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SUMMARY
Reprogramming of the tumor microenvironment (TME) plays a critical role in gastric cancer (GC) progression
and metastasis. However, the multidimensional features between primary tumors and organ-specific metas-
tases remain poorly understood. In this study, we characterized the dynamic heterogeneity of GC from pri-
mary tometastatic stages.We identified sevenmajor cell types and 27 immune and stromal subsets. Immune
cells decreased, while immunosuppressive cells increased in ovarian and peritoneal metastases. A 30-gene
signature for ovarian metastasis was validated in GC cohorts. Additionally, critical ligand-receptor interac-
tions, including LGALS9-MET in liver metastasis and PVR-TIGIT in lymph node metastasis, were identified
as potential therapeutic targets. Furthermore,CLOCK, a transcription factor, was associated with poor prog-
nosis and influenced immune cell interactions and migration. Collectively, this study provides valuable in-
sights into TME dynamics in GC and highlights potential avenues for targeted therapies.
INTRODUCTION

Gastric cancer (GC) is a major global malignancy, ranking fifth in

cancer incidence and fourth in cancer-related deaths, with

particularly high prevalence in Asia, Eastern Europe, and Central

America, where incidence rates are notably elevated.1 Despite

the implementation of surgical interventions, the prognosis of

GC remains poor, with an overall five-year survival rate of less

than 30%, primarily due to late-stage diagnoses and challenges

associated with organ-specific metastasis.2

Metastasis is a major contributor to the poor prognosis of GC,

yet the molecular mechanisms underlying this cellular behavior

remain largely elusive.3 Tumor cells possess the ability to invade

distant sites via various routes, including blood circulation, the

lymphatic system, direct infiltration, and transcoelomic spread.4

During this metastatic process, tumor cells undergo adaptive

changes, activating specific genes and pathways that enable

them to thrive in particular organs. The interactions between

the primary tumor, the host microenvironment, and immune cells

recruited by the tumor play a pivotal role in driving metastatic

progression.5 To develop targeted therapeutic strategies and

identify potential biomarkers for clinical diagnosis, it is crucial

to accurately delineate the organ-specific features of metas-

tasis. However, the current understanding of organ-specific

metastasis in GC remains incomplete.

The exploration of GC diversity has advanced significantly

with the application of single-cell transcriptome sequencing, a

cutting-edge methodology.6 While the conventional approach
iScience 28, 111843, Febru
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to investigating organ-specificmetastasis typically involves tran-

scriptome profiling, some researchers have employed bulk RNA

sequencing (RNA-seq) to identify genes critical to site-specific

metastases. The expression of these genes in the primary tumor

has been linked to the recurrence of GC metastasis.7 However,

bulk methods have inherent limitations, particularly in discerning

cell diversity, resulting in an oversight of the intricate intra- and

inter-tumor complexity in GC.8 The emergence of single-cell

RNA sequencing (scRNA-seq) technology has revolutionized

this landscape, enabling precise and comprehensive examina-

tion of intra- and inter-tumor heterogeneity across diverse can-

cer types.9

Transcription factors (TFs) play a crucial role in regulating gene

expression and thereby exert indirect control over various

cellular processes and states. Overexpression of specific TFs

has the potential to induce significant alterations in cell fate,

making them a promising approach to cancer diagnosis, prog-

nosis, and treatment.10 Therefore, to enhance our understanding

of GC and develop potential therapeutic interventions, it is

essential to identify cell-specific TFs in both primary and meta-

static GC.

In this study, we characterized a total of 42,968 high-quality

cells from six patients across 10 samples to identify seven major

cell types and 27 unique immune and stromal cell subsets within

the TME of primary andmetastatic GC. Our analysis comprehen-

sively explored cellular compositions, developmental trajec-

tories, cell interactions, and transcriptional regulation between

primary tumors andmetastases. These findings provide valuable
ary 21, 2025 ª 2025 The Author(s). Published by Elsevier Inc. 1
NC license (http://creativecommons.org/licenses/by-nc/4.0/).
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insights into the cellular, molecular, and functional changes dur-

ing GC progression. Furthermore, we constructed a cell-specific

TFs regulatory network in both primary and metastatic GC,

enhancing our understanding of the transcriptional mechanisms

driving the progression from primary tometastatic GC. Our study

paves the way for future investigations and offers a valuable

resource for subsequent academic research.

