
Candida albicans-Induced Epithelial Damage Mediates
Translocation through Intestinal Barriers

Stefanie Allert,a Toni M. Förster,a Carl-Magnus Svensson,b Jonathan P. Richardson,c Tony Pawlik,d Betty Hebecker,a,d,e

Sven Rudolphi,d Marc Juraschitz,a Martin Schaller,f Mariana Blagojevic,c Joachim Morschhäuser,g Marc Thilo Figge,b,h

Ilse D. Jacobsen,d,i Julian R. Naglik,c Lydia Kasper,a Selene Mogavero,a Bernhard Hubea,i

aDepartment of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute, Jena, Germany
bResearch Group Applied Systems Biology, Hans-Knöll-Institute, Jena, Germany
cMucosal & Salivary Biology Division, Dental Institute, King’s College London, London, United Kingdom
dResearch Group Microbial Immunology, Hans-Knöll-Institute, Jena, Germany
eAberdeen Fungal Group, MRC Centre for Medical Mycology, University of Aberdeen, Aberdeen, United
Kingdom

fDepartment of Dermatology, University Hospital Tübingen, Tübingen, Germany
gInstitute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
hFaculty of Biological Sciences, Friedrich-Schiller-University Jena, Jena, Germany
iInstitute of Microbiology, Friedrich-Schiller-University Jena, Jena, Germany

ABSTRACT Life-threatening systemic infections often occur due to the translocation
of pathogens across the gut barrier and into the bloodstream. While the microbial
and host mechanisms permitting bacterial gut translocation are well characterized,
these mechanisms are still unclear for fungal pathogens such as Candida albicans, a
leading cause of nosocomial fungal bloodstream infections. In this study, we dis-
sected the cellular mechanisms of translocation of C. albicans across intestinal epi-
thelia in vitro and identified fungal genes associated with this process. We show that
fungal translocation is a dynamic process initiated by invasion and followed by cel-
lular damage and loss of epithelial integrity. A screen of �2,000 C. albicans deletion
mutants identified genes required for cellular damage of and translocation across
enterocytes. Correlation analysis suggests that hypha formation, barrier damage
above a minimum threshold level, and a decreased epithelial integrity are required
for efficient fungal translocation. Translocation occurs predominantly via a transcellu-
lar route, which is associated with fungus-induced necrotic epithelial damage, but
not apoptotic cell death. The cytolytic peptide toxin of C. albicans, candidalysin, was
found to be essential for damage of enterocytes and was a key factor in subse-
quent fungal translocation, suggesting that transcellular translocation of C. albi-
cans through intestinal layers is mediated by candidalysin. However, fungal invasion
and low-level translocation can also occur via non-transcellular routes in a candi-
dalysin-independent manner. This is the first study showing translocation of a
human-pathogenic fungus across the intestinal barrier being mediated by a peptide
toxin.

IMPORTANCE Candida albicans, usually a harmless fungus colonizing human muco-
sae, can cause lethal bloodstream infections when it manages to translocate across
the intestinal epithelium. This can result from antibiotic treatment, immune dysfunc-
tion, or intestinal damage (e.g., during surgery). However, fungal processes may also
contribute. In this study, we investigated the translocation process of C. albicans us-
ing in vitro cell culture models. Translocation occurs as a stepwise process starting
with invasion, followed by epithelial damage and loss of epithelial integrity. The
ability to secrete candidalysin, a peptide toxin deriving from the hyphal protein

Received 2 May 2018 Accepted 3 May
2018 Published 5 June 2018

Citation Allert S, Förster TM, Svensson C-M,
Richardson JP, Pawlik T, Hebecker B, Rudolphi
S, Juraschitz M, Schaller M, Blagojevic M,
Morschhäuser J, Figge MT, Jacobsen ID, Naglik
JR, Kasper L, Mogavero S, Hube B. 2018.
Candida albicans-induced epithelial damage
mediates translocation through intestinal
barriers. mBio 9:e00915-18. https://doi.org/10
.1128/mBio.00915-18.

Editor James W. Kronstad, University of British
Columbia

Copyright © 2018 Allert et al. This is an open-
access article distributed under the terms of
the Creative Commons Attribution 4.0
International license.

Address correspondence to Bernhard Hube,
bernhard.hube@leibniz-hki.de.

S.A. and T.M.F. contributed equally to this work.

This article is a direct contribution from a
Fellow of the American Academy of
Microbiology. Solicited external reviewers:
Elaine Bignell, University of Manchester;
Michael Lorenz, University of Texas Health
Science Center.

RESEARCH ARTICLE

crossm

May/June 2018 Volume 9 Issue 3 e00915-18 ® mbio.asm.org 1

https://orcid.org/0000-0003-0823-4824
https://orcid.org/0000-0002-4044-9166
https://orcid.org/0000-0003-0642-0068
https://orcid.org/0000-0002-6028-0425
https://doi.org/10.1128/mBio.00915-18
https://doi.org/10.1128/mBio.00915-18
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:bernhard.hube@leibniz-hki.de
https://crossmark.crossref.org/dialog/?doi=10.1128/mBio.00915-18&domain=pdf&date_stamp=2018-6-5
http://mbio.asm.org


Ece1, is key: C. albicans hyphae, secreting candidalysin, take advantage of a necrotic
weakened epithelium to translocate through the intestinal layer.

KEYWORDS Candida albicans, candidalysin, host cell damage, host cell invasion,
intestinal barrier, necrosis, translocation

Candida albicans is one of the predominant fungal species that colonizes the
mucosal surfaces of most humans as a harmless member of the normal microbiota

(1, 2). However, under certain circumstances, C. albicans can become pathogenic
and cause diseases ranging from common superficial to severe systemic infections (3,
4). These life-threatening disseminated infections are initiated by endogenous coloniz-
ers, which translocate from mucosal surfaces into the bloodstream. Several studies have
demonstrated that the intestinal population of C. albicans is the main source of
disseminated candidiasis (5–11). However, in a healthy host, the intestinal epithelium,
together with mucosal immune cells, constitute a stable barrier preventing C. albicans
from translocating into the bloodstream. Host defense against translocation is further
augmented by the physical barrier functions of the epithelial layer, with tight junctions
and adherens junctions sealing paracellular spaces (12), and a mucous layer that
protects the epithelium, thereby directly affecting C. albicans physiology and morphol-
ogy (13). In addition, a balanced and diverse microbiota (14), the secretion of antimi-
crobial peptides (AMPs) (15), and the concerted activity of the innate and adaptive
immune systems (14, 16) act to reduce hyphal burdens during periods of fungal
overgrowth and restrict the fungus to the commensal (yeast) morphology. However,
dysfunctions in these protective mechanisms can favor C. albicans translocation.

Predisposing conditions that trigger the commensal-to-pathogen shift and translo-
cation of C. albicans are often iatrogenic. These conditions include an imbalance of the
resident microbiota by use of antibiotics, a compromised immune system (e.g., due to
chemotherapy or immunosuppressive therapy), or damage of epithelial barrier func-
tions by iatrogenic impairment, for instance due to cytostatic treatment, surgery, or
trauma (17, 18). Consequently, disseminated candidiasis is typically a nosocomial
infection, and intensive care unit (ICU) patients are particularly susceptible to invasive
C. albicans infections (19–21).

