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Abstract

Accumulation of mast cells can be causally related to several allergic inflammations. Stem cell factor (SCF) as a mast cell
chemotaxin induces mast cell migration. To clarify a new effect of Pyeongwee-San extract (KMP6, a drug for indigestion) for
the treatment of allergy, we investigated the effects of KMP6 on SCF-induced migration of rat peritoneal mast cells (RPMCs).
A molecular docking simulation showed that hesperidin, a major component of KMP6, controls the SCF and c-kit binding by
interaction with the active site of the c-kit. KMP6 and hesperidin significantly inhibited SCF-induced migration of RPMCs
(P,0.05). The ability of the SCF to enhance morphological alteration and F-actin formation was also abolished by treatment
with KMP6 or hesperidin. KMP6 and hesperidin inhibited SCF-induced p38 MAPK activation. In addition, SCF-induced
inflammatory cytokine production was significantly inhibited by treatment with KMP6 or hesperidin (P,0.05). Our results
show for the first time that KMP6 potently regulates SCF-induced migration, p38 MAPK activation and inflammatory
cytokines production through hindrance of SCF and c-kit binding in RPMCs. Such modulation may have functional
consequences during KMP6 treatment, especially mast cell-mediated allergic inflammation disorders.
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Introduction

The mast cell is one of the major effector cells in inflammatory

reactions and can be found in most tissues throughout the body

[1]. An accumulation of mast cells has been described in several

inflammatory conditions, e.g., atopic dermatitis [1], allergic

rhinitis [2], asthma [3], and rheumatoid arthritis [4]. Such

symptoms require directed migration of mature mast cells or their

precursors. Several recent reports provide support for the

hypothesis that growth factor and chemokine-mediated chemo-

taxis of mast cells within tissues can be an important mechanism

for a rapid increase in the number of mast cells at sites of

inflammation [1,5].

Stem cell factor (SCF) is a crucial growth factor in mast cell

biology. It regulates such diverse cellular functions as proliferation,

differentiation, survival, adhesion, and release of inflammatory

mediators [6]. SCF acts as a mast cell chemotaxin [1].

Furthermore, injection of SCF into the skin causes mast cell

hyperplasia [7], indicating that SCF may be important for the

recruitment of mast cell in vivo. SCF also induces the pro-

inflammatory mediators including histamine, tumor necrosis

factor (TNF)-a, interleukin (IL)-1b, IL-6, IL-8, and IL-16 from

mast cells [8]. Mast cell-derived TNF-a contributes to allergic

reactions through production of an intracellular adhesion molecule

(ICAM)-1 [9].

The mitogen-activated protein kinase (MAPK) family comprises

at least 6 subsets: extracellular signal-regulated kinase (ERK)1/

ERK2, p38 kinase (p38, p38-b, -c, and -d), c-JUN NH2-terminal

protein kinase (JNK), ERK5, ERK6, and ERK7 [10]. MAPKs are

believed to play a pivotal role in cell proliferation, apoptosis,

differentiation, cytoskeleton remodeling, and cell cycle [11,12].

SCF similarly activates all MAP kinase [13]. Previously,

Sundstrom et al. [14] reported that SCF induced a rapid and

transient activation of ERK and p38 in mouse mast cells.

Inhibition of p38 activity by SB203580 was paralleled with a

marked reduction of migration toward SCF, whereas the effect of

the ERK inhibitor was less pronounced.

Pyeongwee-San extract (KMP6) is used for the treatment of

gastrointestinal disorders such as inappetance, abdominal disten-

sion, borborygmus, diarrhea induced by gastric atony, gastric

dilatation, and gastrointestinal catarrh. Many studies have

reported that gastrointestinal disorders are closely associated with

skin allergic diseases [15,16]. In this study, we investigated the

SCF-dependent effects of KMP6 and its component, hesperidin on

migration of rat peritoneal mast cells (RPMCs).

