry is quantied as the ratio of cumulative probability
on the le and right of xp, denoted as h. This ratio can be
deduced from the Weibull CDF and simplied to a function of
B, as shown in formula (7), which establishes the direct rela-
tionship between the two parameters related to symmetry of the
distribution.

h ¼ F
�
xp

�
1� F

�
xp

� ¼ e

�
1� 1

B

�
� 1 (7)

The CDF at xp in formula (6) is only related to shape parameter
B, which means that the cumulative probability at xp is an indi-
cator of the distribution symmetry. When F(xp) is 0.5, theWeibull
distribution is symmetric and equivalent to a Gaussian distri-
bution. In this case, probability distribution on the le and right
side is equal. Thus, the value of B for the symmetric distribution
can be calculated to be 3.2589, as shown in Fig. 3.

The shape parameter B can be regarded as an indicator of
le-skewed and right-skewed distributions: B < 3.2598, le-
Fig. 2 Plot of (xp − C)/A for various values of shape parameter B.

© 2022 The Author(s). Published by the Royal Society of Chemistry
skewed distribution; B = 3.2598, symmetric distribution; B <
3.2598, right-skewed distribution.

The PDF at xp in formula (5) is related to A and B. Because of
the A in the denominator, the PDF at xp decreases with
increasing A, which agrees with the stretching effect of A on the
PDF curve.

Out of concern for the symmetry of Weibull distribution, the
location of xp is deduced, and the properties of CDF and PDF at
xp are discussed. The proposed functions at xp are promising to
estimate the Weibull parameters and evaluate the Weibull
distribution.

Statistical processing of the distribution

Before estimation of the Weibull parameters, the sample data
must be processed statistically. The range of the distribution is
separated into n equally spaced subintervals, denoted as {x1, x2,
x2, x3,., xn, xn+1}. For convenience of recording, the position of
the ith subinterval is denoted by its mid-value, as shown in
formula (8).

xi ¼ xi þ xiþ1

2
(8)

The probability in the ith subinterval is denoted as pi. The
cumulative probability density of the ith subinterval is summed
from p1 to pi, as shown in formula (9). The probability density of
the ith subinterval is the difference of pi with respect to xi, as
shown in formula (10).

Fi ¼
Xi

k¼1

pk (9)

fi ¼ pi

xiþ1 � xi

(10)

Symmetry based estimation (SBE) of Weibull parameters

For the sake of the estimation of the Weibull parameters, the
basic variables must rst be obtained from the distribution,
RSC Adv., 2022, 12, 34154–34164 | 34157
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such as the location of xp, and the CDF and PDF at xp. The
location of xp is determined by three subintervals {�xp,1, �xp,2, �xp,3}
(denoted as �Xp) with three maximums of probability {�pp,1, �pp,2,
�pp,3} (denoted as �Pp). The value of xp is the weighted mean value
of �Xp, where �Pp is used as the weighting coefficient, as expressed
in formula (11).

xp ¼ X pPp
TP

Pp
​ (11)

The probability density at �xp is dened as the mean value of
{�f p,1, �f p,2, �f p,3}, which is the probability density of {�xp,1, �xp,2,
�xp,3}, as shown in formula (12).

f p ¼
P3
i¼1

f p;i

3
(12)

To estimate h�, the cumulative probability at the peak, �Fp, is
calculated based on the cumulative probability of three proba-
bility peaks, as shown in formula (13).

Fp;i ¼
X
xi # xp

pi (13)

where i = 1, 2, 3.
As �xp is the weighted mean value of {�xp,1, �xp,2, �xp,3}, there is

a tiny distance between �xp and {�xp,1, �xp,2, �xp,3}. As shown in
Fig. 1, the relationship between {�xp,1, �xp,2, �xp,3} and {�Fp,1, �Fp,2,
�Fp,3} is approximately linear, such as the form in formula (14).

a$�xp + b = �Fp (14)

Therefore, a group of linear equations of {�xp,1, �xp,2, �xp,3} and
{�Fp,1, �Fp,2, �Fp,3} are built to obtain the linear relationship of the
Weibull CDF at xp, as shown in formula (15).8>>><

>>>:
axp;1 þ b ¼ Fp;1

axp;2 þ b ¼ Fp;2

axp;3 þ b ¼ Fp;3

(15)

The equations in formula (14) are coupled with each other,
and the unknown coefficients a and b can be solved thrice. The
mean of three sets of solutions is used to calculate �Fp in formula
(14). Then h�can be calculated by formula (7).