In principle, initiation of disseminated candidiasis requires at least one of four
events: (i) entry of C. albicans cells by direct invasion of epithelial cells (ECs) from
intestinal mucosal surfaces into blood capillaries or vessels; (ii) indirect translocation of
C. albicans cells phagocytosed by host immune cells (“sampling”); (iii) direct damage of
mucosal barriers, for example due to surgery, polytrauma, or drug treatment; or (iv)
spread from fungal biofilms established on medical devices such as catheters (22, 23).

Translocation of C. albicans in murine models requires a combination of increased
fungal colonization via removal of the bacterial microbiota, neutropenia, and intestinal
barrier dysfunction in order to establish disseminated disease (24). Importantly, infre-
quent fungal translocation may also occur without epithelial damage under conditions
of enhanced fungal colonization following antibiotic pretreatment (23), and it does not
always result in systemic disease in immunocompetent mice (25).

Although dissemination of C. albicans from the intestinal tract has been studied in
vivo (5, 24–27), the molecular mechanism of C. albicans translocation across intestinal
barriers via epithelial invasion and the fungal attributes required for this process are
poorly characterized. Pathogenic interactions of C. albicans with ECs can be divided into
three stages: adhesion, invasion, and damage (28–31). Each of these steps requires
hypha formation and the expression of hypha-associated genes. For example, hypha-
associated expression of ALS3 permits not only adhesion (32) but also induced endo-
cytosis (33) and iron acquisition (34). Expression of ECE1 (encoding the peptide toxin
candidalysin) is essential for epithelial damage (35) and is the missing link between
hypha formation and host cell damage (36).

In this study, we used an in vitro translocation model to characterize the events
associated with C. albicans translocation through an intact intestinal barrier. We show
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that translocation in this model mainly occurs via a transcellular route associated with
fungus-induced necrotic, but not apoptotic, cell death. A screen of �2,000 C. albicans
gene deletion mutants identified several genes associated with intestinal epithelial
damage. Selected damage-defective mutants were analyzed for their impact on epi-
thelial barrier function and translocation. Our data suggest that C. albicans transcellular
translocation through intestinal layers requires candidalysin-induced epithelial damage.
This is the first study that shows a peptide toxin-mediated translocation of a human-
pathogenic fungus.

RESULTS
Dynamics of fungal invasion, epithelial damage, and loss of epithelial barrier

integrity during translocation of Candida albicans through intestinal epithelial
layers. A combination of predisposing factors, including damage to epithelial barriers
acquired during surgery or polytrauma, contribute to disseminated candidiasis. How-
ever, translocation of C. albicans across epithelial barriers can also occur without
iatrogenic or accidental epithelial damage. We hypothesized that this particular type of
translocation from the gut into the bloodstream requires invasion into intestinal
epithelial cells (IECs) that is associated with fungus-induced cellular damage and loss of
epithelial barrier integrity. To investigate the dynamics of this process, we established
a translocation assay using the C2BBe1 cell line, a subclone of the human intestinal cell
line Caco-2 (37), in a transwell system, by modifying previous protocols (29, 38, 39). We
infected C2BBe1 enterocytes with wild-type (WT) C. albicans and monitored fungal
invasion (via differential staining), host cell damage (via release of epithelial lactate
dehydrogenase [LDH]), loss of epithelial monolayer integrity (via quantification of TEER
[transepithelial electrical resistance]), and translocation (via fungal burdens) (Fig. 1).

FIG 1 Infection of C2BBe1 IECs with wild-type C. albicans. (A) Invasion of C. albicans into C2BBe1 cells at 3 h, 4.5 h, and 6 h p.i. was quantified
by differential fluorescence microscopy staining. The percentage of invasive hyphae relative to total C. albicans visible hyphae is shown. (B)
Representative fluorescence microscopy images of differential staining to quantify C. albicans invasion. Extracellular C. albicans (pink), C. albicans
(blue), and actin (green) are indicated. The white arrows indicate the entry point of the invading hypha. (C) Quantification of C2BBe1 barrier
integrity as measured by TEER, and fungal translocation (number of translocated cells) after infection with C. albicans SC5314. (D) Release of LDH
from C2BBe1 cells after infection with C. albicans SC5314. Data are presented as means � standard deviations (SD) (error bars) from at least three
independent experiments.
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Low-level invasion (3.6%) of C. albicans into C2BBe1 cells was observed 3 h post-
infection (p.i.) and steadily increased over time (Fig. 1A and B). The observed invasion
did not correlate with a loss of epithelial barrier integrity, epithelial damage, or
translocation during the early stages (�3 h) of infection (Fig. 1C and D). However,
extensive epithelial damage, loss of barrier integrity, and translocation were observed
between 8 h and 30 h p.i. (Fig. 1C and D).

Previous studies have shown that invasion of C. albicans into differentiated entero-
cytes (Caco-2) is a hypha-dependent, fungus-driven process that occurs via active
penetration, but not induced endocytosis, in contrast to other epithelial cells such as
oral ECs (29, 40). To investigate whether the same was also true for the invasion of
C. albicans into the C2BBe1 subclone, differentiated C2BBe1 cells were treated with the
actin polymerization inhibitor cytochalasin D, which blocks induced endocytosis. Cy-
tochalasin D did not impair invasion of C. albicans into C2BBe1 cells, and UV-killed
hyphae, which are endocytosed by oral ECs (29), were not endocytosed by C2BBe1 cells
(see Fig. S1 in the supplemental material). Therefore, invasion into differentiated
C2BBe1 intestinal cells is a fungus-driven process.

Large-scale screening of C. albicans mutant libraries identifies genes im-
portant for epithelial damage. Since in vitro translocation of C. albicans correlated
with cytotoxicity, we investigated whether C. albicans factors necessary for damage of
IECs might also play a role in fungal translocation. Therefore, we screened three
C. albicans gene deletion mutant libraries (41–43) for their ability to damage Caco-2
IECs by quantifying LDH levels. A total of 2,034 C. albicans gene deletion mutants were
screened, including 1,165 homozygous open reading frame (ORF) deletions (approxi-
mately 20% of all annotated C. albicans genes [Data Set S1]). These included genes
required for a broad spectrum of biological processes and potential virulence-
associated traits (41), including transcriptional regulators (43). In total, we identified 172
C. albicans gene deletion mutants that caused significantly less damage (�� � 2�)
compared to their respective WT control (shown in red in Data Set S1 in the supple-
mental material; see Data Set S2 also). In silico Gene Ontology (GO) term analysis
revealed that these genes are putatively involved in filamentation, pathogenesis, and
stress responses (among other functions) (Fig. 2A). The Candida Genome Database (44)
identified 67 of these genes as having unknown function (shown in blue in Data Set S2).
We also identified 102 C. albicans gene deletion mutants that caused more damage
(�� � 2�) to Caco-2 IECs compared to the WT (shown in green in Data Set S1; see Data
Set S2 also). In silico analysis of the corresponding genes of this subgroup showed
putative associations with biofilm formation and cell surface composition (among other
functions) (Fig. 2B). Fifty-two of these genes encode proteins with unknown function
(shown in blue in Data Set S2).

FIG 2 Gene Ontology (GO) term analysis of hypo- and hyperdamaging mutants. Gene deletions associated with significantly
decreased (A) or increased (B) damage.
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The cytotoxicity analysis was performed in parallel with general growth assays in
YPD broth (see Materials and Methods) and morphology analysis on IECs (Data Set S2).
C. albicans gene deletion mutants with a general growth defect in complete medium
and mutants with severe morphological defects were excluded from further analysis,
since such phenotypes were expected to lead to unspecific or morphology-related
reductions in damage. Indeed, the majority of gene deletion mutants that were
compromised for hypha formation were also severely attenuated in their ability to
cause damage (Data Set S2). Of the 172 gene deletion mutants identified that were
hypodamaging to Caco-2 IECs, 38 mutants with no obvious growth or filamentation
defects were selected for further analysis in epithelial damage assays using differenti-
ated C2BBe1 cells (shown in orange in Data Set S2).