Methods

Ethics statement
All protocols were approved by the institutional animal care and

use committee of Kyung Hee University [Protocol Number.

KHUASP (SE)-09].

Materials
Avidin peroxidase, metrizamide, SB203580, dimethyl sulfoxide

(DMSO), 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium

bromide (MTT), and 29-AZINO-bis (3-ethylbenzithiazoline-6-
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sulfonic acid) tablets substrates (ABTS) were purchased from

Sigma (St. Louis, MO, USA). Recombinant murine SCF,

recombinant murine TNF-a and ICAM-1, purified anti-TNF-a
and ICAM-1, and biotin-conjugated anti- TNF-a and ICAM-1

were purchased from R&D system (Minneapolis, MN, USA). Fetal

bovine serum, a-minimum essential medium (MEM), ampicillin,

and streptomycin were purchased from Gibco BRL (Grand Island,

NY, USA). Antibody against p38 and phosphorylated-p38 were

purchased from Santa Cruz Biotechnology (Santa cruz, CA, USA).

N-7-nitrobenz-2-oxa-1, 3-diazol-4-phallacidin (NBD-phallacidin)

was purchased from Molecular probes (Eugene, Oregon, USA).

Preparation of KMP6
KMP6 was provided by the Korea Medi Inc. (Seoul, Republic

of Korea). We obtained the Pyeongwee-San, HS-PS (an over-the-

counter drug for indigestion), from Han Kook Shin Yak

pharmaceutical Co. (Nonsan, Republic of Korea) to compare

with KMP6. KMP6 is composed of Atractylodes japonica Koidzumi

(13.3 g), Magnolia officinale Rehder et Wils (10 g), Citrus sunki Hort.

ex Tanaka (10 g), Zingiber officinale Roscoe (3.3 g), Glycyrrhiza

uralensis Fisch (3.3 g), and Zizyphus jujuba var. inermis (Bunge) Rehder

(6.7 g). The KMP6 was dissolved in distilled water (DW) and

filtered with a 0.22 mm syringe filter. HS-PS granules were

prepared by dissolving in DW and being autoclaved for the

sterilization and kept at 4uC. HS-PS granules (3.5 g) contain some

excipients (1.7 g). We made the dose of HS-PS (2 mg/ml) two

times stronger than KMP6 (1 mg/ml). Hesperidin is a major

constituent of KMP6. KMP6 contained hesperidin of about

5.26 mg/g (data not shown).

Computational Method
Computer-aided docking simulation was performed by Surflex-

Dock (Tripos, St. Louis, MO). The molecular model for the

receptor protein, c-kit was obtained from the Protein Data Bank

(PDB id 2E9W) with further energy-minimization. The 3D

coordinates of each component were prepared by a molecular

sketch module. All molecular modeling work was conducted using

by a SYBYL X 1.1 package. To obtain an accurate binding mode

and affinity data, docking was conducted in the Geom mode of

Surfelx-Dock. A 6 Å of an expanded search grid, a maximum of

20 conformations per fragment, and a maximum of 100 rotatable

bonds per molecule were used as general docking parameters. Spin

alignment was activated with a search density of 3 Å and 12 spins

per alignment. The docked pose for each component with c-kit

was ranked according to Surflex-Dock Score.

Animals
The original stock of male Wistar rats weighing 200–300 g were

purchased from Dae-Han Experimental Animal Center (Taejeon,

Chungnam, South Korea). The animals were housed 5–10 per

cage in laminar air flow room maintained at 2261uC and relative

humidity of 55610% throughout the study.