RESULTS

Remodeling the single-cell transcriptional landscape
reveals insights into primary-to-metastatic GC
progression
We performed an in-depth analysis of single-cell transcriptomic

data obtained from theGene Expression Omnibus (GEO) dataset

GSE163558,8 which comprises 10 human tissue samples from

six patients. Our sample cohort included three primary tumor

samples (PT1, PT2, and PT3), one adjacent non-tumor sample

(NT1), and six unique metastatic samples (M): liver metastasis

(Li1 and Li2), lymph node metastasis (LN1 and LN2), peritoneal

metastasis (P1), and ovarian metastasis (O1). Specifically, PT1

and Li1 were from patient 1 (p1); PT2 and NT1 were from patient

2 (p2); O1 was from patient 3 (p3); PT3, Li2, and LN1 were from

patient 4 (p4); LN2 was from patient 5 (p5); and P1 was from pa-

tient 6 (p6). After rigorous quality control, 42,968 cells were re-

tained for subsequent analysis, with an average of 1,639 genes,

5,529 unique molecular identifiers (UMIs), and only about 6%

mitochondrial genes per cell detected (Figures S1B–S1D). Inter-

estingly, the proportion of ribosomal genes, as well as their cor-

relation with nCount_RNA and nFeature_RNA, was found to be

very low. Unsupervised clustering, based on transcriptome sim-

ilarity, identified 12 distinct cell clusters, which were visualized

using the t-distributed stochastic neighbor embedding (tSNE)

analysis. The spatial distribution of cells from each patient and

sample was also obtained (Figure S1A). Correlation analysis vali-

dated the reliability of the clusters, demonstrating that clusters

from the same cell lineage exhibited higher similarity than those

from different lineages (Figure S1E).

Immune cells accounted for the majority of our analyzed cells

from the GC samples, particularly in the lymph node and liver,

which has also been observed in other scRNA-seq studies of

cancer.11 We identified seven major cell types using the

following markers: T cells (e.g., CD3D, CD3E, CD2), B cells

(e.g., CD79A, IGHG1, IGHG3), myeloid cells (e.g., CD68,

CXCL8), natural killer (NK) cells (e.g., KLRD1, GNLY, KLRF1),

epithelial cells (e.g., EPCAM, KRT19, ELF3), stromal cells (e.g.,

VWF, COL1A1, COL12A1), and hematopoietic stem cells

(HSCs) (e.g.,AREG,ABCC1,GATA2). Intriguingly, gene ontology
Figure 1. Single-cell atlas of primary tumor, metastasis, and adjacent

(A) tSNE visualization highlighting seven distinct cell types among the 42,968 cel

(B) Proportion of each cell type in various samples (NT, PT, M, Li, LN, P, and O)

(C) Left: heatmap showing the expression profiles of the top five genes ranked by

of each cell type.

(D) Venn diagram for the overlap analysis of the marker genes across the seven

(E) Ring heatmap visualizing the marker genes specific to each of five cancer sa

(F) Dot plot showing the enrichment pathways in the five cancer samples based

(G) Functional changes during PT-to-M progression.
(GO) analysis showed that multiple mast cell-associated path-

ways were enriched in HSCs (Figure S1G), indicating that

HSCs have the potential to differentiate into mast cells under

certain conditions, may be involved in mast cell-related immune

responses or tumor progression. These cell clusters were char-

acterized by marker gene expression and distinct physiological

functions, exhibited distinct distributions during GC primary to

metastatic (PT-to-M) progression (Figures 1A–1C and S1F and

Table S1). Notably, myeloid, epithelial, and stromal cells showed

decreasing trends during PT-to-M progression, whereas B cells

exhibited an increasing trend during GC lymph node metastasis

progression, and T cells showed an increasing trend during both

GC lymph node and liver metastasis progression (Figures 1A

and 1B).

Next, we explored the dynamic changes in the TME from addi-

tional perspectives. At the molecular level, we identified 114

overlapping genes as potential markers during PT-to-M progres-

sion, revealing a correlation between changes in the cellular

compositions and the expression of cellular marker genes (Fig-

ure 1D). CD79A, a marker gene of B cells, was specifically ex-

pressed in LN, suggesting a link between its expression and

the increasing trend of B cells in LN (Figure 1E). Additionally,

we performed Kyoto Encyclopedia of Genes and Genomes

(KEGG) enrichment analysis on the differentially expressed

genes (DEGs) in our cancer samples, which provided insights

into the functional differences between PT and M (Figure 1F

and Table S2). The activation of the NF-kB signaling, IL-17

signaling, and TNF signaling pathways in PT suggested dynamic

interactions between cancer cells and the immune and inflam-

matory components of the TME.12 Furthermore, Li exhibited

enrichment for theMAPK signaling pathway, andO showed spe-

cific enrichment for cholesterol metabolism. We also observed

the activation of ferroptosis in P, a phenomenon reported in other

studies,13 indicating the involvement of cell death regulation in

GC peritoneal metastasis.14 Together, the KEGG pathway

enrichment analysis indicated that cells undergo significant

functional reprogramming during PT-to-M progression, with up-

regulated antigen processing and presentation pathways

observed during the progression of GC liver and peritoneal

metastasis (Figures 1G and S1H).