On the basis of these data, nine genes were selected for further analysis: PRN4,
orf19.2797, NPR2, AAF1, HMA1, TEA1, orf19.3335, PEP12, and ECE1 (Table S1). Selection
criteria included (i) previously uncharacterized genes (PRN4, NPR2, orf19.2797, HMA1,
TEA1, and orf19.3335), (ii) genes uncharacterized for interaction with IECs (AAF1, PEP12,
and ECE1) (35, 45–47), and/or (iii) genes with putative functions, including urea trans-
port, transcriptional regulation, ligand binding, and cytolytic toxicity (Table S2).

Since it is frequently observed that the altered phenotypes of mutants identified in
the screen were not due to targeted gene deletion, but rather unspecific genomic
alterations, and to exclude differences between genetic backgrounds, all nine selected
mutants were recreated in a C. albicans BWP17 genetic background (48). These mutants
were characterized in more detail (below), including quantification of their hyphal
length, adhesion, invasion potential, and damage (Fig. 3 and S2). All mutants were
significantly impaired in their ability to cause damage to differentiated C2BBe1 cells
24 h p.i., quantified by LDH measurements (Fig. 3A), with the exception of the prn4Δ/Δ
mutant, which exhibited WT levels of damage and was thus not further investi-
gated. The degree of damage reduction varied from moderate (less than 50%; npr2Δ/Δ,
orf19.2797Δ/Δ, aaf1Δ/Δ, and hma1Δ/Δ) to severe (more than 50%: tea1Δ/Δ, orf19.
3335Δ/Δ, pep12Δ/Δ, and ece1Δ/Δ). Interestingly, almost every mutant showed a unique
pattern of phenotypic defects potentially responsible for the reduced damage ob-
served (Fig. 3). For example, invasion of IECs by the aaf1Δ/Δ and pep12Δ/Δ mutants was
significantly reduced, the pep12Δ/Δ mutant had significantly shorter hyphae compared
to the WT hyphae, while the hma1Δ/Δ and orf19.3335Δ/Δ mutants showed moderately
reduced adhesion, invasion, and hyphal length. In contrast, the ece1Δ/Δ mutant did not
show any obvious phenotypic alteration except reduced damage (Fig. 3C and D;
Fig. S2).

Translocation of C. albicans through enterocytes is associated with damage
and loss of epithelial barrier integrity. Our initial experiments demonstrate that
translocation of C. albicans through the intestinal layer is associated with cellular damage
and loss of epithelial integrity (Fig. 1). Accordingly, we tested whether decreased levels of
epithelial damage were associated with a lower level of epithelial translocation. Further, we
compared the ability of a “normal”-damaging mutant (bas1Δ/Δ) and a hyperdamaging
mutant (snt1Δ/Δ; shown in green in Data Set S1; see Data Set S2 also) to translocate
across an epithelial barrier. Several well-characterized control strains were included in
this analysis, including mutants lacking genes involved in hyphal morphogenesis,
hyphal maintenance, biofilm formation, adhesion, protein processing, or secreted
protease activity (Table S2). Furthermore, translocation through a blank insert in the
absence of an EC layer was quantified to exclude translocation impairment indepen-
dent of host cells (see Materials and Methods; Fig. S3A).

Figure 4 summarizes the epithelial damage, fungal translocation, and epithelial
integrity data for all 19 mutants. To identify correlations between mutant phenotypes
and the ability to translocate through epithelial layers, and thus to identify properties
associated with C. albicans translocation, we used a bioinformatic approach. First,
we applied a density-based spatial clustering with noise (DBSCAN) algorithm (49) to
categorize C. albicans mutants into groups with similar behavior based on the three
parameters “epithelial damage,” “epithelial integrity,” and “fungal translocation” (Fig. 4
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and S4). This led to the arrangement of strains in three clusters: (i) cluster I strains
showing low damage, low translocation rates, and almost unaltered TEER values; (ii)
cluster II strains being similar to the wild type; and (iii) cluster III strains displaying low
damage and translocation, but wild-type-like loss of TEER. However, some C. albicans
mutants could not be assigned to any cluster and were unique in their behavior in the
translocation model. Interestingly, the snt1Δ/Δ mutant, a member of the hyperdamag-
ing group, was significantly attenuated in causing loss of epithelial integrity and
translocation through epithelial layers, whereas the hypha-deficient hgc1Δ/Δ mutant
caused significantly reduced damage but could still translocate, while epithelial integ-
rity was reduced by approximately 50%. An ece1Δ/Δ mutant displayed a moderate loss
of epithelial integrity (50%) compared to the WT, but it caused almost no damage and
exhibited a 75% reduction in translocation. Finally, the unassigned SAP mutants
sap1-3Δ/Δ and sap4-6Δ/Δ showed a very strong similarity to cluster II, except for
increased translocation potential, which was related to an altered ability to cross a
blank transwell.

On the basis of these observations, a bioinformatic analysis was performed between
pairings of the three parameters; “epithelial damage,” “epithelial integrity,” and “fungal
translocation” to understand their reciprocal relationship. According to Pearson’s cor-
relation analysis, all three parameters were significantly correlated, while according to
Spearman’s correlation analysis, translocation and epithelial integrity (TEER) were not
significantly correlated (Fig. 5). Both types of correlations were of moderate magni-

FIG 3 In vitro characterization of selected C. albicans mutants on C2BBe1 IECs. (A) C2BBe1 IECs were infected with selected
C. albicans mutants, and cellular damage 24 h p.i. was quantified by LDH assay. The mean cellular damage induced by
wild-type C. albicans was 865 � 219 ng/ml LDH (dotted line). (B) The adhesion of selected C. albicans mutant strains to
C2BBe1 IECs 1 h p.i. was quantified as described in Materials and Methods. The mean adhesion of WT C. albicans to C2BBe1
cells was 9.2% � 5.7% (dotted line). (C) The invasion of selected C. albicans mutant strains into C2BBe1 IECs 5 h p.i. was
quantified as described in Materials and Methods. The mean invasion level of WT C. albicans was 12.3% � 5.9% (dotted
line). (D) C2BBe1 IECs were infected with selected C. albicans mutants, and their mean hyphal length 5 h p.i. was
determined. The mean length of WT C. albicans hyphae was 77.8 � 12.6 �m (dotted line). All values are presented as
mean � SD relative to the WT. Values that are statistically significantly different are indicated by asterisks as follows: *, P �
0.05; **, P � 0.01; ***, P � 0.001.
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tude (~0.5, see Fig. 5B), which is explained by the strong variability among strains. For
example, although translocation generally increases with increased epithelial damage
(LDH), the snt1Δ/Δ mutant displays reduced translocation, even though it has the
highest epithelial damage of all mutants. Next, to quantify any nonlinear behaviors in

FIG 4 Characterization of damage, translocation, and loss of TEER by selected and control mutants. (A)
C. albicans gene deletion mutants were analyzed for their ability to damage C2BBe1 IECs by LDH assay. (B)
Translocation of C. albicans gene deletion mutants across a differentiated C2BBe1 intestinal epithelial barrier.
(C) Assessment of C2BBe1 epithelial barrier integrity in response to C. albicans gene deletion mutants at 24 h
p.i. as measured by loss of TEER. Data are expressed as TEER loss as a percentage of the wild-type
C. albicans-infected cells. Strains are arranged in clusters (I to III) according to bioinformatic analysis. Cluster
I exhibited low damage, translocation, and loss of TEER. Cluster II contains wild-type-like mutants. Cluster III
exhibited low damage and translocation but wild-type-like loss of TEER. All values are presented as median
plus range relative to the WT (dotted line). Statistical significance: *, P � 0.05; **, P � 0.01; ***, P � 0.001.
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the correlations, we fitted a first-order polynomial and an exponential function of the form
y � Ae��x � B to each pair of measurements and evaluated the most appropriate
model using the Bayesian information criterion (BIC) (50). The choices of independent
measures (x) and dependent measures (y) are picked according to the respective x- and
y-axes in Fig. 5A. We plotted the fitted polynomials and the LOWESS line (51) (i.e., a
nonparametric smoothing that visualizes overall trends in noisy data) and provided the
BIC values in Fig. 5A.