Preparation of RPMCs
Rats were anesthetized with ether, and injected with 20 ml of

Tyrode buffer B (NaCl, glucose, NaHCO3, KCL, NaH2PO4)

containing 0.1% gelatin (Sigma) into the peritoneal cavity; the

abdomen was gently massaged for about 90 s. The peritoneal

cavity was carefully opened, and the fluid containing peritoneal

cells was aspirated with Pasteur pipette. Then the peritoneal cells

were sedimented at 150 x g for 10 min at room temperature and

resuspended in Tyrode buffer B. Mast cells were separated from

the major components of rat peritoneal cells (i.e., macrophages

and small lymphocytes). In brief, peritoneal cells suspended in

1 ml of Tyrode buffer B were layered onto 2 ml of 0.225 g/ml

metrizamide (density 1.120 g/ml; Sigma) and centrifuged at room

temperature for 15 min at 400 x g. The cells remaining at the

buffer-metrizamide interface were aspirated and discarded; the

cells in the pellet were washed and resuspended in 1 ml of Tyrode

buffer A (10 mM HEPES, 130 mM NaCl, 5 mM KCl, 1.4 mM

CaCl2, 1 mM MgCl2, 5.6 mM glucose, 0.1% bovine serum

albumin) containing calcium. Mast cell preparations were about

95% pure as assessed by toluidine blue staining. More than 97% of

the cells were viable as judged by the trypan blue uptake.

Cell culture
Purified RPMCs were maintained in a-MEM medium (Gibco

BRL, USA) with 10% fetal bovine serum (JRH BIOSCIENCE,

USA) at 37uC under 5% CO2 in air. RPMCs were preincubated

with KMP6 (0.01, 0.1, and 1 mg/ml), HS-PS (2 mg/ml),

hesperidin (0.01 mg/ml), or dexamethasone (100 nM) at 37uC
for 1 before the stimulation with SCF (50 ng/ml) for various times.

The cells were separated from the released TNF-a and ICAM-1

by centrifugation at 400 x g for 5 min at 4uC.

Assessment of cell viability and altered morphology
At time zero and subsequent time-points as indicated, cells were

counted in a haemocytometer and viability was assessed by trypan

blue dye exclusion. To assess the percentage of cells showing

characteristic morphological features, the cells were examined by

phase contrast microscopy. Photomicrography was done using Fuji

film at 6100 magnification.

Chemotaxis assay
SCF or the assay medium alone was applied into each well of

four-well culture plates. After 10-mm tissue culture inserts (Nalge

Nunc International, USA) were placed into each well, RPMCs

(500 ml) were added into each insert. The lower compartment of

the well was separated from the cell suspension in the upper

compartment with an 8 mm pore size polycarbonate membrane of

the culture inserts. RPMCs were incubated for 4 h at 37uC in a

humidified atmosphere flushed with 5% CO2 in air. Following

aspiration of nonadherent RPMCs in the upper compartment,

cells adherent to the upper surface of the membrane were removed

by scraping with a rubber blade. Migrated cells adherent to lower

surface of the membrane were fixed with methanol for 5 min and

stained with 0.5% toluidine blue. The membranes were mounted

on glass slides by routine histological methods. The total number

of mast cells that migrated across the membrane was counted

under a light microscope.

MTT assay
To test the cell viability, the MTT colorimetric assay was

performed. Briefly, Cells were incubated for 24 h after stimulation

in the presence or absence of KMP6, HS-PS, or hesperidin. 50 ml

of MTT solution (5 mg/ml) was added, and the cells were

incubated at 37uC for an additional 4 h. The crystallized MTT

was dissolved in DMSO and the absorbance measured at 540 nm

by a microplate reader.

F-actin formation in RPMCs treated with SCF
Detection of polymerized actin (F-actin) was determined in

RPMCs migrating toward the lower side of the membrane

according to the method described by Pteiffer and Oliver [17].

Briefly, RPMCs were preincubated with or without KMP6 (1 mg/

ml) or hesperidin (0.01 mg/ml) for 1 h and seeded into each
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culture insert for chemotaxis assay or into each well of 6-well

culture plates. After stimulation with SCF for 1 h, RPMCs were

fixed with 3% paraformaldehyde/phosphate–buffered saline (PBS)

for 1 h at room temperature, washed 3 times with PBS, and

permeabilized with 1% Triton X-100/PBS for 15 min. The

preparations were stained for 30 min with F-actin specific probe,

1 U/ml NBD-phallacidin at room temperature. All specimens

were examined with a confocal laser-scanning microscope using an

argon ion laser, which is capable of excitation at 488 nm.