The Weibull parameters are estimated based on the function
relationship with the achieved distribution characteristic vari-
ables �xp and h�. Firstly, the shape parameter B is calculated using
h�, based on formula (7), as shown in formula (16).

B ¼ 1

1� lnðhþ 1Þ (16)

Secondly, the scale parameter A can be obtained based on
formula (5) with the calculated �B and �f p, as shown in formula
(17).
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Thirdly, the location parameter C is estimated as well, based on
formula (18).

C ¼ xp � A

�
1� 1

B

�1

B
(18)

In this way, the Weibull parameters are estimated based on
the distribution characteristics. Given the relationship between
the Weibull parameters and statistical features of the distribu-
tion, the Weibull parameters carry sufficient statistical infor-
mation. The estimated Weibull distribution reects the global
features of the experimental distribution.
Normal distribution estimation

The normal distribution has the PDF and CDF expressions
given in formula (19) and (20).29

f ðxÞ ¼ 1ffiffiffiffiffiffi
2p

p
s
exp
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!
(19)

FðxÞ ¼ 1ffiffiffiffiffiffi
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ðx
�N

exp

 
� ðx� mÞ2

2s2

!
dx (20)

m is the location parameter of the distribution, which indi-
cates the location of the PDF symmetry axis. It is also the mean
value of the random variables following the normal distribu-
tion. s is the dispersion parameter. Variables with larger s are
more concentrated around the symmetric axis. s2 is also the
variance of the random variables.

According to the MLE of the normal distribution parameters,
m and s2 can be estimated by the mean value and the variance of
the sample data, respectively.
Verication of estimation

The Pearson chi-square test was used for distribution verica-
tion of the models at the 95% condence level. The number of
degrees of freedom was set as n – 4. It is determined by the
number of intervals in distribution, n, and the three parame-
ters. Similarly, in the case of the normal distribution, the
number of degrees of freedom is n – 3. When the c5%2(n − 4) is
less than the given upper limiting value, the estimated result is
considered to be true and the estimated Weibull distribution is
consistent with the experimental distribution. In the opposite
case, the estimation is considered to be a false one and the
estimated Weibull distribution is considered to deviate from
the experimental distribution. Furthermore, since the value of
c5%2(n − 4) stands for the goodness-of-t of the Weibull
distribution to the experimental data, it can be used as an
indicator of the estimation error. The p-value is the probability
corresponding to a certain c2 value, suggesting the probability
of obtaining an observation the same as the sample when the
© 2022 The Author(s). Published by the Royal Society of Chemistry
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hypothesis is true. It also shows the acceptance of the hypoth-
esis, as well as the goodness-of-t of the model.
Results and discussion
Pre-processing of data and outlier detection

The SBE estimation method was implemented to evaluate the
capacity distribution of a batch of Li-ion batteries. For the sake
of sufficient sample data, 122 cells were randomly selected from
the population of 3427 cells. The actual capacity was measured
at a discharge current of 8.3333 A h. The basic statistical
information of the obtained capacity data is listed in Table 1.
The capacity of the cells is distributed from 26.9097 A h to
27.7966 A h. The performance of the proposed Weibull esti-
mation method was evaluated based on decreasing the value of
c2(n − 4) to provide reduced tting error and improved
approximation of the distribution of capacity data.

The distribution range of the capacity data was divided into
20 equally spaced subintervals; the width of each subinterval
was 0.0460 A h. The probability, probability density and mid-
value in each subinterval are presented in Fig. 4.