For epithelial damage and translocation, there was no improvement in the BIC using
the exponential fit compared to a first-order polynomial, and the latter was observed
to be close to the LOWESS line. This indicated a close-to-linear relationship between

FIG 5 Bioinformatic analysis of C. albicans-induced epithelial damage, loss of epithelial integrity, and fungal
translocation. Data obtained from WT and mutant strains of C. albicans for damage (LDH release), change in
epithelial integrity (TEER), and translocation (CFU) were analyzed. (A) Pairwise correlation analysis of epithelial
damage (LDH), barrier integrity (TEER), and translocation (CFU). In addition to the median value for each strain, the
fit of a first-order polynomial and an exponential fit is shown together with a LOWESS line that describes a
parameter-free smoothing to visualize the overall trend. The Bayesian information criterion (BIC) of each fit is given.
Note that the sap1-3Δ/Δ strain is not visible, since it has extremely high translocation values; this data point was,
however, taken into account in the calculation of correlations and in the curve fitting. (B) Correlation coefficients
of the pairwise measurements presented. The respective P values are calculated using a two-tailed Student’s t test.
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damage and translocation, suggesting that these two outcomes are most often the
result of the same process or closely related processes. For epithelial damage and
integrity, the LOWESS line and the exponential function tracked closely with another,
which coincides with a considerable decrease in the BIC. This indicates that in the
presence of epithelial damage, the epithelial integrity decreases rapidly to a minimum,
independent of additional damage being induced. Last, translocation and epithelial
integrity show the lowest correlation with a small improvement in BIC values using an
exponential function. The increase is not as large as for epithelial damage and integrity,
and the clear deviation from the LOWESS line indicates that neither function is able to
track the structure of the data very well. The lack of significance in Spearman’s
correlation coefficient can be explained by the structure of the data as seen in Fig. 5A.
For strains with high translocation (�90% of WT), the epithelial integrity is consistently
low, i.e., around WT levels (100% TEER loss), while for low translocation values (0 to 40%
of WT), there is no clear structure in the epithelial integrity data. Pearson’s correlation
coefficient takes into account that very high translocation indicates low epithelial
integrity, while the nonsignificant Spearman’s correlation coefficient captures the lack
of correlations within strains with low and high translocation. This reveals that while
decreased epithelial integrity is a prerequisite for translocation, this does not predict
fungal translocation (i.e., as seen with pep12Δ/Δ [Fig. 4]).

Dissecting the potential routes of C. albicans translocation through enterocyte
layers. Our data and bioinformatic analyses suggest that while epithelial damage and
loss of epithelial integrity are associated with translocation of C. albicans through
epithelial barriers, this does not always predict the amount of fungal translocation.
These analyses suggest two basic routes of gut translocation by C. albicans: paracellular
(between adjacent IECs) and transcellular (through viable or nonviable enterocytes
from the apical side to the basolateral side) (Fig. 6A, routes I to III). The latter would
potentially be associated with EC death, which could either be necrotic or apoptotic.

Next, we investigated the role of epithelial apoptosis versus necrosis for transcellular
translocation (Fig. 6). The contribution of enterocyte apoptosis following C. albicans
infection was monitored by annexin V staining and fluorescence microscopy, as well as
caspase 3/7 activity assays. We found that C. albicans does not induce apoptosis in
C2BBe1 cells, even 24 h p.i. (Fig. 6B to D). In contrast, approximately 40% of IECs
exhibited necrotic cell death 24 h p.i. in response to C. albicans, as indicated by
ethidium homodimer III (EthD-III) staining (Fig. 6C). Therefore, necrotic cell death
appears to be the major mechanism supporting C. albicans transcellular translocation
in our model (Fig. 1, 3, and 6).

Candidalysin is critical for intestinal epithelial damage and fungal transloca-
tion. The secretion of the cytolytic peptide toxin candidalysin, encoded by the ECE1
gene, is known to be critical for oral and vaginal EC damage (35, 52). Given that necrotic
cell death appears to be the major mechanism supporting C. albicans transcellular
translocation, we investigated the role of candidalysin in gut translocation in our in vitro
model. We found that a C. albicans strain lacking ECE1 was hypodamaging to IECs, was
unable to translocate across the gut barrier, and was defective in reducing epithelial
integrity (Fig. 3 and 4).

To confirm that candidalysin was required for intestinal cell damage, we infected
C2BBe1 cells with either a C. albicans mutant that lacked only the candidalysin-
encoding region within ECE1 (ece1Δ/Δ�ECE1Δ184 –279 mutant) or with synthetic can-
didalysin toxin (35). Both the ece1Δ/Δ mutant and the ece1Δ/Δ�ECE1Δ184 –279 mutant
exhibited normal adhesion, epithelial invasion, and hyphal growth (Fig. 7A, B, and
C) but were unable to induce epithelial damage (Fig. 7D), in contrast to the WT
strain and a revertant strain expressing one WT copy of ECE1 (ece1Δ/Δ�ECE1 strain).
Interestingly, the addition of synthetic candidalysin to IECs caused only minimal
damage (Fig. 7). However, combined administration of candidalysin with the
ece1Δ/Δ and ece1Δ/Δ�ECE1Δ184 –279 mutants partially restored the damage capacity of
these strains (Fig. 7D). This demonstrates that a combination of hypha formation and
candidalysin secretion is required for optimal damage induction of IECs by C. albicans.
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FIG 6 Possible translocation mechanisms of C. albicans through IECs. (A) Schematic representation of possible routes of C. albicans
translocation. Possible routes of C. albicans translocation are shown as follows: I, apoptosis; II, paracellular; III, transcellular with

(Continued on next page)

Allert et al. ®

May/June 2018 Volume 9 Issue 3 e00915-18 mbio.asm.org 10

http://mbio.asm.org


Next, we investigated the influence of candidalysin on intestinal barrier integrity by
monitoring TEER and quantifying the diffusion of 4-kDa dextran polymers (Fig. 7E and
G). The TEER values of C2BBe1 epithelium infected with WT C. albicans or an ece1Δ/Δ
mutant constantly dropped over a time period of 48 h, but there was retention of TEER
for the ece1Δ/Δ and ece1Δ/Δ�ECE1Δ184 –279 mutants between 24 and 32 h p.i. (Fig. 7G).
Accordingly, the dextran diffusion assay showed reduced barrier leakage in response to
infection with the ece1Δ/Δ and ece1Δ/Δ�ECE1Δ184 –279 mutants (Fig. 7E). In contrast to
the damage assay, addition of synthetic candidalysin to C2BBe1 epithelium had no
direct (single administration) or indirect (administration together with ece1Δ/Δ or
ece1Δ/Δ�ECE1Δ184 –279 mutant) effect on epithelial barrier function (Fig. 7E and G). As
a means of comparison, we also administered melittin, a cytolytic peptide toxin in bee
venom, as a positive control (53) in the damage and barrier integrity assays. Melittin
caused high LDH release (Fig. 7D) and completely abolished epithelial barrier function
(Fig. 7E and G).