Enzyme-linked immunosorbent assay (ELISA) of TNF-a
and ICAM-1

Sandwich ELISA for TNF-a and ICAM-1 was carried out in

duplicate in 96-well ELISA plates (Nunc, USA) coated with each

of 100 ml aliquots of anti- TNF-a and ICAM-1 monoclonal

antibodies (R&D Systems, Minneapolis, MN, USA) at 1.0 mg/ml

in PBS at pH 7.4 and was incubated overnight at 4uC. The plates

were washed in PBS containing 0.05% tween-20 (Sigma, St.

Lousis, MO, USA) and blocked with PBS containing 1% BSA, 5%

sucrose and 0.05% NaN3 for 1 h. After additional washes, samples
were added and incubated at 37uC for 2 h. Recombinant TNF-a
and ICAM-1 were diluted and used as a standard. Serial dilutions

starting from 5 ng/ml were used to establish the standard curve.

After 2 h incubation at 37uC, the wells were washed and then each

of 0.2 mg/ml of biotinylated anti-TNF-a and ICAM-1 were added

and again incubated at 37uC for 2 h. After washing the wells,

Table 1. Docking scores of the ranked poses for complexes
between different components and the c-kit protein.

Component Docking Score Origin

Licuraside 7.93 Glycyrrhiza uralensis Fisch

Hesperidin 7.50 Citrus sunki Hort. ex Tanaka

Glycyrrhizin 7.44 Glycyrrhiza uralensis Fisch

Poncirin 7.15 Citrus sunki Hort. ex Tanaka

Liquiritin 6.92 Glycyrrhiza uralensis Fisch

Magnocurarine 6.48 Magnolia officinale Rehder et
Wils

Neoisoliquiritin 6.42 Glycyrrhiza uralensis Fisch

Honokiol 6.41 Magnolia officinale Rehder et
Wils

Oleanolic acid 6.31 Glycyrrhiza uralensis Fisch

Magnolol 5.51 Magnolia officinale Rehder et
Wils

Isoliquiritigenin 5.33 Glycyrrhiza uralensis Fisch

Eudesmol 5.22 Magnolia officinale Rehder et
Wils

Hisesol 4.70 Atractylodes japonica Koidzumi

Betulic acid 4.63 Glycyrrhiza uralensis Fisch

myo-Inositol 4.45 Citrus sunki Hort. ex Tanaka

Atractylenenolide III 4.13 Atractylodes japonica Koidzumi

Atractylenenolide I 4.07 Atractylodes japonica Koidzumi

Acetylatrsctylodinol 3.97 Atractylodes japonica Koidzumi

Coumarin 3.34 Glycyrrhiza uralensis Fisch

Atractylenenolide II 3.33 Atractylodes japonica Koidzumi

Atractylodin 2.68 Atractylodes japonica Koidzumi

d-Limonene 2.53 Citrus sunki Hort. ex Tanaka

doi:10.1371/journal.pone.0019528.t001

Figure 1. The top view (left) and side view (right) for
representative docked poses of the c-kit receptor protein with
(A) hesperidin and (B) stem cell factor.
doi:10.1371/journal.pone.0019528.g001

Figure 2. Inhibitory effect of KMP6 and hesperidin on SCF-
induced migration. RPMCs (36104) were treated with KMP6 (0.01, 0.1,
and 1 mg/ml), HS-PS (2 mg/ml), hesperidin (0.01 mg/ml), or dexameth-
asone (100 nM) for 1 h and then stimulated with SCF (50 ng/ml) for 4 h.
Migration of RPMCs was assessed by counting the number of RPMCs
through the polycarbonate membrane. Each datum represents the
mean 6 S.E.M. of duplicate determinations from three separate
experiments. * P,0.05, when compared with the medium alone;
** P,0.05, when compared with SCF. DEX, dexamethasone.
doi:10.1371/journal.pone.0019528.g002
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streptavidin-peroxidase was added and plates were incubated for

20 min at 37uC. Wells were again washed and ABTS substrate

was added. Color development was measured at 450 nm using an

automated microplate ELISA reader. A standard curve was run on

each assay plate using recombinant, TNF-a and ICAM-1 in serial

dilutions.

