
REVIEW
published: 25 September 2019

doi: 10.3389/fimmu.2019.02291

Frontiers in Immunology | www.frontiersin.org 1 September 2019 | Volume 10 | Article 2291

Edited by:

Rosana Pelayo,

Mexican Social Security Institute

(IMSS), Mexico

Reviewed by:

Paul Urquhart Cameron,

The University of Melbourne, Australia

Suresh Pallikkuth,

University of Miami, United States

*Correspondence:

Maria T. Rugeles

maria.rugeles@udea.edu.co

Specialty section:

This article was submitted to

Viral Immunology,

a section of the journal

Frontiers in Immunology

Received: 07 May 2019

Accepted: 10 September 2019

Published: 25 September 2019

Citation:

Alvarez N, Aguilar-Jimenez W and

Rugeles MT (2019) The Potential

Protective Role of Vitamin D

Supplementation on HIV-1 Infection.

Front. Immunol. 10:2291.

doi: 10.3389/fimmu.2019.02291

The Potential Protective Role of
Vitamin D Supplementation on HIV-1
Infection
Natalia Alvarez, Wbeimar Aguilar-Jimenez and Maria T. Rugeles*

Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellín, Colombia

HIV infection remains a global and public health issue with the incidence increasing

in some countries. Despite the fact that combination antiretroviral therapy (cART)

has decreased mortality and increased the life expectancy of HIV-infected individuals,

non-AIDS conditions, mainly those associated with a persistent inflammatory state,

have emerged as important causes of morbidity, and mortality despite effective antiviral

therapy. One of the most common comorbidities in HIV-1 patients is Vitamin D (VitD)

insufficiency, as VitD is a hormone that, in addition to its physiological role in mineral

metabolism, has pleiotropic effects on immune regulation. Several reports have shown

that VitD levels decrease during HIV disease progression and correlate with decreased

survival rates, highlighting the importance of VitD supplementation during infection. An

extensive review of 29 clinical studies of VitD supplementation in HIV-infected patients

showed that regardless of cART, when VitD levels were increased to normal ranges,

there was a decrease in inflammation, markers associated with bone turnover, and the

risk of secondary hyperparathyroidism while the anti-bacterial response was increased.

Additionally, in 3 of 7 studies, VitD supplementation led to an increase in CD4+ T

cell count, although its effect on viral load was inconclusive since most patients were

on cART. Similarly, previous evidence from our laboratory has shown that VitD can

reduce the infection of CD4+ T cells in vitro. The effect of VitD supplementation

on other HIV-associated conditions, such as cardiovascular diseases, dyslipidemia or

hypertension, warrants further exploration. Currently, the available evidence suggests

that there is a potential role for VitD supplementation in people living with HIV-1, however,

comprehensive studies are required to define an adequate supplementation protocol for

these individuals.

Keywords: HIV, vitamin D supplementation, comorbidities, immune modulation, metabolic homeostasis,

antibacterial response, parathyroid hormone, bone turnover

INTRODUCTION

Human immunodeficiency virus 1 (HIV-1) infection is one of the most important public health
problems worldwide, affecting approximately 38 million people and having caused over 32 million
deaths. In 2018, 1.7 million people became infected, whereas 1 million died due to HIV-related
causes (1). CD4+ T lymphocytes are the primary target cells of HIV, followed by dendritic
cells, monocytes, and macrophages. The acute infection is characterized by the destruction of
gut-associated lymphoid tissue (GALT) that harbors a high number of CD4+ effector memory
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cells. Destruction leads to both anatomical and functional
alterations of the gut mucosal barrier, facilitating the passage of
commensal microorganisms into the circulation system, which
in turn, promotes continuous immune activation. This process
leads to immune exhaustion, or the inability to respond to
infection leading to the destruction of the immune system
and uncontrolled viral replication, resulting in increased tumor
rates and opportunistic infections characteristic of acquired
immunodeficiency syndrome (AIDS) (2, 3).

HIV-1 infection has also been associated with several
metabolic disorders, including vitamin D (VitD) deficiency.
Different studies have reported insufficient VitD levels [calcidiol
serum levels <30 ng/mL (4–6)] in up to 100% of HIV-1
infected individuals and VitD deficiency [calcidiol serum
levels <20 ng/mL (4–6)] in at least 30% of infected individuals
(3). Even with combination Antiretroviral Therapy (cART),
decreased VitD levels have been associated with comorbidities
such as osteoporosis, cardiovascular diseases, type II diabetes
mellitus, and infections (i.e., tuberculosis) (3, 7–10) all of
which can be explained by looking at the immunomodulatory,
anti-inflammatory, and antimicrobial properties of this
hormone (11–13).