As an expected consequence of reduced EC damage and reduced loss of integ-
rity, translocation of ece1Δ/Δ and ece1Δ/Δ�ECE1Δ184 –279 mutants was significantly
reduced. We observed a trend toward higher translocation of ece1Δ/Δ and ece1Δ/Δ�

ECE1Δ184 –279 mutants when candidalysin was added during epithelial infection (Fig. 7F).
Of note, while damage was almost abolished in the absence of candidalysin or ECE1,
translocation of the respective mutants was still possible to a limited extent (approx-
imately 25% of the WT level) (Fig. 4 and 7), emphasizing that translocation can occur
without damage and independently of candidalysin. Therefore, we proposed a second
route of transcellular translocation, which is not associated with EC damage (Fig. 6A,
route IV). In this scenario, hyphae would invade ECs on the apical side and emerge on
the basolateral side without causing host membrane damage and without causing
release of cellular content (Fig. 6A, route IV). Fluorescence microscopy pictures clearly
demonstrate that the hyphae of an ece1Δ/Δ mutant can invade and grow through IECs
(Fig. 6E) without causing epithelial damage (Fig. 7D). Furthermore, transmission elec-
tron microscopy (TEM) pictures of invasive C. albicans hyphae show the presence of a
host membrane surrounding hyphae in some pictures (Fig. 6F, black arrows), suggest-
ing that transcellular translocation without membrane damage may be possible.

In conclusion, our data show that C. albicans is able to translocate through intact
intestinal epithelial barriers predominantly via a damage-associated necrotic, but not
apoptotic, transcellular route. Disturbance of epithelial integrity, cellular damage, and
transcellular translocation requires a combination of fungal properties, including hypha
formation and the secretion of candidalysin.

DISCUSSION

The human gastrointestinal tract is colonized by a dense population of microorgan-
isms, including bacteria and fungi. Although the gut epithelial layers and associated
immune cells provide a functional barrier between these microbes and the host,
microbial translocation is frequent, even in healthy individuals (54). However, in criti-
cally ill patients, translocation may lead to life-threatening infections. Several studies

FIG 6 Legend (Continued)
damage; IV, transcellular without damage. TJ, tight junctions; AJ, adherens junctions; CaL, candidalysin. (B) C2BBe1 IECs were
infected with WT C. albicans SC5314 for 5 h and 24 h and differentially stained. Living cells (Hoechst 33342) (blue), apoptotic cells
(FITC-annexin V) (green), necrotic cells (ethidium homodimer III) (red), and late apoptotic/necrotic cells (red/green) are indicated
by the color(s) indicated. Colored arrows point to examples of the stained cells. (C) A summary of statistical analysis is presented
(mean � SD; n � 3) that quantifies the proportion of live-apoptotic-necrotic staining observed in the images in panel B. (D)
Quantification of caspase 3/7 activity in C2BBe1 IECs infected for 5 h and 24 h with C. albicans SC5314. Staurosporine was used
as a positive control for the induction of apoptosis. Data are presented as means � SD from three independent experiments.
Caspase 3/7 activity is shown in relative light units (RLU). Values that are not significantly different (ns) are indicated. (E)
Transcellular growth of WT C. albicans (BWP17�Clp30) and ece1Δ/Δ mutant hyphae through C2BBe1 IECs. C2BBe1 cells were
infected with C. albicans and differentially stained at 6 h p.i. Extracellular C. albicans (pink), C. albicans (blue), and actin (green) are
indicated. The white arrows show the point of invasion. (F) TEM images of C2BBe1 IECs infected with WT C. albicans
(BWP17�Clp30) or ece1Δ/Δ mutant. The black arrows point to the host membrane. C.a., C. albicans; Cyt, cytoplasm; ES, extracellular
space.
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FIG 7 Interaction of C. albicans ECE1 mutant strains with IECs. (A) Adhesion to C2BBe1 IECs as a percentage of inoculated cells of
C. albicans ECE1 mutant strains. (B) Invasion into C2BBe1 IECs as a percentage of total visible hyphae of ECE1 mutant strains. (C) C2BBe1
cells were infected with ECE1 mutant strains, and the mean hyphal length of infecting fungi 6 h p.i. was quantified. (D to G)
Quantification of LDH (damage) (D), analysis of epithelial barrier integrity by dextran mobility assay (E), quantification of fungal
translocation (F), and epithelial barrier integrity as measured by TEER in response to C. albicans ECE1 mutant strains (G). In panels D
to G, the application of exogenous candidalysin (CaL) toxin (70 �M) alone to C2BBe1 IECs and in combination with infecting ECE1

(Continued on next page)
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ascribe the major source of systemic candidiasis to the commensal C. albicans popu-
lation of the human intestinal tract (8, 10, 55). However, we know little about how
C. albicans translocates across intact intestinal epithelial barriers. In this study, we used
an in vitro model and a reductionist approach to identify the C. albicans factors and host
mechanisms involved in fungal translocation across the human gut barrier. While
previous studies have focused on either C. albicans translocation (29, 38), C. albicans-
dependent epithelial damage (29, 39), or epithelial integrity (39), our study analyzed all
three processes over time to identify the fungal factors and host mechanisms associ-
ated with C. albicans translocation across the intact gut barrier. We demonstrate that
C. albicans translocation is a dynamic fungus-driven process initiated by invasion (active
penetration) and followed by cellular damage and loss of epithelial integrity. Experi-
mental and bioinformatic correlation analyses indicated that epithelial damage and loss
of epithelial integrity closely correlated with C. albicans translocation. Translocation
occurs via a transcellular route, which is associated with fungus-induced necrotic
epithelial damage, driven by the cytolytic peptide toxin candidalysin. However, fungal
invasion and low-level translocation can also occur in a candidalysin-independent
manner.

To identify fungal factors involved in C. albicans gut translocation, we screened
�2,000 C. albicans gene deletion mutants. We identified 172 gene deletion mutants
that were hypodamaging, including 38 mutants with no obvious growth or filamenta-
tion defects. Of these, eight mutants were selected for further analyses and subse-
quently found to have defects in adhesion, invasion, and hyphal length or potential
defects in transcriptional and cellular regulation or protein trafficking (45–47). The main
exception was a C. albicans ECE1 gene deletion mutant, which had normal hypha
formation/length and adhesion to and invasion of IECs but was defective in inducing
epithelial damage. Interestingly, C. albicans ECE1 encodes a cytolytic peptide toxin,
candidalysin, which is critical for mucosal infections (35, 36).