Western blot analysis
Cell extracts were prepared by detergent lysis procedure. Cells

were scraped, washed once with PBS, and resuspended in lysis

buffer. Samples were vortexed for lysis for a few seconds every 15

minutes at 4uC for 1 h and centrifuged at 15,000 x g for 5 min at

4uC. Supernatants were assayed. Samples were heated at 95uC for

Figure 3. Inhibitory effect of KMP6 and hesperidin on SCF-induced morphological alteration. RPMCs (36104) were treated with KMP6
(1 mg/ml), HS-PS (2 mg/ml), hesperidin (0.01 mg/ml), or dexamethasone (100 nM) for 1 h and then stimulated with SCF (50 ng/ml) for 4 days. Results
are representative of three independent experiments with duplicated samples (A). Morphological alteration was assessed by counting the number of
RMPCs for 4 days (B). Each datum represents the mean 6 S.E.M. of duplicate determinations from three separate experiments. * P,0.05, when
compared with the medium alone; ** P,0.05, when compared with SCF. Blank, unstimulated cells; DEX, dexamethasone.
doi:10.1371/journal.pone.0019528.g003
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5 min, and briefly cooled on ice. Following the centrifugation at

15,000 x g for 5 min, 50 ml aliquots were resolved by 12% sodium

dodecyl sulfate polyacrylamide gel electrophoresis. Resolved

proteins were electrotransferred overnight to nitrocellulose mem-

branes in 25 mM Tris, pH 8.5, 200 mM glycine, 20% methanol

at 25 V. Blots were blocked for at least 2 h with 16PBS containing

0.05% tween 20 and 10% nonfat dry milk. The phosphated p38

antibody (1:500) was added and incubated for 1 h. Afterward,

nitrocellulose membrane was washed five times for 15 min with

PBST. For protein detection, blot was incubated with anti-mouse

secondary antibody conjugated with peroxidase for 40 min,

followed by ECL detection.

Statistical analysis of data
The experiments shown are a summary of the data from at

least-three experiments and are presented, as the mean 6 S.E.M.

Statistical evaluation of the results was performed by independent

t-test and ANOVA with Tukey post hoc test. The results were

considered significant at a value of P,0.05.

Results

Molecular docking of the components of KMP6 and c-kit
interaction

To predict the potential active component in the KMP6,

docking simulations were performed using molecular docking

software. Table 1 summarizes the final docking score of each

component bound to the SCF-binding site of the c-kit receptor

protein. The data for docking scores indicated that glycoside

compounds including licuraside, hesperidin, and glycyrrhizin were

the best components for the c-kit because they had the highest

docking score of all the molecules. Hesperidin is a major

component of KMP6. In this study, hesperidin was selected for

a further evaluation after considering its applicability and

attainability. The binding mode of the hesperin for the c-kit was

examined in order to compare it with that of SCF which is a

natural ligand for this receptor protein (Figure 1).