Immunosuppression in the TME of GC ovarian and
peritoneal metastasis and a 30 gene signature of
ovarian-derived TAMs was validated to predict ovarian
metastasis
Sub-clustering analyses of immune and stromal cells identified

27 cell subsets (Figures 2A and S2A). T cells were divided into

nine clusters: CD8+ T cells, naive CD8+ T cells, naive CD4+
non-tumor samples

ls (left), delineating the TME cell clusters across different tissue groups (right).

and patients (p1-p6).

LogFC of each cell type. Right: enriched KEGG pathways for the marker genes

cell types and five cancer samples.

mples.

on the DEGs using KEGG enrichment analysis.
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T cells, CD8+ T effector memory (Tem) cells, natural killer T (NKT)

cells, regulatory T cells (Tregs), CD4+ T effector memory (Tem)

cells, exhausted CD8+ T cells, and natural regulatory T cells.

B cells were primarily composed of six subgroups: T cell-like B

cells,8 naive B cells, memory B cells, plasma cells, germinal cen-

ter (GC) B cells, and myeloid-like B cells (M-B cells). Myeloid

cells were further divided into five subsets: neutrophils, mono-

cytes, macrophages, tumor-associated macrophages (TAMs),

and plasmacytoid dendritic cells (pDCs). NK cells were subdi-

vided into four subclusters: NK cell progenitors (Pro-NK cells),

CD3/CD28-stimulated NK cells, IL7R + NK cells, and SLFN13+

NK cells. Stromal cells were categorized into endothelial cells,

pericytes, and cancer-associated fibroblasts (CAFs). Notably,

each cluster exhibited a distinct gene expression pattern (Fig-

ure 2B and Table S3). Correlation analysis revealed that clusters

from the same cell lineage showed higher similarity to one

another than to those from other lineages (Figure S2B), confirm-

ing the reliability of the clustering. The distribution of UMIs in

each cell lineage is shown in Figure S2C. These results highlight

a high degree of cell state diversity within the TME of primary and

metastatic GC.

These cell clusters exhibited distinct distributions during GC

progression (Figures 2C and S2D). Specifically, CD8+ Tem cells,

neutrophils, monocytes, CD3/CD28-stimulated NK cells, endo-

thelial cells, and CAFs subsets showed a decreasing trend dur-

ing the PT-to-M progression. In contrast, cytotoxic CD8+ T cells,

NKT cells, CD4+ Tem cells, Pro-NK cells, and SLFN13+ NK cells

exhibited an increasing trend during GC liver metastasis pro-

gression. Notably, in addition to Tregs and exhausted CD8+

T cells, several other TME cell subsets, including macrophage

subsets, CAFs, endothelial cells, and pericytes, exhibited high

expression of inhibitory immune checkpoint receptors (Fig-

ure S4A), well-known immunosuppressive molecules, and cyto-

kines such as IL-10, suggesting their immunosuppressive phe-

notypes.13 Additionally, TAMs exhibited the highest expression

of SPP1, an angiogenesis-related gene, along with SIRPA and

the M2-like signature.15,16 Intriguingly, we observed that TAMs

showed increasing trends in O, while Tregs and exhausted

CD8+ T cell showed increasing trends in P, indicating the estab-

lishment of an immunosuppressive microenvironment. Further-

more, naive CD8+ T cells, naive CD4+ T cells, naive B cells, mem-

ory B cells, and GC B cells exhibited increasing trends during

GC lymph node progression, indicating an active immune

response. Importantly, GC B cells were exclusively expressed

in the lymph node, demonstrating a characteristic of ‘‘metastatic

expression.’’ Together, these findings indicate that both ex-

hausted CD8+ T cells and cytotoxic CD8+ T cells exhibited

increasing trends during PT-to-M progression, highlighting

that T cell exhaustion leads to diminished effector function,
Figure 2. Subclusters of immune and stromal cells characterized durin

(A) tSNE showing 27 unique immune and stromal cell subsets (upper panels) an

groups.