Alterations in VitD metabolism during HIV-1 infection is
associated with an increase in proinflammatory cytokines which
block the effect of the parathyroid hormone (PTH) and the
hydroxylation of calcidiol in the kidney, preventing the synthesis
of active VitD (14–17). Furthermore, certain non-nucleoside
reverse transcriptase inhibitors (NNRTIs) and protease inhibitors
(PIs) affect the function of hydroxylase enzymes from the
Cytochromes P450 (CYP450) complex, inducing a marked
decrease in calcitriol production, the active form of VitD (7).

Several trials have explored the beneficial effects of VitD
supplementation in VitD deficient HIV-1 infected patients,
focusing on the role of immune activation in HIV pathogenesis
as well as the modulatory role of VitD. Therefore, this
work aims to review the causes and comorbidities related to
hypovitaminosis D during infection, with an emphasis on VitD
supplementation in HIV-1 infected individuals. Consequently,
we conducted a search using different databases such as PubMed,
Scopus, Web of Science and Science Direct, with the search
terms HIV-1 with vitamin D supplementation, cholecalciferol
dose, vitamin D trial, cholecalciferol supplementation, and 25-
Hydroxyvitamin supplementation. We excluded case reports,
studies with <15 individuals, studies which supplemented with
several micronutrients at once or did not report on VitD
supplementation, as well as those that were conducted in a
non-HIV population. In addition, to control for variability, a
supplementation trial was also excluded due to low patient
adherence (18).

COMORBIDITIES DURING HIV-1
INFECTION

While the current use of cART has dramatically decreased
AIDS-related morbidity and mortality, its long-term use does
not lead to viral eradication (19, 20) and is associated

with side-effects (21) and viral drug-resistance (22), making
long-term management of HIV-1 infection challenging to
achieve. Moreover, persons living with HIV-1 often develop
complications related to infection and treatment, with increased
risk of complications associated with patient lifestyle, aging,
and persistent inflammation (characteristic of HIV-1 infection).
Complications include diabetes mellitus, chronic kidney disease,
cardiovascular disease, and dyslipidemia (23), loss of bone
mineral density (24), as well as a higher susceptibility to bacterial
infections (such as Tuberculosis, a leading cause of death
among people with HIV) (25, 26). However, to date, despite
global efforts, interventions to effectively reduce HIV-related
inflammation and comorbidities beyond effective and safer cART
remain elusive.

The immunological component in HIV-1 pathophysiology
suggests that endogenous immunomodulators, such as VitD, may
have a beneficial impact on the infection. VitD is a hormone
that, in addition to its physiological role on mineral metabolism,
has pleiotropic effects on immune regulation. Indeed, one of
the most frequent comorbidities during HIV-1 infection is VitD
deficiency, highlighting a niche for a potential intervention which
could significantly improve patients, health.

VITAMIN D

Metabolism and Function
Around 90% of VitD is obtained from UVB sunlight, with
the remaining amount obtained from diet or nutritional
supplementation (6). As was widely explained by a recent review
by Jiménez-Sousa et al. (27), the natural process of VitD synthesis
occurs in the skin by transforming 7-Dihydrocholesterol into
vitamin D3 or cholecalciferol. Subsequently, cholecalciferol is
hydroxylated to 25-hydroxycholecalciferol or calcidiol (25OHD)
in the liver by the enzyme 25-hydroxylase, which is encoded
by the CYP2R1 and CYP27A1 genes. Within the kidney, 1α-
hydroxylase, encoded by the CYP27B1 gene, then transforms
calcidiol into 1,25-dihydroxycholecalciferol (1,25 (OH) 2D), the
physiologically active form of vitamin D (i.e., calcitriol). On
the other hand, the enzyme 1,25-dihydroxyvitamin D3 24-
hydroxylase, encoded by the CYP24A1 gene, is responsible for
initiating calcitriol degradation and regulation.

Calcitriol is the ligand for the VitD receptor (VDR), which is
located in the cytosol. Once calcitriol binds the VDR, the complex
is translocated into the nucleus where it forms a secondary
complex with the retinoid X receptor (RXR). Together, this
complex acts as a transcription factor binding specifics sites
within the DNA, known as VitD response elements (VDRE),
which are located in a significant number of genes, emphasizing
their essential role in gene expression regulation (16, 28–30).

VitD function is associated with mineral metabolism as
well as bone maintenance. In these processes, VitD directly
suppresses PTH release and regulates osteoblast and bone
resorption (31). It also improves the absorption of calcium
and phosphorus, promoting bone matrix mineralization. Clinical
trials have demonstrated an essential role for VitD in preventing
osteoporosis, bone breakage, and rickets (32).
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Studies have also shown that VDR is expressed on pancreatic
β cells as well as on adipocytes indicating a role for calcitriol
in insulin secretion and insulin resistance (33). In in vitro
and in vivo cancer therapy experiments, calcitriol has been
reported to delay metastasis development by blocking the cell
cycle, stimulating DNA repair, and inducing apoptosis (34, 35).
VitD also plays a role in cardiovascular diseases, as VDR and
CYP27B1 are expressed on myocytes and heart fibroblasts and
the inhibition of VDR in mice has been correlated to cardiac
hypertrophy (36).