Effect of KMP6 and hesperidin on SCF-induced RPMCs
migration

The effect of KMP6 and hesperidin on SCF-induced cell migration

was determined in a chemotaxis assay using a polycarbonated

membrane. SCF (50 ng/ml) was placed in the lower compartment,

and then the RPMCs were incubated for 4 h in the upper

compartment. SCF significantly increased the number of RPMCs,

which migrated toward the lower surface of the polycarbonate

membrane through 8-mm pores (P,0.05, compared with the

medium alone without SCF). This migration was significantly

decreased by treatment of KMP6 (0.01, 0.1, and 1 mg/ml), HS-PS

(2 mg/ml), hesperidin (0.01 mg/ml), or dexamethasone (100 nM)

(P,0.05, Figure 2). A treatment of KMP6 resulted in a dose-

dependent inhibition of SCF-induced migration. The maximum

inhibition occurred at 1 mg/ml. Cell toxicity by KMP6, HS-PS,

hesperidin, or dexamethasone was not observed (data not shown).

Effect of KMP6 and hesperidin on SCF-induced
morphological changes

Next, we investigated the ability of KMP6 and hesperidin to

decrease the morphological change of RPMCs in the presence of

SCF. As shown in Figure 3, SCF (50 ng/ml) induced morpholog-

ical alterations in about 80% of the RPMCs after 4 days of culture.

However, the effect of SCF was mostly abolished by treatment

with KMP6 (1 mg/ml), HS-PS (2 mg/ml), hesperidin (0.01 mg/

ml), or dexamethasone (100 nM).

Effect of KMP6 and hesperidin on SCF-induced F-actin
formation

As F-actin formation is well known to be associated with cell

motility, we next examined the effect of KMP6 and hesperidin

Figure 4. Detection of F-actin in SCF-induced RPMCs with or without KMP6 and hesperidin. RPMCs (36104) were treated with KMP6
(1 mg/ml) or hesperidin (0.01 mg/ml) for 1 h and then stimulated with SCF (50 ng/ml) for 1 h. Confocal images of RPMCs were stained with NBD-
phallacidin. F-actin was visualized using a conforcal laser scanning microscope (A). RPMCs treated with SCF exhibited a high fluorescent intensity (B).
Results are representative of three independent experiments with duplicated samples. * P,0.05, when compared with the medium alone; ** P,0.05,
when compared with SCF. Blank, unstimualted cells.
doi:10.1371/journal.pone.0019528.g004
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on SCF-induced F-actin formation. F-actin taken from RPMCs

that were passing through the pore toward SCF was stained

with NBD-phallacidin. Confocal laser scanning microscopic

analysis clearly demonstrated that the enhanced formation of F-

actin was induced by treatment with 50 ng/ml SCF, but it was

markedly blocked by treatment with KMP6 (1 mg/ml) or

hesperidin (0.01 mg/ml) (Figure 4A). F-actin levels were

obtained from single cell and evaluated as fluorescent intensity

(Figure 4B).

Effect of KMP6 and hesperidin on SCF-induced activation
of p38

To determine whether the inhibitory action of KMP6 and

hesperidin was related to p38 MAPK activation, cell lysates were

analyzed for phosphorylated-p38 by immunoblot using an

antibody that specifically recognized that phosphorylation form

of the protein. Previously, Sundstrom et al. reported that

activation of the p38 signaling pathways peaked at 5 to 10 min

[14], and the RPMCs were stimulated with SCF for 10 min. As

shown in Figure 5, the addition of 50 ng/ml SCF to RPMCs

induced phosphorylation of p38 MAPK. KMP6 (1 mg/ml), HS-

PS (2 mg/ml), hesperidin (0.01 mg/ml), dexamethasone

(100 nM), or SB203580 (20 mM, p38 inhibitor) reduced the levels

of phosphorylated-p38 (Figure 5A) in SCF-stimulated RPMCs.

The protein levels were quantitated by densitometry (Figure 5B,

Pharmacia Biotech, USA).