(B) Heatmap of the expression of subset-specific markers across cell subsets.

(C) Reproducible cell subset distributions across the five cancer samples.

(D) Heatmap showing tissue preferences of clusters in each immune and stroma

number). Dot plot showing the bio functions of modules based on DEGs by GO.
preventing cytotoxic CD8+ T cells from controlling tumor

progression.

When focusing on the expression of specific genes across the

cell clusters between PT and M, a shared gene set across seven

distinct cellular microenvironments revealed a correlation be-

tween cellular compositions and the expression of marker genes

(Figures S3A and S3B). KEGG analysis was conducted to

explore the potential biological functions and relevant signaling

pathways in each cell type for each cancer sample (Figures 2D

and S5A–S5E, Tables S4 and S5). Myeloid cell subsets in O

were enriched in the TNF signaling pathway, indicating that a

reduction inmyeloid cell populations contributes to immune sup-

pression during GC ovarian metastasis through activation of the

TNF pathway.17 A recent study has shown that immune-check-

point molecules are involved in tumor immune evasion.18 Mean-

while, we found that multiple metabolism pathways were posi-

tively regulated in TMAs (Figure S5C), indicating that TAMs

may promote GC ovarian metastasis via metabolic reprogram-

ming.19 PD-L1 expression and the PD-1 checkpoint pathway

were activated in T cell subsets in P, suggesting immune sup-

pression mediated by the PD-1/PD-L1 axis.17 Next, many path-

ways closely related to inflammatory response were observed in

Tregs, such as cytokine-cytokine receptor interaction pathway

and NF-kB signaling pathway, whereas pathways associated

with immune diseases were enriched in exhausted CD8+

T cells (Figure S5A). More interestingly, the estrogen signaling

pathway was activated in both ovarian and peritoneal metasta-

ses, potentially regulating the growth of GC cells in an immuno-

suppressive state.20

Ovarian metastasis of gastric cancer signifies an advanced

stage of the disease, where opportunities for radical surgery

become limited.21 Thus, identifying the signature of ovarian

metastasis at single-cell resolution holds significant clinical

value. We performed a differential expression analysis of sin-

gle-cell DEGs for each myeloid subpopulation between

ovarian-derived and non-ovarian-derived subsets, focusing on

the top 30 upregulated DEGs in the ovarian-derived subset. As

shown in Figure S4B, TAMs in the ovarian-derived subset ex-

hibited higher expression of these top 30 upregulated DEGs in

O compared to other metastatic sites. In Figure S4C, the

30-gene signature of TAMs was validated using an independent

GC cohort (GSE239676). Further analysis evaluated the prog-

nostic significance of this 30-gene signature in TAMs derived

from ovarian metastasis samples within a large-scale GC cohort

(GSE84437). The results revealed that patients with high scores

for this 30-gene signature in ovarian metastasis-derived TAMs

had significantly shorter survival than those with lower scores

(p < 0.0001) (Figure S4D), underscoring the potential of this

30-gene signature in predicting patient survival. These findings
g GC progression

d their corresponding TME cell clusters (lower panels) across different tissue

l cell subsets revealed by Ro/e (ratio of observed cell number to expected cell
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highlight the role of specific cellular compositions and functional

pathway activations in immunosuppression, which may inform

clinical strategies for treating GC patients.

Dynamic changes in immune and stromal cell states
during GC primary-to-metastatic progression
Single-cell trajectories revealed the temporal evolution of diverse