Effects of Vitamin D on the Immune System
VitD influences both the innate and adaptive immune responses
through the expression of its receptor on various immune
cells such as monocytes, dendritic cells, and lymphocytes
(37–40). VitD modulates the immune system by regulating
transcription factors such as NF-AT and NF-kB, and by directly
binding VDRE. During the innate response, VitD improves
the antimicrobial effects of macrophages and monocytes by
promoting transcription of antimicrobial peptides such as
defensins (DEF) and cathelicidin (CAMP) (11). Recent research
shows enhanced phagocytic and cytolytic activity in VitD-treated
macrophages and NK cells, respectively (12, 41).

In addition, during the adaptive response, VitD decreases
dendritic cell maturation, reducing the expression of MHC
class II and their co-stimulatory molecules (CD40, CD80, and
CD86) decreasing their ability for antigen presentation and T
cell activation. Therefore, VitD promotes a tolerogenic immune
status with a lower inflammatory response, indirectly influencing
the polarization of T cells (13). In fact, VitD decreases IL-12
and IFN-gamma production, while increasing IL-10, favoring the
development of Th2 and Treg cells over Th1 and Th17 (42, 43).
As a result, it has been proposed that VitD promotes tolerance
and controls exacerbated immune responses.

Effects of Vitamin D Deficiency During
HIV-1 Infection
Low VitD levels affect individuals of all ages in the general
population and is a global issue. Indeed, it has been reported
that over 75% of the US population has VitD deficiency (42, 44).
Although the VitD deficit is widespread, people living with HIV-
1 are more susceptible to hypovitaminosis D, with up to 100%
prevalence reported in some HIV-1 infected cohorts across the
world; a condition that has been correlated with comorbidities
in seropositive individuals (9). In this population, osteopenia
and osteoporosis have also been associated with hypovitaminosis
D in up to 60 and 20% of infected individuals, respectively
(45). Likewise, VitD may also contribute to the increased risk
of cardiovascular disease (CVD) reported among HIV-1 infected
patients (46). A similar finding has been reported in individuals
with diabetes mellitus (10, 47). Lastly, in HIV+ individuals with
tuberculosis, VitD deficiency has been associated with a worse
clinical outcome (48).

Even though previous studies have associated the levels of
VitD with CD4+ T cell recovery in individuals on cART (9,
49), the relationship between VitD deficiency and CD4+ T cell
count remains unclear. Moreover, HIV-1 viral load and disease

progression have been positively associated with low levels
of VitD. Therefore, it is plausible that VitD supplementation
may have a beneficial effect on immune recovery, which could
decrease comorbidities among HIV-1 infected individuals (50).

VITAMIN D SUPPLEMENTATION IN HIV-1
INFECTED INDIVIDUALS

Characteristics of the 29 VitD supplementation trials included
in this review are listed in Table 1. These studies were carried
out in HIV-1 infected individuals, mainly of African-American
or Afro-descendants, followed by Caucasians, and had a greater
representation of men (60%). The number of individuals
recruited for each trial ranged from 17 to 365, all of which
were supplemented orally with cholecalciferol (Vitamin D3),
except in the study by Falasca et al. in which individuals were
also administered supplements via the intramuscular route (59).
In approximately half (55%) of the studies, individuals were
adherent to a cART regimen, while in the remaining studies,
more than 65% of individuals were under a cART regimen
and had an undetectable viral load. Prior to supplementation,
the average VitD levels were <20 ng/mL, supporting that HIV
infected individuals usually suffer severe hypovitaminosis D.

The variables that had the most heterogeneity among study
populations were geographic origin and age, although most of
the studies were carried out in America and Europe with little
representation of the African and Asian continents (Table 1).
All age groups were represented, but several trials were focused
on infected children and youth due to the expectation that the
infection would last longer leading to chronic andmore profound
immune dysfunction. The main objective in most trials was to
determine whether VitD supplementation allowed individuals to
attain normal VitD levels in serum. In most of the studies (93%),
the effect on comorbidities and the association with CD4+ T cell
count and viral load was also evaluated.

Safe and Efficient Doses of
Supplementation
Despite the fact that most HIV-1 infected individuals suffer
from hypovitaminosis D, no optimal, and safe supplementation
dose has yet been established for this population. Generally,
a healthy person should consume between 400 and 600 IU
(International Units) of VitD daily to maintain sufficiency.
However, currently, the Institute of Medicine recommends a
standard dose of 600 IU to maintain the requirements of 97.5%
of the population, with 4000 IU as the maximum daily dose (51).
The North American Endocrine Society recommends three times
the standard dose for cART-adhering individuals living with HIV
(6). However, nine trials exceeded the maximum limits without
adverse effects or associated toxicity (Table 1). Supplementation
represents a risk when an individual has calcidiol (25 (OH)
D) levels higher than 100 ng/mL or when serum calcium levels
exceed 2.70 mmol/L (51). Usually, in these instances, the skeletal
system, cell membrane permeability, and nerve impulses are
affected, leading to muscle weakness or spasms, constant fatigue,
kidney conditions, as well as digestive symptoms such as nausea
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TABLE 1 | Vitamin D supplementation studies in HIV-1 infected individuals.