Next, using a larger panel of C. albicans mutants, we determined that hypha
formation was a key fungal attribute that promoted epithelial damage, loss of epithelial
integrity, and translocation. However, translocation was not dependent upon hypha
formation, as some mutants (e.g., hgc1Δ/Δ mutant [56]), which are generally locked in
the yeast form or do not maintain hyphae, were still able to translocate across intestinal
cells to a limited degree. Notably, though, the hgc1Δ/Δ mutant still expressed hypha-
associated genes, including ECE1 (data not shown), again potentially linking candida-
lysin to gut translocation. These findings may also explain contrasting data from in vivo
translocation experiments, in which C. albicans gut translocation was shown to be both
hypha dependent (24) and independent (25). Other proteins that contributed to
C. albicans damage and translocation included Kex1, a Golgi protease involved in the
processing of candidalysin (35, 57), and Als3, a glycosylphosphatidylinositol (GPI)-
anchored adhesin and invasin that is the main trigger of induced endocytosis for
certain types of epithelial and endothelial cells (33, 58). The als3Δ/Δ mutant had strong
defects in damage, translocation, and disruption of epithelial integrity. However, since
invasion into IECs occurs independently of induced endocytosis (29), we concluded that
the observed phenotypes were mostly due to the severely reduced adhesion of this
mutant (58) rather than direct action of Als3 on the gut barrier.

Our experimental findings were supported by bioinformatic approaches that also
indicated a correlation between damage of IECs and translocation. Interestingly, a
cluster of C. albicans mutants was identified with reduced epithelial damage but normal
fungal translocation (Fig. 4, cluster II), indicating that only a certain level of damage
induction is required to achieve efficient translocation. Furthermore, fungal transloca-
tion was not observed without reduction in TEER, strongly suggesting that disturbance

FIG 7 Legend (Continued)
mutant strains was assessed. Melittin (70 �M) was used as a positive control for damaging C2BBe1 cells. Data are presented as
means � SD relative to the WT from at least three independent experiments. Statistical significance: *, P � 0.05; **, P � 0.01; ***, P �
0.001; ns, not significant.
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of epithelial integrity is a prerequisite for translocation. However, a decrease of epithe-
lial integrity does not necessarily lead to significant fungal translocation (as observed
for pep12Δ/Δ and orf19.3335Δ/Δ mutants). Hence, TEER loss is necessary but not
sufficient to cause fungal translocation. Thus, in agreement with Böhringer et al. (39),
we propose that damage and destruction of epithelial integrity can be independent
processes and that loss of epithelial integrity may be caused by necrotic cell damage
(59) or opening of cell-cell connections (e.g., tight junctions). Epithelial damage and
reduction of barrier integrity are likely coupled during necrosis, but loss of epithelial
integrity can occur independently of necrosis.

One of the most intriguing findings of the study was the discovery that the
hypha-associated peptide toxin candidalysin appears to be a crucial factor in mediating
intestinal epithelial damage and fungal translocation. Notably, the combination of
exogenous addition of candidalysin to an ECE1-deficient strain only partially restored
WT damage and translocation levels, and the exogenous addition of candidalysin alone
had little effect (Fig. 7). Several studies, including Moyes et al. (35), proposed a
membrane-bound “invasion pocket” during hyphal invasion of epithelial cells (29, 60,
61) which was further verified for the C2BBe1 cells in this study (Fig. 6F). This invagi-
nation of the epithelial membrane at the site of hyphal invasion results in close contact
of the fungus to host membranes and should allow an accumulation of candidalysin
that may be required for full damage potential and subsequent translocation. There-
fore, the exogenous addition of candidalysin probably does not fully mimic the natural
secretion by hyphae within this invasion pocket and thus does not fully restore WT
damage levels. It is less likely that the other non-candidalysin Ece1 peptides play a role
in this setting, since when adding such peptides together with candidalysin, no
increased damage was observed (data not shown); along the same line, adding
candidalysin to a candidalysin-deficient strain (ece1Δ/Δ�ECE1Δ184 –279) also only par-
tially restored WT damage and translocation levels.

However, we noted that while the ece1Δ/Δ mutant was unable to damage ECs, it
was still able to lower epithelial integrity and translocate across the intestinal barrier to
some extent. This suggests that a damage-independent fungal factor(s) can also
modulate epithelial integrity. Such a factor(s) probably contributes to the paracellular
route of translocation by degrading cell-cell connections such as tight junctions or
adherens junctions. Possible candidates contributing to the paracellular route of trans-
location are the secreted aspartic proteases (SAPs), which may promote degradation of
the adherens junction protein E-cadherin (29, 62, 63). However, we found that mutants
lacking different SAP genes (sap1-3Δ/Δ, sap5Δ/Δ, sap4-6Δ/Δ, and sap9/10Δ/Δ mutants)
had no translocation defects. This is with the caveat that the sap1-3Δ/Δ mutant
exhibited reduced translocation through blank transwell inserts (without C2BBe1 cells),
and thus, we cannot exclude a minor role for SAPs in the paracellular route of
translocation. In summary, our data demonstrate that C. albicans translocates across the
intestinal epithelial barrier predominantly via the transcellular route, which requires
hypha formation, active penetration (not induced endocytosis), candidalysin-induced
epithelial damage, and cellular necrosis. However, C. albicans can also translocate via
the paracellular route in a damage- and candidalysin-independent manner via currently
unknown mechanisms.

While our in vitro data are likely to be reflective of the C. albicans translocation
process in vivo, host-driven uptake and fungal translocation in vivo may also occur via
specialized intestinal cells, in particular M cells associated with Peyer’s patches, which
were not modeled into our assays. M cells are capable of endocytosing C. albicans (64)
and are targeted by several pathogenic Gram-negative bacteria, including Shigella,
Salmonella, and Yersinia spp. (65–67). Nevertheless, our study indicates that efficient
C. albicans translocation can also occur in the absence of M cells, predominantly via
candidalysin-mediated necrotic damage to the intestinal barrier. With this in mind,
toxin-induced intestinal barrier dysfunction is also an important factor contributing to
the pathogenicity of enteric bacteria. Clostridium perfringens produces a number of
toxins that impair intestinal barrier function. These toxins include C. perfringens �-toxin,
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a �-pore-forming-toxin, which is cytotoxic to Caco-2 cells and functions to reduce
epithelial integrity (TEER) and increase permeability without altering tight junctions
(68). In contrast, C. perfringens enterotoxin (CPE) directly attaches to and disintegrates
tight junctions (claudin family), resulting in an increase in paracellular permeability
across the epithelial barrier (69). Furthermore, the phospholipase C activity of C. per-
fringens alpha-toxin results in increased gut permeability, most likely due to the
redistribution and/or degradation of tight junction proteins (70). Likewise, suilysin, a
cholesterol-dependent cytolysin produced by the swine pathogen Streptococcus suis, is
thought to promote bacterial translocation via epithelial damage induction, although
the precise mechanisms are unclear (71). While many other bacteria are capable of
translocating across the gut barrier, such as enteropathogenic Escherichia coli (EPEC),
Campylobacter jejuni, and Salmonella enterica serotype Typhimurium, the mechanisms
by which this occurs may not always be attributed to the function of toxins (72).
Irrespective, the majority of enteric bacteria appear to translocate via the paracellular
route rather than the transcellular route.

In summary, C. albicans translocation predominantly occurs via a transcellular route,
associated with candidalysin-induced necrotic epithelial damage. However, invasion
and low-level translocation can also occur in a candidalysin-independent manner, most
likely via a paracellular route.

MATERIALS AND METHODS
Candida albicans strains and growth conditions. All C. albicans strains used in this study are listed

in Table S1 in the supplemental material. C. albicans strains were routinely grown on YPD broth/agar (1%
yeast extract, 2% peptone, 2% D-glucose with or without 1.5% agar) at 30°C. For all experiments,
C. albicans cells were cultured overnight in YPD broth at 30°C, shaking at 180 rpm. Cells from overnight
cultures were collected by centrifugation and washed twice with phosphate-buffered saline (PBS), and
the number of cells was adjusted as indicated.