In Fig. 4, two continuous subintervals with minimal proba-
bilities at the mid-values of 26.9300 A h and 26.9762 A h are
distanced from the overall distribution by two blank subinter-
vals. For this reason, the lower boundary (mid-value) was
extended from 27.1092 A h to 26.9300 A h, which makes a great
impact on the mid-value of the capacity distribution, less
impact on the mean value and little impact on xp. The value of
xp is 27.2658 A h, as computed using formula (10). As shown in
Fig. 4, the mid-value and mean of the capacity distribution are
close to each other, which suggests the distribution of the
capacity data is symmetric. However, the xp is obviously lower
Fig. 4 Capacity distribution probability histogram and probability densit

Table 1 Basic statistical information of the capacity data

Statistical
characteristic Maximum Minimum

Value 27.7966 A h 26.9097 A h

© 2022 The Author(s). Published by the Royal Society of Chemistry
than the mid-value and mean of the capacity distribution,
which denotes the distribution is le-skewed. This contradic-
tory conclusion is attributed to the isolated subintervals, and
these subintervals cause the type of capacity distribution to be
misidentied. Using the SBE method in this study, the Weibull
parameters were estimated based on the characteristics of the
probability peak, and the interference from the isolated
subintervals is eliminated. Furthermore, the estimated param-
eters can set up the interval consistent with the major charac-
teristics of the distribution, and the stray subintervals can be
conrmed to be outliers if they fall outside the correct interval.
Estimation of Weibull parameters

The three subintervals with three maximum probability values
were used to determine {�xp,1, �xp,2, �xp,3} and {�Fp,1, �Fp,2, �Fp,3}, as
listed in Table 2. The linear system of equations established by
any two of the three equations are coupled for one pair of
solutions of a and b in formula (14), as presented in Table 3. The
mean of three groups of [a b] are set as the coefficients of
formula (14). �Fp can then be computed by inserting xp into
formula (14), as shown in Fig. 5. The obtained value of �Fp is
0.4340, indicating that the peak of the distribution is deected
to the le.

With the value of �Fp, the value of h�can be obtained based on
formula (7), which indicates the symmetry of the capacity
distribution. The result of h�is 0.7667, which means the capacity
distribution is le-skewed.

Based on the intermediate parameters of xp, �Fp and h�, the
Weibull parameters can be deduced. To prove the accuracy of
the estimation method, MLE was selected to provide a set of
comparative results. Given the statistical features of the data
including the mean value and the variance, the parameters of
y line chart with mid-value, mean and xp of the capacity distribution.

Mid-value Mean Standard variation

27.3156 A h 27.3181 A h 0.1549 A h

RSC Adv., 2022, 12, 34154–34164 | 34159



Table 2 Weibull CDF at �xp,i

i �xp,i F(�xp,i)

1 27.3170 0.5902
2 27.1790 0.2131
3 27.2710 0.4180

�xp �Fp
Mean 27.2658 0.4340

Table 3 Solution and mean of linear function coefficients

i a b

1, 2 2.7326 −74.0565
1, 3 3.7435 −101.6704
2, 3 2.2272 −60.3193
Mean 2.6601 −72.0791

Fig. 5 Linear function of �Fp and x at xp.

RSC Advances Paper
the normal distribution can also be obtained. In Table 4, the
estimated distribution models are veried by the value of c2.
The c2 of the above SBE is less than that of the MLE Weibull
model and the normal distribution, which means that SBE
provides a better t. Therefore, SBE provides a description of
the distribution characteristics closer to the true one. The �A of
the SBE is less than that of MLE, which means that the
discreteness of the capacity distribution becomes narrower
aer the outliers are removed. The �B of SBE is found to be
smaller, so the capacity distribution becomes more le-skewed
aer the outliers are removed. The �C of SBE is larger than that of
Table 4 Chi-square test results for the Weibull distribution

�A �B

SBE Weibull 0.3583 2.3209
MLE Weibull 0.5366 3.3941

m�
MLE normal 27.3181
Reference
Lognormal31

34160 | RSC Adv., 2022, 12, 34154–34164
MLE, which means that the outliers are on the le side of the
distribution. The result show that SBE provides a better recog-
nition of the statistical characteristics of the capacity distribu-
tion. Additionally, comparison of the c2 test p-values among the
Weibull models, the normal distribution and a lognormal
distribution from ref. 31 are provided in Table 4. It shows that
the p-value achieved in this work is relatively signicant and the
data features are mostly captured by the probability models.