References Age [mean

(range)]

(n) The dose used in the

study. (Normalized to

daily dose). (IU)

Control group %Subjects on

cART/ virological

status

Country Ethnic group Efficacy of

VitD to

restore

levels

Main results Topic of interest

Schall et al. (51) 20 (9–25) 58 7,000 daily for 52

weeks

Placebo and before vs.

after supplementation

>76/– USA 84% Black, 16%

Hispanic

High Supplementation was

efficient in most participants

Supplementation

Havens et al. (52) (18–25) 169 50,000 monthly (1,667

daily) for 12 weeks

Placebo and before vs.

after supplementation

100 USA Black 52%, White

22%, Mixed 26%

High Supplementation was

efficient regardless of the

cART regimen

Supplementation

Longenecker et al. (53) 47 (39–55) 45 4,000 daily for 12

weeks

Placebo and before vs.

after supplementation

100/78%

undetectable

USA 78% Black, 15%

White, 4%

Hispanic, 3%

other

Low Individuals had severe VitD

deficiency and did not reach

sufficient calcidiol levels.

FMD did not change, while

PTH levels decreased

Cardiovascular

Muhammad et al. (54) 33 (25–47) 165 4,000 daily for 48

weeks

Placebo and before vs.

after supplementation

100 recently USA 27% Black, 20%

Hispanic, 31%

White

High Supplementation did not

change the lipid or glucose

profile after starting therapy

Metabolic

dysregulation

van den Bout-van den

Beukel et al. (55)

>18 20 2,000 daily for 14

weeks, then 1,000 daily

48 weeks

Before vs. after

supplementation

90 Netherlands – High Insulin sensitivity and PTH

levels decreased at week 24

but then returned to

baseline levels

Metabolic

dysregulation

Chun et al. (56) <25 102 4,000 or 7,000 daily for

12 weeks

Placebo and before vs.

after supplementation

75/50%

undetectable

USA – High CAMP expression increased

but only 52 weeks after

follow-up

Antibacterial

response

Lachmann et al. (57) 35 17 200,000 once (6,667

daily) for 4 weeks

Before vs. after

supplementation.

cART-Naïve and

uninfected individuals

65/– England 18% Black, 63%

White, 9% Asian,

9% Indian

High The levels of CAMP and

MIP-β, associated with an

anti-HIV-1 effect, increased.

Supplementation modestly

reduced CD38+ T-cell

frequency in HIV-infected

patients on cART

Antibacterial

response, Immune

modulation

Noe et al. (58) 46 243 20,000 weekly (2,857

daily) for 52 weeks

Before vs. after

supplementation

100/– Germany – 42 −78% Between 42 and 78% of the

individuals reached sufficient

VitD levels after

supplementation. There was

no change in CD4T cell

counts

Immune

modulation

Falasca et al. (59) 45 (34–56) 153 300,000 intramuscular

every ten months

(1,017 daily) or 25,000

oral monthly (892 daily),

for 40 weeks

Supplemented vs.

unsupplemented

individuals

100/– Italy White 30–50% Oral supplementation was

more efficient than

intramuscular

administration; there was no

change in CD4T cell counts

Immune

modulation

Fabre-Mersseman

et al. (60)

49 (41–54) 53 100,000 every 14 days

(7,142 daily) for 48

weeks

Before vs. after

supplementation and

deficient vs. sufficient

individuals

100/– France – High The activation levels

decreased, and the

CD4/CD8T cell ratio

increased

Immune

modulation

(Continued)
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TABLE 1 | Continued

References Age [mean

(range)]

(n) The dose used in the

study. (Normalized to

daily dose). (IU)

Control group %Subjects on

cART/ virological

status

Country Ethnic group Efficacy of

VitD to

restore

levels

Main results Topic of interest

Eckard et al. (61) 20 (15–22) 51 18,000 (642), 60,000

(2,142) or 120,000

(4,285) monthly for 52

weeks

Before vs. after

supplementation

100/– USA 86% Black 71–92% High doses diminished

immune activation and

exhaustion

Immune

modulation

Stallings et al. (62) (5–25) 58 7,000 daily per 48

weeks

Placebo and before vs.

after supplementation

76/– USA 85% Black 33–40% RNA viral load decreased

with increasing 25(OH)D,

and CD4% and Th naive%

were increased; NK%

decreased short–term

Immune

modulation

Dougherty et al. (63) 19 (8–24) 44 4,000 or 7,000 daily,

for 12 weeks

Before vs. after

supplementation

82/47%

undetectable

USA Predominantly

Black

81% There was a minimal

increase in % CD4+ T cell,

a decrease in viral load and

the activation profile of

CD8+ T cells in individuals

receiving cART

Immune

modulation

Kakalia et al. (64) 11 (7–15) 53 5,600 or 11,200 weekly

(800 or 1600 daily), for

24 weeks

Before vs. after

supplementation and

Supplemented vs. no

supplemented individuals

79/– Canada 64% Black 67% 67% of the individuals

reached sufficient VitD levels

after supplementation, but

there was no effect on

CD4T cell counts

Immune

modulation

Giacomet et al. (65) 19 (14–23) 48 100,000 every 3

months (1,190 daily) for

48 weeks

Placebo and Before vs.

after supplementation

85/81%

undetectable

Italy Predominantly

white. Black were

excluded

80% There was no effect on

CD4+ T cell count.