Effect of KMP6 and hesperidin on SCF-induced TNF-a and
ICAM-1 production

Finally, to determine whether KMP6 and hesperidin can

modulate SCF-induced TNF-a and ICAM-1 production from

RPMCs, the cells were treated with KMP6 (1 mg/ml), HS-PS

(2 mg/ml), hesperidin (0.01 mg/ml), or dexamethasone (100 nM)

for 1 h prior to stimulation with SCF for 24 h or 72 h. Culture

supernatants were assayed for TNF-a and ICAM-1 protein levels

by the ELISA method. As shown in Figure 6A and B, SCF

significantly enhanced TNF-a (1.0260.02 ng/ml, P,0.05) and

ICAM-1 (0.1860.04 ng/ml, P,0.05) production compared with

media control (0.0460.01 ng/ml for TNF-a and 0.0560.01 ng/

ml for ICAM-1). This induction was significantly inhibited by

treatment of KMP6 (1 mg/ml), HS-PS (2 mg/ml), hesperidin

(0.01 mg/ml), or dexamethasone (100 nM, P,0.05). Inhibition of

TNF-a and ICAM-1 production by treatment of KMP6 was about

88.9% and 33.1%, respectively.

Discussion

In the present study, we showed that KMP6 and hesperidin

inhibited SCF-dependent stimulatory effects on migration, mor-

phological alteration, and TNF-a and ICAM-1 production in

RPMCs. In addition, KMP6 and hesperidin inhibited SCF-

induced p38 MAPK activation.

Directed migration of mast cells towards a chemical gradient of

specific chemoattractants locally produced in inflamed tissues is

the first integrated event in the process of allergic and non-allergic

inflammatory responses [18,19]. The localization of mast cell

precursors to specific tissue sites and the accumulation of mast cells

within the given tissue at an inflammatory response were induced

by the chemotactic factor, SCF [1]. SCF stimulates specific

receptors, c-kit on the cell surface, that initiate several second

messenger cascades; this action results in a change in F-actin

distribution from azimuthal symmetry around the cell rim to

concentration at a particular region involved in migratory behavior

[20]. We previously reported that SCF induced morphological

alteration and migration of RPMC [21]. Morphological alteration

and migration of mast cells by SCF is an important step for the

participation in adhesion to tissue [21]. Previously, we also reported

that dexamethasone inhibits the migration and F-actin distribution

of RPMCs in the presence of recombinant SCF [21]. In this study,

we demonstrated that KMP6 and HS-PS inhibited SCF-induced

migration of RPMCs and distribution of F-actin. These results

including our findings suggest that KMP6 and HS-PS might

regulate the migratory process of mast cells following SCF

stimulation. Anti-inflammatory, antioxidant, and anti-cancer effects

of hesperidin, a main component of Citrus unshiu, have been reported

[22–24]. We reported for the first time that hesperidin reduced

SCF-induced mast cell migration and morphological alteration.

Therefore, we found that hesperidin is an active compound of

KMP6 on SCF-induced mast cell migration.

Binding of SCF to c-kit activates different intracellular signaling

components, including the p38 MAPK [25]. MAPK, p38

activation by SCF is of main importance for cell migration toward

SCF in general. Suppressing p38 MAPK signaling in mast cells

may be a useful tool to reduce mast cell numbers in inflammatory

conditions. As described above, KMP6 consists of 6 different

herbs. We previously reported that beta-eudesmol, a component of

Atractylodes rhizome inhibited p38 activation [26]. Other researchers

Figure 5. Inhibitory effect of KMP6 and hesperidin on SCF-
induced p38 activation. RPMCs (36106) were treated with KMP6
(1 mg/ml), HS-PS (2 mg/ml), hesperidin (0.01 mg/ml), dexamethasone
(100 nM), or SB203580 (20 mM) for 1 h and then stimulated with SCF
(50 ng/ml) for 10 min. Total protein was prepared and analyzed for
phosphorylated p38 MAPK by Western blotting as described in the
experimental procedures (A). Phosphorylated p-38 levels were quanti-
tated by densitometry (B). Results are representative of three
independent experiments with duplicated samples. * P,0.05, when
compared with the medium alone; ** P,0.05, when compared with
SCF. DEX, dexamethasone; SB, SB203580.
doi:10.1371/journal.pone.0019528.g005
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reported that magnolol, a component of Magnoliae cortex also

inhibited p38 activation [27]. We showed that p38 MAPK

activation and activity were blocked when RPMCs were

pretreated with KMP6, HS-PS, hesperidin, dexamethasone, or

SB203580. Therefore, we suggested that KMP6 reduced the mast

cell number via regulation of p38 activation in inflammatory

reactions.