Generation of C. albicans mutant strains. Gene deletions were performed as previously described
(48). Deletion cassettes were generated by PCR by amplifying pFA-HIS1 and pFA-ARG4-based markers
with the respective primers for the gene to be deleted (Data Set S3). C. albicans BWP17 was sequentially
transformed with the generated deletion cassettes and then transformed with the CIp10 vector (73). All
integrations were confirmed by PCR/sequencing. The sap1-3Δ/Δ and sap4-6Δ/Δ mutants were excep-
tions; these mutants were created by the Ura-blaster method (74–76).

Culture and maintenance of IEC lines. The intestinal epithelial Caco-2 subclone C2BBe1 (Caco-2
brush border expressing 1; ATCC CRL2102) (37) was routinely cultivated in Dulbecco modified Eagle
medium (DMEM) (ThermoFisher Scientific) supplemented with 10% fetal calf serum (FCS) (Bio&Sell) and
10 �g/ml holotransferrin (Calbiochem Merck) in a humidified incubator at 37°C and 5% CO2. C2BBe1 cells
were seeded in collagen I-coated wells (10 �g/ml collagen I for 2 h at room temperature [RT];
ThermoFisher Scientific). Transwell inserts (polycarbonate membrane with 5-�m pores; Corning) and
96-well plates were seeded with 2 � 104 cells/well or insert, and glass coverslips were placed in 24-well
plates with 1 � 105 cells/well. C2BBe1 cells were cultured for 14 days for differentiation, with medium
exchanged every 3 or 4 days.

The intestinal epithelial cell (IEC) line Caco-2 (ACC 169 from DSMZ) was cultivated in medium
supplemented with 10% FCS and 1% NEAA (MEM [minimum essential medium] nonessential amino
acids; Biochrom AG), for 2 days. All infections were performed in serum-free DMEM in a humidified
incubator at 37°C and 5% CO2. This cell line was used only for the large-scale mutant screening (see
“C. albicans large-scale mutant screening” below). For this purpose, Caco-2 cells were seeded in 96-well
plates with 2 � 104 cells/well and grown for 2 days to confluence.

C. albicans large-scale mutant screening. C. albicans strains were cultivated in YPD broth in 96-well
plates and incubated for 24 h at 30°C and 180 rpm. On the next day, a 1:20 subculture was set up in fresh
YPD and incubated overnight at 30°C and 180 rpm. The cultures were then diluted 1:10 in PBS. From this
dilution, a 1:20 dilution in YPD was used to analyze growth at 30°C (see “Analysis of fungal growth”
below), and a 1:20 dilution in serum-free DMEM was used to infect confluent Caco-2 cells. After 24 h of
infection, damage was evaluated by quantifying the release of cytoplasmatic lactate dehydrogenase
(LDH) [see “Quantification of cytotoxicity (LDH assay)” below]. In the large-scale mutant screening for
damage, all values were compared to the values for a uninfected control treated with 0.25% Triton X-100
to obtain full lysis of the Caco-2 cells (full lysis control), and mutant values outside the 2� range of the
WT values were considered significantly different.

Analysis of fungal growth. Fungal growth was analyzed in 96-well plates in YPD broth. The
C. albicans strains were added at a final density of 4 � 105 cells/well. Growth was monitored by
measuring the absorbance at 600 nm every 30 min for 2 days at 30°C in a microplate reader (Tecan).

Quantification of adhesion, invasion, and hypha length. C. albicans cells were added to 14-day-
old C2BBe1 cells in 24-well plates to a final concentration of 1 � 105 cells/well for adhesion assays and
5 � 104 cells/well for invasion and hypha length assays. Control experiments for hypha length were
performed the same way on plastic without C2BBe1 cells.

Candida albicans Damage-Mediated Translocation ®

May/June 2018 Volume 9 Issue 3 e00915-18 mbio.asm.org 15

http://mbio.asm.org


Adhesion of C. albicans to ECs was determined 1 h postinfection (p.i.). Nonattached C. albicans cells
were removed by washing the cells three times with PBS. Samples were fixed with Histofix (Roth) for
15 min at RT or overnight at 4°C and subsequently rinsed three times with PBS. Adherent fungi were
stained with calcofluor white (10 �g/ml in 0.1 M Tris-HCl [pH 9.0]; Sigma-Aldrich) for 20 min at RT in the
dark. After the samples were washed three times with water, samples were mounted on glass slides with
ProLong mountant (ThermoFisher Scientific) and analyzed by fluorescence microscopy. The number of
adherent C. albicans cells was determined in about 100 random fields of a defined size (200 by 200 �m).
Assuming an even distribution of Candida cells, the total number of adherent cells on the entire coverslip
was calculated based on the number counted in the defined area. This number was expressed as a
percentage of adhered cells versus inoculated C. albicans cells (see references 29 and 58 also). Invasion
of C. albicans into differentiated C2BBe1 cells was analyzed by differential staining performed according
to references 58 and 77 with the following minor modifications. Briefly, after 5 h of C. albicans infection,
C2BBe1 cells were washed three times with PBS and fixed with Histofix. Extracellular, noninvasive fungal
components were stained as follows. The cells were incubated with a primary antibody against
C. albicans (1:2,000 in PBS) (rabbit anti-Candida BP1006; Acris Antibodies) for 1 h at 30°C, washed three
times with PBS, and incubated with a secondary antibody (1:5,000 in PBS) (goat anti-rabbit antibody
labeled with Alexa Fluor 488 [catalog no. A-11008; ThermoFisher Scientific]) for 1 h at 30°C. After the ECs
were rinsed three times with PBS, they were permeabilized with 0.5% Triton X-100 for 10 min at RT and
washed again three times with PBS. The actin cytoskeleton was stained with phalloidin-Alexa Fluor 594
(1:50 in PBS) (catalog no. A12381; ThermoFisher Scientific) for 1 h at 30°C. After the cells were washed
again (three times with PBS), C. albicans cells were stained with calcofluor white as described above. After
mounting, samples were visualized by fluorescence microscopy. The percentage of invasive C. albicans
hyphae (only calcofluor white stained) was counted from at least 100 hyphae per strain in at least three
independent experiments. The total hypha length was also recorded. For invasion experiments with
cytochalasin D (Sigma-Aldrich), 1 �l of cytochalasin D or dimethyl sulfoxide (DMSO) (as solvent control)
was added, to a final concentration of 0.5 �M 45 min prior to infection (78).

Quantification of cytotoxicity (LDH assay). Differentiated C2BBe1 cells in 96-well plates were
infected for a defined time period with 8 � 104 C. albicans cells/well or with candidalysin toxin (sequence,
SIIGIIMGILGNIPQVIQIIMSIVKAFKGNK; ProteoGenix/Peptide Protein Research Ltd.) prepared in water and
added to the desired final concentration. After coincubation, epithelial damage was quantified by
measuring LDH release using a cytotoxicity detection kit (Roche) according to the manufacturer’s
instructions. LDH isolated from rabbit muscle (Roche) was used to generate a standard curve. The
background LDH value of uninfected C2BBe1 cells was subtracted, and the corrected LDH release was
expressed as a percentage of the wild-type (WT) values unless otherwise stated. Cytotoxicity analysis was
performed in triplicate and finally determined from at least three independent experiments.