However, the Th17/Tregs

ratio decreased

Immune

modulation

Coelho et al. (50) 45 (38–50) 97 100,000 weekly

(14,285 daily) per 5

weeks; then 16,000

weekly (2,285 daily) for

19 weeks

Before vs. after

supplementation and

deficient vs. sufficient

individuals

100/– Brazil 53% White 83% There was an association

between CD4+ T cell

recovery and VitD increase.

Efavirenz use was

associated with a higher

increase in VitD levels

Immune

modulation,

Supplementation

in cART

Steenhoff et al. (66) 19 (5–60) 60 4,000 or 7,000 daily for

12 weeks

Before vs. after

supplementation

100/81%

undetectable

Batswana Black 80% Only two individuals

exhibited hypercalcemia

after supplementation.

Higher levels of VitD were

achieved in individuals

treated with efavirenz or

nevirapine, compared with

individuals treated with PI

Supplementation

in cART

Lake et al. (67) 49 (41–55) 122 50,000 twice per week

(14,285 daily) for 5

weeks; then 2,000 daily

for seven weeks

Before vs. after

supplementation

100/– USA 60% White 81% Tenofovir use did not affect

levels reached after 24

weeks of treatment

Supplementation

in cART

(Continued)
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TABLE 1 | Continued

References Age [mean

(range)]

(n) The dose used in the

study. (Normalized to

daily dose). (IU)

Control group %Subjects on

cART/ virological

status

Country Ethnic group Efficacy of

VitD to

restore

levels

Main results Topic of interest

Lerma-Chippirraz et al.

(68)

47 (41–52) 300 16,000 weekly or every

2 weeks (2,285 or

1,142 daily) for 104

weeks

Before vs. after

supplementation

95/– Spain 84,3% White,

9% Hispanic,

Black 3%

82% In 67% of individuals with

secondary

hyperparathyroidism, PTH

levels decreased

PTH levels

Bañón et al. (69) 44 (22–75) 365 16,000 monthly (533

daily) for 36 weeks

Before vs. after

supplementation and

Supplemented vs. no

supplemented individuals

98/– Spain 90% White,

1% Black,

9% Hispanic

81% The risk of secondary

hyperparathyroidism

decreased

PTH levels

Pepe et al. (70) 50 60 600,000 once (5,357

daily) for 16 weeks

Before vs. after

supplementation

100 Italy White High PTH levels decreased, and

VitD levels increased

regardless of the cART

regimen

PTH levels

Havens et al. (71) (18–25) 169 50,000 monthly (1,667

daily) for 12 weeks

Placebo and before vs.

after supplementation

100/– USA Black 52%, White

22%, Mixed 26%

High PTH and bone turnover

markers (BAP and CTX)

decreased only in

individuals supplemented

with VitD while on tenofovir

PTH levels and

Bone composition

Quirico et al. (72) 46 (35–57) 79 3,200 daily for 96

weeks

Before vs. after

supplementation

100/– Italy White 100% Supplementation did not

affect the bone mass but

decreased PTH levels

PTH levels and

Bone turnover

Puthanakit et al. (73) (12–20) 24 400 daily for 24 weeks Before vs. after

supplementation

100/– Thailand Asian Low There was an increase in the

BMDZ–score

Bone turnover

Overton et al. (74) 33 (25–47) 165 4,000 daily for 48

weeks

Placebo and before vs.

after supplementation

100/ recently USA 33% Black,

37% White,

25% Hispanic

High Supplementation plus the

start of cART attenuated the

increase in bone turnover

markers

Bone turnover

Piso et al. (75) 43 (34–52) 96 300,000 once (3,500

daily) for 12 weeks

Before vs. after

supplementation

76 Switzerland – High Bone replacement markers

(BAP, PYR and DPD)

decreased

Bone turnover

Etminani-Esfahani et al.