Additionally, the tting of the three-parameter Weibull
model in this work is also compared with results in other
studies in Table 5 to give a general impression of the goodness-
of-t. The indicators of goodness-of-t used are the Anderson–
Darling value and the Lilliefors test result. The Anderson–
Darling test is commonly used to test whether a data sample
comes from a certain distribution. The smaller the Anderson–
Darling value is, the more condent the claim that the data
follow a certain distribution. The Lilliefors test is a two-sided
goodness-of-t test. When the test returns h = 0, it fails to
reject the null hypothesis that the data follows the given
distribution at a certain signicance. Similar to in the chi-
square test, the p-value is the probability of observing a test
statistic as extreme as, or more extreme than, the observed value
under the null hypothesis. It is an indicator of the test validity.30

The results of the comparison suggest the validity and
goodness-of-t of the SBE method in this work. Based on the
Lilliefors test, it is safe to say that the data used follows the
Weibull distribution. The Anderson–Darling value of the three-
parameter Weibull model estimated using the SBE method is
also relatively small, indicating a good tting.

In Fig. 6, the Weibull PDFs are displayed with the estimated
parameters by SBE and MLE, as well as the normal distribution.
The outliers can be observed on the le of the distribution. With
the outliers contained, the MLE estimated Weibull distribution
and the normal distribution near the le tail of PDF fail to t
properly. Besides, the estimated PDF of SBE shows le-skewed
distribution, which agrees with the capacity distribution
without the outlier inuence. It is conrmed that the SBE could
provide a better t for an asymmetric distribution. Thus, the
SBE method can be implemented in predicting the asymmetric
capacity distribution of Li-ion batteries.
Discussion on inuence of estimation factors

It is noted that Weibull parameters are sensitive to the
presupposition of the estimation algorithm, so we focused on
variation in the column number n and xp,i in this paper.
�C c2 (c5%
2(16) = 26.2962) p value

27.0277 2.4680 0.99996
26.8341 4.4014 0.99802
s�2 c2 (c5%

2(17) = 27.5871) p value
0.0228 4.0028 0.99948

p value
0.5407
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Table 5 Comparison of the goodness-of-fit with results in the references

Reference Model

Indicator

Anderson–Darling value Lilliefors test

Ref. 32 3-Parameter Weibull 12.57
3-Parameter lognormal 12.56
3-Parameter loglogistic 12.49
2-Parameter
exponential

12.68

Ref. 16 Weibull model h = 0, p = 0.112
Ref. 33 Normal 7.80

Lognormal 2.88
3-Parameter Weibull 35.81
3-Parameter log-Weibull 13.58

Ref. 34 Normal 18.16
Lognormal 0.97
3-Parameter Weibull 23.63
3-Parameter log-Weibull 8.43

This work 1.30 h = 0, p = 0.5

Fig. 6 Weibull PDFs estimated by SBE, MLE and normal distribution.

Fig. 7 Histogram of capacity distribution separated into different numbers of columns: (a) 15 columns, (b) 20 columns, and (c) 25 columns.
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Table 6 Estimated Weibull parameters and c2 for various numbers of columns

Number of columns Scale parameter Shape parameter Location parameter c2

15 0.5434 3.9973 26.8294 12.5296
20 0.3583 2.3209 27.0277 2.4680
25 0.3845 3.5441 26.9903 10.6449

RSC Advances Paper
Inuence of column number

Fig. 7 shows the change in the histogram with increasing
number of columns. Fig. 7(a) displays the capacity distribu-
tion with only 15 columns, and the characteristics of the
distribution are blurred out. Fig. 7(c) shows the capacity
distribution with more segmentation, in which the distri-
butions features are hard to distinguish. Thus, a proper
number of separation columns, as shown in Fig. 7(b),
improves the accuracy of the estimation. For different data
distributions, the number n should be determined case-by-
case.