TNF-a is constitutively expressed cytokine in mast cells and it is

considered a major initiator of inflammation [28]. TNF-a also

regulated expression of chemokines such as IL-8, MCP-1, and

RANTES. Mucosal inflammation is a feature of both bronchial

asthma and allergic rhinitis with evident tissue eosinophilia, mast

cells, eosinophils, and T-lymphocytes activation. The initial phase

of cell recruitment is the margination and adhesion of leucocytes to

the endothelium, prior to their transendothelial migration under a

directed chemotactic stimulus. This adhesion occurs through

specific ligand-receptor couplets involving leucocyte-endothelial

adhesion molecules. One of these cell adhesion molecules is

ICAM-1, an important early marker of immune activation and

response [29]. Choi et al. reported that hesperidin, a major

component of KMP6, inhibited expression of inflammatory

cytokines (IL-1beta, IL-6, IL-8, and TNF-a) [22]. Chang et al.

reported that glycyrrhetinic acid, a component of Glycyrrhizae radix,

inhibits ICAM-1 expression via blocking JNK and NF-kappaB

pathways in TNF-a-activated cells [30]. We demonstrated that

KMP6, HS-PS, and hesperidin inhibited SCF-induced TNF-a and

ICAM-1 production. These findings may contribute to under-

standing the anti-inflammatory effect of KMP6.

Virtual (database) screening (VS) of molecules promises to

accelerate the discovery of new drugs and reduce costs by

identifying molecules with high probabilities of binding to a target

receptor. The large amount of available protein X-ray crystal

structures, together with the development of more effective

homology modeling techniques, has led recently to a steep

increase in docking-based VS studies. This approach needs

computational fitting of molecules into a receptor active site using

advanced algorithms, followed by the scoring and ranking of these

molecules to identify potential leads. In this study, molecular

docking results suggested that glycosidic moiety of hesperidin was

tightly bound to c-kit in the same manner as the SCF with c-kit.

The glycosidc moiety of hesperdin plays a similar role in an a-

helical region of the SCF. Furthermore, the flavonoidic backbone

of the hesperidin gave an additional affinity with the receptor c-kit

protein with aromatic and hydrogen bonding interaction. This

ligand bound conformation and docking score of the hesperidin

with c-kit provide a molecular-level insight toward explaining its

biological efficacy. As described above, hesperidin was also known

as a regulator of various intracellular proteins. Taken together, we

can presuppose that hesperidin inhibits SCF-induced mast cell

migration through regulation of the activity of intracellular

proteins and prevention of SCF and c-kit interaction.

In conclusion, we identified a new anti-allergic effect of KMP6.

Our results suggest that KMP6 may be useful in the treatment of

SCF-mediated inflammatory diseases.
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Figure 6. Inhibitory effect of KMP6 and hesperidin on SCF-induced cytokine release from RPMCs. RPMCs (36105) were treated with
KMP6 (1 mg/ml), HS-PS (2 mg/ml), hesperidin (0.01 mg/ml), or dexamethasone (100 nM) for 1 h and then stimulated with SCF (50 ng/ml) for 24 h
(TNF-a) or 72 h (ICAM-1). TNF-a (A) and ICAM-1 (B) concentrations were measured from cell supernatants using the ELISA method. Each datum
represents the mean 6 S.E.M. of duplicate determinations from three independent experiments. * P,0.05, when compared with the medium alone,
** P,0.05, when compared with SCF. DEX, dexamethasone.
doi:10.1371/journal.pone.0019528.g006
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