(76)

40 (31–49) 98 300,000 once (3,500

daily) for 12 weeks

Before vs. after

supplementation

100/– Iran – 100% Osteocalcin increased in

Efavirenz-treated individuals

indicating improvement of

bone formation

Bone turnover

Arpadi et al. (77) 10 (6–16) 56 100,000 every 2

months (1,785 daily) for

48 weeks

Placebo and before vs.

after supplementation

–/36%

undetectable

USA 64% Black,

36% Hispanic

High Supplementation with

calcium and cholecalciferol

did not affect bone mass

accumulation, despite a

significant increase in serum

calcidiol levels

Bone turnover

Rovner et al. (78) 21 (5–25) 54 7,000 daily for 48

weeks

Placebo and before vs.

after supplementation

76/– USA 86% Black Low No change in bone

composition in infected

children and youth

Bone turnover

IU, International Units; cART, Combination Antiretroviral Therapy; VitD, Vitamin D; PTH, Parathyroid Hormone; FMD, Flow Mediated Brachial Artery Dilation; CAMP, Cathelicidin; HBD, Human Beta Defensins; MIP-1β, Macrophage

Inflammatory Protein beta; PI, Protease Inhibitor; BAP, Bone-Specific Alkaline Phosphatase; CTX, Carboxy-terminal Collagen Crosslinks; BMDZ-score, Body Mass index Z-Scores; PYR, Pyridinolines; DPD, Deoxypyridinium.
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and vomiting. Nonetheless, all of the supplementation studies
reported herein were shown to be safe.

In the studies reported in this review, the supplementation
schemes varied regarding the dose and frequency of
administration. To make the data more homogeneous for
ease of comparison, daily doses were calculated according to the
equivalent in weeks or months used in each trial (Table 1). The
daily dose ranged from approximately 400 to 14,000 IU, with
4,000 and 7,000 IU as the most common doses. The duration
of each trial varied from 4 to 104 weeks. Although most of
the doses increased VitD levels, sufficiency was challenging
to achieve due to the severe deficiency suffered by the HIV-1
infected population. The use of 7000 IU daily was the most
effective dose (51, 56, 60, 63, 66, 78), and restored sufficiency
[defined as calcidiol serum levels >30 ng/mL (4)] in 80% of
treated individuals with higher levels seen following 12 months
of treatment (61). Only 2 of the 215 individuals treated with this
regimen had calcidiol levels >90 ng/mL and hypercalcemia (66).
Once sufficiency is attained, a maintenance dose guaranteeing
stable circulatory VitD levels should be established. Since the
follow-up period was short during each of the trials, the long term
effects of supplementation are still unclear; therefore, further
studies will be required to evaluate the safety of long-term use.

VitD supplementation trials can be confounded by several
aspects such as the season in which the study is carried out (78)
or skin pigmentation since sunlight can affect vitamin levels.
A study performed by Dougherty et al. showed that calcidiol
basal levels were lower in individuals in winter than in other
seasons (63). Additionally, in a healthy population, individuals
with darker skin were reported to require higher doses of
cholecalciferol (up to 2000 UI/day) to achieve VitD sufficiency
(79). Ancestry may also play a key role in affecting the efficacy of
supplementation since a study from Botswana reported that the
VitD binding protein (DBP) was lower in plasma of individuals of
African descent (1.8 umol/L) (66) compared to those which had
an Afro-American background (3.3 umol/L) (80). Other factors,
such as drug use as well as malabsorption syndromes and other
unknown side effects associated with HIV-1 infection can also
affect the results of VitD supplementation. Of note, no ethnic bias
was identified during the review of the aforementioned studies
as most of the results were obtained in trials which included
individuals with varying ethnicities.

The Effect of Vitamin D Supplementation
on CD4+ T Lymphocyte Count and Viral
Load
CD4+ T cell counts and viral load are essential indicators for
determining the clinical course of HIV-1 infection. However,
since the mechanisms by which VitD influences HIV-1 disease
progression, morbidity, and mortality are poorly understood,
further investigations are required.

Currently, studies have shown that in HIV-1 infected
individuals, VitD insufficiency is associated with low CD4+
T cell counts. In Coelho et al. 88% of individuals who had
a CD4+ nadir count <50 cells/mm3 had VitD insufficiency,
while only 6% of participants with a similar nadir had VitD
levels within normal range (50). In the same study, 1 ng/mL of

calcidiol (25(OH)D) was shown to increase CD4 cell count by 3,3
cells/mm3, suggesting a beneficial role of VitD supplementation
on immune recovery. Eckard and Dougherty reported similar
results, showing a significant increase in CD4+ count after
supplementation (11, 63). Likewise, Stallings et al. reported a
reduction in viral load following supplementation (62). However,
in other studies, VitD supplementation did not affect CD4+ T
cell counts (58, 59, 64, 66).

It is important to note that in supplementation trials in which
an increase in the CD4+ T lymphocyte count was observed,
participants had remained on a cART regimen; therefore, it has
been challenging to establish a causal relationship between VitD
supplementation, immune recovery, and virological control.
However, in a supplementation study in which 9 of the
individuals were not on cART, an increase in CD4+ T cell
count and differences in virological control were not seen (63).
Although these findings still need to be corroborated, this
evidence suggests that VitD may enhance immune recovery
and viral control in combination with cART and may serve
as an adjuvant to current therapy. Furthermore, none of the
supplementation trials reviewed herein reported secondary side
effects, supporting the safety of VitD treatment.