Table 6 lists the estimated Weibull parameters and c2 with
the three numbers of columns shown in Fig. 7. From these
results, we can see that the estimations with more or less
columns fail to perform better than that with 20. This
comparison conrms that the number of columns is relevant
for the estimation accuracy. This tendency has been reported in
ref. 10.
Inuence of number of xp,i

Fig. 8 shows the change in xp with increasing the number of xp,i
selected. The linear slope at the distribution peak is determined
by the number of reference points. The selection of improper
reference points leads to deviation of the tting line at the peak
Table 7 EstimatedWeibull parameters and c2 with various numbers of
xp,i

Number of
xp,i

Scale
parameter

Shape
parameter

Location
parameter c2

2 0.4310 4.2542 26.9405 4.8677
3 0.3583 2.3209 27.0277 2.4680
4 0.5056 3.4215 26.8804 18.4997

Fig. 8 Linear fitting at the Weibull peak with various numbers of xp,i.
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from the CDF curve. Comparing the three selection modes lis-
ted in Table 7, the selections of two or four reference points
gives larger errors than using three reference points, according
to the values of c2. When two reference points were chosen, the
Weibull distribution is controlled by fewer peak columns, which
means the random bias of the peaks can lead to more error. The
tting line corresponding to the four points deviates from the
linear range of the CDF as well. Hence, a proper selection of the
xp,i should ll but not overow the linear range of the CDF,
which is promising to give a better tting xp and an accurate
symmetry identication.

Conclusions

In this paper, a novel estimation method for the Weibull
parameters (SBE) is proposed. The primary ndings are:

(1) Based on the approximate linear feature of the Weibull
cumulative function, the SBE method establishes the three-
parameter model without solving complex equations or
numeric experiments.

(2) Outliers in the original data have been detected and
excluded.

(3) The SBE result gave a higher p-value (0.99996) and lower
Anderson–Darling value (1.30) compared with other models and
methods, which suggested better goodness-of t.

With the SBE method, the Weibull parameters are estimated
based on the distribution of the majority of the sample data
instead of the whole. The outliers are identied according to the
estimated Weibull parameters and excluded from the data
automatically. The method was implemented for approxi-
mating the capacity distribution of lithium-ion cells, which is
one of the battery inconsistency evaluations, and was veried by
chi-square test at a condence of 95%. It gave less error than the
results of the maximum likelihood estimation of the Weibull
model and the similar normal distribution. Comparison of the
p-values suggests that the three-parameter Weibull model
captured most of the data information. The goodness-of-t of
the SBE method was demonstrated by comparing the results of
the Anderson–Darling test and the Lilliefors test with those
from other studies. This showed that the three-parameter
Weibull model estimated using the SBE method t the data
well enough. The number of columns n and xp,i selection are key
factors for the estimation accuracy. Based on the estimation
error, the number of columns and xp,i are considered to be
determined by the data features.

In conclusion, the SBE method estimates the parameters of
the distribution and is free from the inuence of outliers and
complex computations. The contradiction between estimation
accuracy and data completeness is solved, and the application
© 2022 The Author(s). Published by the Royal Society of Chemistry
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of the three-parameter Weibull model is expanded. In future
studies, feature abstraction and identication will be carried
out for adaptive optimization of the estimation algorithm.
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Nomenclature
g

© 202
Skewness coefficient

A
 Scale parameter

B
 Shape parameter

C
 Location parameter

f
 Probability density function (PDF)

F
 Cumulative density function (CDF)

x
 Random variable/independent variable

xp
 x value where the Weibull PDF peaks

h
 Symmetry ratio

n
 Number of subintervals into which the raw data is

divided

i
 Index of the subinterval of the data

xi
 Boundary value of the ith subinterval

�xi
 Mid-value of the ith subinterval

pi
 Probability in the ith subinterval

�Pp
 The three largest probabilities pp,1, pp,2, pp,3

�Xp
 Location of xi corresponding to �Pp

xp,i
 Elements in �Xp

�f p
 PDF values at �Xp

�Fp
 CDF values at �Xp
a
 Slope in the linear equation of �Xp and �Fp

b
 Intercept in the linear equation of �Xp and �Fp

m
 Location parameter of the normal distribution

s
 Dispersion parameter of the normal distribution

MLE
 Maximum likelihood estimation

PDF
 Probability density function

CDF
 Cumulative density function

SBE
 Symmetry based estimation
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