In vitro translocation model. Differentiated C2BBe1 cells grown in transwell inserts (Fig. S5) were
infected with 1 � 105 C. albicans cells per transwell and/or candidalysin toxin for 24 h. Before and after
incubation, transepithelial electrical resistance (TEER) values were measured using a volt-ohm meter
(WPI). The resistance of a blank insert (	120 
) was subtracted from each value. The absolute TEER loss
(in ohms) of the respective WT was set at 100%, and the TEER loss of the mutant strains was expressed
as a percentage of the WT value. After 24 h of infection, zymolyase (Amsbio) was added to the basolateral
chamber to a final concentration of 20 U/ml and incubated for 2 h at 37°C and 5% CO2. Afterward,
detached C. albicans hyphae were collected and plated onto YPD agar. Translocation was measured in
triplicate in at least three independent experiments. Each C. albicans mutant was additionally tested for
general growth, sensitivity against Zymolyase, and translocation independent of C2BBe1 (through a
blank insert).

To test for abnormal sensitivity toward zymolyase treatment, C. albicans strains were placed in a
96-well plate (1 � 105 cells/well) in serum-free DMEM. After incubation for 3 h at 37°C and 5% CO2,
zymolyase was added to a final concentration of 20 U/ml. Cells were incubated for 2 h, diluted in PBS,
and plated onto YPD agar. Colonies were counted after 2 days and compared to the respective WT.

The translocation rate of C. albicans strains through blank, collagen I-coated transwell inserts was
measured as indicated above. However, C. albicans strains were incubated in DMEM at 37°C and 5% CO2

for 3 h before addition to the inserts to induce filamentation and to reduce unspecific translocation of
yeast cells. Blank translocation was used to correct the translocation rate through C2BBe1 cells. For each
mutant, the efficiency of fungal translocation was calculated for each biological replicate. The percent
translocation (TL) compared to the wild type (WT) was calculated as follows:

%TL � �TL of mutant

TL of WT �� blank TL of WT

blank TL of mutant
�	 100

Analysis of epithelial barrier integrity by dextran diffusion assay. Dextran diffusion assays were
performed by the method of Elamin et al. (79) with the following modifications. Briefly, fluorescein
isothiocyanate (FITC)-labeled 4-kDa dextran beads (Sigma-Aldrich) were used to analyze the permeability
of differentiated C2BBe1 monolayers infected with 1 � 105 C. albicans cells/transwell insert and/or
candidalysin for 24 h in serum- and pH indicator-free DMEM. After incubation, 30 �l of dextran beads
(50 mg/ml in PBS) was added to the apical compartment and incubated for 3 h at 37°C and 5% CO2.
Fluorescence (excitation wavelength of 490 nm and emission wavelength of 520 nm) of diffused dextran
beads was measured in the basolateral transwell compartment. The background fluorescence of DMEM
was subtracted from each value. Analyses were performed in duplicate and determined from at least
three independent experiments.
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Analysis of apoptosis and necrosis. Apoptosis and necrosis of differentiated C2BBe1 cells after
infection with C. albicans were quantified using the apoptotic/necrotic/healthy cell detection kit
(PromoKine) according to the manufacturer’s instructions. Differentiated C2BBe1 cells were infected with
1 � 105 C. albicans cells/well for 5 h or 5 � 104 cells/well for 24 h, then washed, and incubated for 15 min
in the dark with FITC-annexin V, ethidium homodimer II, and Hoechst 33342. After the infected cells were
washed, they were examined by fluorescence microscopy (Zeiss Axio Observer). Uninfected, differenti-
ated C2BBe1 cells were used as a negative control. Treatment with 40% ethanol for 1 min was used as
a positive control for necrosis, and treatment with 2 �M staurosporine was used as a positive control for
apoptosis.

The activity of caspase 3 and 7 was quantified using a Caspase-Glo 3/7 assay (Promega) according to
the manufacturer’s instructions. Differentiated C2BBe1 cells in 96-well plates were infected with 2 � 104

C. albicans cells/well for 5 h or 24 h. The volume of medium in each well was adjusted to 50 �l, and 50 �l
of Caspase-Glo 3/7 reagent was added to each well. After the addition of Caspase-Glo 3/7 reagent,
luminescence measurements were taken every 10 min for 2 h at RT in the dark using a microplate reader.
Each measurement was performed in duplicate, and the mean value was calculated from three inde-
pendent experiments.

Cluster analysis and correlation coefficient calculation. Cluster analysis enabled C. albicans
mutants to be assigned into groups with similar behavior regarding the three measurements “epithelial
damage,” “epithelial integrity” and “fungal translocation,” as described by the values LDH, TEER and
translocation. Clusters were identified in Python using the scikit-learn library (81) applying the density-
based spatial clustering of applications with noise (DBSCAN) algorithm (49). A cluster was detected if (i)
it contained at least three members and (ii) the points were closer than 
 � 35 percentage points (pp)
to at least one other member. DBSCAN automatically finds the number of clusters, and all points that are
not considered part of any cluster were left unassigned.

For correlation coefficient calculation, two of the three parameters epithelial damage (LDH)/epithelial
integrity (TEER)/fungal translocation were plotted against each other, using the median response of all
mutants as a percentage of the WT. For epithelial integrity, a TEER loss of 100% reflects the drop in TEER
caused by the WT, while the 100% LDH and translocation values are the epithelial damage and
translocation of the WT. Both the Pearson and Spearman correlation coefficients between measurements
were calculated. To visualize overall trends, the locally weighted scatterplot smoothing (LOWESS) line
was used (51, 80). To evaluate the linearity, or lack thereof, we fitted a first-order polynomial and an
exponential function of the formula y � Ae��x � B, representing linear and nonlinear relationships,
respectively. We evaluated whether the exponential fit added any information about the pairwise
relationship by calculating the Bayesian information criterion (BIC) for each fit. The BIC is defined as

follows: BIC � �n��log
RSS

n � � k�log n� where n is the number of fitted points, k is the number of

parameters in the model, and RSS is the sum of squared residuals (50).
For the cluster analysis and correlation coefficient calculation, the median values of the data were

used to reduce the effect of outliers.
Transmission electron microscopy of C. albicans-infected C2BBe1 cells. Differentiated C2BBe1

cells were infected with 2 � 105 C. albicans cells/transwell. After coincubation for 24 h, cells were fixed
with Karnovsky fixative (3% paraformaldehyde, 3.6% glutaraldehyde, pH 7.2) for 24 h at 4°C and postfixed
with osmium solution (1% OsO4 [Roth] and 1.5% potassium ferrocyanide [Morphisto]) for 2 h at 4°C.
Samples were rinsed with distilled water, block stained with uranyl acetate (2% in double-distilled water
[ddH2O]), dehydrated in alcohol (stepwise 50 to 100%), and embedded in glycide ether (Serva) by
polymerizing for 48 h at 60°C. Semithin sections of 1 �m were cut on an Ultracut Nova instrument (Leica)
with a diamond knife and stained with toluidine blue stain (Morphisto) at 80°C. Regions of interest were
ultrathin sectioned at 30 nm, mounted on copper grids, and analyzed using a Zeiss LIBRA 120
transmission electron microscope (Carl Zeiss, Inc.) operating at 120 kV.

Statistical analysis. All experiments were conducted, including technical duplicates or triplicates
(from which the mean value was calculated) on at least three independent occasions (biological
replicates). Diagrams show the mean of the biological replicates with standard deviation (SD). Statistics
relative to the WT control were performed on log-transformed values by means of a one-way analysis of
variance (ANOVA) test with a follow-up test for multiple comparisons (Dunnett’s correction). When
comparisons were made between selected data sets, a Bonferroni’s correction was used instead. TEER
time curves were statistically tested using two-way ANOVA.
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