Supplementation Effects on Immune
Activation
HIV-1 infected individuals have significantly higher levels
of immune activation, even with cART, compared to their
uninfected counterparts (81). Additionally, hypovitaminosis
D has been associated with an increase in inflammatory
markers, both in the general population, and in HIV-1 infected
individuals (82, 83), therefore VitD insufficiency may facilitate
the persistence of systemic immune activation. Taking into
account that immune activation is the main mechanism
associated withHIV progression and its associated comorbidities,
it is necessary to continue the search for immunomodulators that
can return the host to an immune quiescent state. Accordingly,
it is interesting to speculate the role that VitD may play in this
regard since it has been shown to promote the differentiation of
naive T cells into Tregs or Th2 cells, inhibiting the development
of Th1, and Th17 cells (13, 84). In fact, Fabre-Mersseman et al.
reported that, after supplementing VitD insufficient patients with
a dose of 7000 IU daily, immune activation levels, determined
by measuring the expression of CD38 and Ki67 in CD8+ T
lymphocytes, were reduced and there was an increase in the
CD4+/CD8+ T cell ratio (60).

Similarly, in a trial by Eckard et al. looking at different doses
of VitD supplementation, CD4+ and CD8+ T cell activation,
frequency of inflammatory monocytes (CD14+ CD16+), and
expression of PD1+ (an exhaustion marker) in CD4+ T cells
decreased significantly in individuals treated with 4000 IU daily
for 52 weeks (61). These results are in agreement with those
reported by Dougherty et al. which showed a decrease in the
percentage of activated cytotoxic T cells (CD8+ CD38+ HLA
DR+) following a daily dose of 4000 or 7000 IU of VitD for 12
weeks, (63). These results support VitD supplementation as an
adjuvant during routine clinical care of HIV-1 infected patients.
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FIGURE 1 | Effect of vitamin D supplementation on clinical and immunological aspects associated with HIV-1 infection. VitD supplementation in HIV-1 infected

individuals reduces PTH levels that promotes secondary hyperparathyroidism. It also induces the expression of AMPs (antimicrobial peptides) such as CAMP and

HBD and improve bone formation while decrease biomarkers associated with bone turnover. VitD supplementation seems not impact CVD, and the VitD repletion

success did not depend on the cART regimen. In addition, supplementation with this hormone seems also to increases CD4T cell count, promoting their

differentiation toward a Th2 and Treg profile while decreasing the Th1 and Th17 profiles and the activation levels of CD8 + T cells.

The Effect of Antiretroviral Therapy on the
Response to VitD Supplementation
Although there is evidence suggesting that some antiretrovirals
affect VitD metabolism, little is known regarding the effect
of VitD supplementation on cART. Non-nucleoside Reverse
Transcriptase Inhibitors (NNRTI) have been associated with
lower levels of VitD. For example, efavirenz has been suggested
to increase VitD catabolism and disrupt 25(OH)D synthesis
through the modulation of the cytochrome p450 system, which
controls VitD hydroxylation (85–88). However, other trials do
not support this hypothesis. Indeed, a study comparing several
cART regimens showed that after receiving a daily dose of 4000
or 7000 UI of VitD for 12 weeks, VitD levels were 20 ng/mL
higher among individuals on efavirenz compared to all other
therapeutic regimens (63). In another study using a similar
timeline and supplementation dose schedule, individuals treated
with efavirenz reached VitD sufficiency. Of note, variations in
baseline VitD levels were not associated with any antiretroviral
drug (66). These results suggest that, although efavirenz has
been associated with low VitD levels, it is possible to reach
sufficient concentrations following supplementation. Moreover,
once sufficient levels are reached, efavirenz could have additional

benefits related to bone mass, as reported in a supplementation
trial in South Africans children (89).

Conversely, zidovudine, a Nucleoside Reverse Transcriptase
Inhibitor (NRTI), has been associated with lower levels of vitamin
D, while tenofovir has not been associated with deficiency
nor insufficiency and neither NRTI has shown significant
effects during supplementation trials (9, 59, 90). The Protease
inhibitors (PIs) have not yet been correlated with baseline VitD
levels or with success or failure to achieve sufficient levels
after supplementation (17, 91). No data is currently available
for the effect of integrase inhibitors or CCR5 inhibitors on
supplementation. In summary, according to previous evidence,
the use of cART, even including efavirenz, does not limit
the achievable objective of increasing levels of VitD during
supplementation trials.

The Effect of Vitamin D Supplementation
on HIV-1 Associated Comorbidities
Hypovitaminosis D has been associated with various
comorbidities associated with HIV-1 disease progression
resulting in higher mortality rates among infected individuals
(92, 93). These individuals have an increased risk of osteomalacia
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and osteoporosis, notable weight loss, low bone mineral density,
and a reduction inmuscle mass (78). In contrast, individuals with
sufficient VitD levels have a low tendency for skeletal affections;
however, the ideal level to minimize risk remains unknown (63).

Although a study in HIV-1 infected individuals with vitamin
D deficiency showed a significant reduction in the risk of
hypocalcemia after supplementation (58), 3 out of the 5 trials that
evaluated bone composition found that, despite an increase in
VitD levels following supplementation, bonemass did not change
in children and adults (72, 78), even with the addition of calcium
(89). In contrast, two studies showed that VitD supplementation
decrease biomarkers associated with bone turnover (71, 75) while
Etminani-Esfahani et al. reported an increase in Osteocalcin,
biomarker associated with bone formation following a single high
dose of VitD. Similar results were also noted in other studies
(73, 94), where VitD supplementation was found to improve
bone composition among HIV-1 infected individuals, albeit, this
process might require more time than that seen in previously
reported studies.

On the other hand, hypovitaminosis D is related to secondary
hyperparathyroidism, a reversible state associated with excessive
secretion (>65 pg/mL) of PTH (68), a known cause of decreased
bone mineral density (95). Consequently, PTH can be an early
indicator of vitamin D deficiency and is an essential criterion for
determining if a person requires supplementation (65). Studies
evaluating secondary hyperparathyroidism in HIV-1 infected
persons are scarce, and as a result, there is little data on the
impact of this condition on their clinical status. However, five
supplementation trials evaluating PTH levels showed that while
VitD levels increased, the levels of PTH decreased during the
initial phases of the trials (53, 63, 65, 66, 72, 95).

Finally, although some studies have linked VitD deficiency
to hypertension, cardiovascular disease, myocardial infarction,
and metabolic syndromes in HIV infected individuals, few
studies have evaluated the effect of VitD supplementation
on these conditions. In a trial by Chris T Longenecker
et al., VitD supplementation in HIV-1 infected patients with
hypovitaminosis D did not affect endothelial function, measured
by flow-mediated brachial artery dilation (FMD). Furthermore,
changes in serum 25(OH)D or FMD were not correlated in
the treatment group, although they had not reached sufficient
levels of VitD. In Muhammad et al. the authors concluded that
VitD supplementation is unlikely to be an effective strategy
to attenuate metabolic dysregulation following cART initiation,
since lipid and glucose profiles did not improve during treatment
(54). These results suggest that VitD supplementation is not
enough to avoid the development of these comorbidities,
and cannot achieve vitamin sufficiency to improve health
conditions (53).

Vitamin D and Bacterial Infections
VitD plays a key role in the effector activity of innate
immune cells in response to microbial infections. During
monocytes and macrophages activation, the VDR and the
enzyme 1α-hydroxylase (CYP27B1), an activator of vitamin
D, are expressed. During the intracrine conversion of the
VitD precursor (25(OH)D) to its active form (1,25(OH)2D),

it is possible to stimulate the expression of antimicrobial
peptides such as cathelicidin (CAMP) and human beta
defensins (HBD) (96). Some studies reported that VitD
affects autophagy, supporting its anti-microbial properties, for
example by promotingMycobacterium tuberculosis clearance and
antiviral responses (i.e., inhibiting HIV replication) (97). In a
supplementation trial, treatment of HIV-1 infected individuals
with VitD promoted CAMP expression, despite requiring longer
treatment periods compared to uninfected individuals (56).
Similarly, an increase in CAMP and macrophage inflammatory
protein beta (MIP-1β) production was also reported in another
trial (57). Further studies are needed to evaluate other
antimicrobial molecules that can be modulated by vitamin D,
such as β-defensin 2 or hepcidin.

CONCLUSION

VitD supplementation in HIV-1 infected individuals leads
to an increase in VitD serum levels, regardless of cART,
geographical location, and ethnicity of the individual being
administered the supplementation. Increased VitD levels may
have positive effects on several clinical and immunologic
aspects which are summarized in Figure 1. Among them, the
most striking results included the potential reduction in the
likelihood of secondary hyperparathyroidism and microbial
infections such as tuberculosis, as well as an increase in
CD4+ T lymphocytes count and a decrease in biomarkers
associated with bone turnover and chronic inflammation.
However, the effect of VitD supplementation on viral load
has not yet been established since the current guidelines
for HIV patient management indicate initiation of therapy
as soon as individuals are diagnosed, making it impossible
to evaluate. Furthermore, the effect of VitD supplementation
on the incidence of other comorbidities associated with
hypovitaminosis D, such asmetabolic syndromes has not yet been
carried out.

Overall, evidence suggests that VitD supplementation may be
a good adjuvant to cART. However, it is important to emphasize
that the effects greatly depend on the dose quantity and duration
of which the supplementation is given. In general, the dosages
which showed the most success were 4000 and 7000 IU daily for
at least 12 weeks. Studies with larger sample sizes are required
to confirm the beneficial effects of VitD and to establish optimal
supplementation and maintenance doses in the context of HIV-
1 infection.
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