cell types, helping to define distinct cellular states in specific mi-

croenvironments. Using Monocle trajectory analysis to explore

the developmental trajectories of immune and stromal cell sub-

sets in both PT and M (see STAR Methods), we found that the

developmental trajectory of the T cell subsets was specific to

P. This path began with exhausted CD8+ T cells, Tregs, and

CD8+ Tem cells, culminating in NKT cells (Figures 3A–3E), sug-

gesting a distinct immunological response or microenviron-

mental influence specific to GCperitoneal metastasis.We further

analyzed the expression changes of genes associated with cell

transitions. In the origin of the developmental trajectory of

T cell subsets in O, where NKT cells were enriched, the cells

were characterized by NF-kB, a pivotal regulator of cancer

metastasis and therapeutic response22 (Figure 3F). The develop-

mental trajectory of T cell subsets in LN started with NKT cells,

which were linked to transcriptional mis-regulation in cancer—

a process that has been shown to contribute to the development

and maintenance of the cancer phenotype.23 At the end of this

trajectory in LN, where naive CD8+ T cells and natural regulatory

T cells were enriched, the cells were characterized by cytokine-

cytokine receptor interaction, which were known to regulate

cell growth, differentiation, cell death, angiogenesis, and

development.24

Unique cellular compositions may lead to a distinct develop-

mental trajectory. We found that the B cell subsets in O followed

a specific developmental trajectory (Figures S4A–S4E), starting

with M-B cells and culminating in T cell-like B cells. The cells

were characterized by upregulation of PPAR signaling, which is

known to be linked to GC development and metastasis25 (Fig-

ure S6F). At the end of the developmental trajectory of B cell sub-

sets in LN, where T cell-like B cells were enriched, the cells were

characterized by activation ofMAPK signaling, which is known to

promote GC progression.26 In contrast, the B cell lineage trajec-

tory in P revealed that plasma cells were at the origin of the

development trajectory, and these cells were associated with

epithelial-mesenchymal transition27 and cell adhesion mole-

cules, suggesting a program linked to plasticity, therapy resis-

tance, tumor growth, and metastases.28 In addition, we

observed that TAMs in O were involved in specific pathways
Figure 3. Dynamic characterization of immune and stromal cells

(A) Changes in the T cell subsets of PT. Left to right: tSNE view of eight T cell clust

and cluster (each dot represents a single cell), and cell density plots of the T cell s

developmental trajectory plot of the T cell subsets color-coded by cluster and ps

subsets along the pseudotime.

(B) Changes in the T cell subsets of Li. Details are described previously.

(C) Changes in the T cell subsets of O. Details are described previously.

(D) Changes in the T cell subsets of LN. Details are described previously.

(E) Changes in the T cell subsets of P. Details are described previously.

(F) Heatmap showing the dynamic expression changes in genes in the T cell clu

pathways in the five cancer samples based on the expressed genes along the ce

state-specific enrichment in the single-cancer samples.
such as ‘‘transcriptional mis-regulation in cancer’’ and ‘‘epithelial

cell signaling in helicobacter pylori infection’’ at the origin of the

developmental trajectory, highlighting its crucial role in cancer

development and metastasis29 (Figures S7A–S7F). Intriguingly,

NK cell subsets displayed an opposite developmental trajectory

in LN and P (Figures S8A–S8E). In P, where Pro-NK cells were

enriched, the cells were characterized by PI3K-Akt signaling,

which influences autophagy, epithelial-mesenchymal transition

(EMT), apoptosis, chemoresistance, and metastasis in GC30

(Figure S8F). Conversely, at the end of the trajectory in LN, where

SLFN13+ NK cells were enriched, the cells were linked to

‘‘proteoglycans in cancer’’ and ‘‘cell cycle’’ pathways, suggest-

ing potential biomarkers for cell cycle regulator application in

GC treatment.31

We next explored stromal phenotype changes along the

developmental trajectory during PT-to-M progression. Intrigu-

ingly, we found that PT, O, and LN followed a similar trajectory,

beginning with endothelial cells, passing through pericytes,

and culminating in CAFs. In contrast, P and Li exhibited opposite

trajectories (Figures S9A–S9E). At the origin of the trajectory in

PT, where endothelial cells were enriched, the cells were charac-

terized by upregulation of cell adhesion molecules (Figure S9F).

Notably, at the middle and end of the trajectory in Li, where

endothelial cells were enriched, the cells were associated with

cytokine-cytokine receptor interaction and PPAR signaling. In

addition, we found that pericytes were enriched at the middle

of the trajectory in O, and these cells were associated with viral

carcinogenesis. In LN, where pericytes were also enriched at

the midpoint of the trajectory, cells were linked to Wnt signaling,

suggesting a potential therapeutic strategy for targeting this

pathway.32 In P, we observed that endothelial cells were en-

riched at the end of the trajectory, and these cells were involved

in cellular senescence and the TGF-beta signaling pathway. The

activation of TGF-beta signaling is known to suppress the prolif-

eration and invasiveness of GC cells, potentially contributing to

therapeutic strategies for GC oncotherapy.33 These findings

reveal dynamic changes in immune and stromal cell subsets dur-

ing PT-to-M progression, offering valuable insights into potential

therapeutic strategies for treating GC.

Ligand-receptor mediated intercellular interactions in
the primary and metastatic GC microenvironment
To further clarify cellular regulation during GC progression, we

analyzed cell interactions across all cell clusters in the

ecosystem of primary and metastatic GC using CellPhoneDB.

Our analysis revealed complex communication between stromal
ers, developmental trajectory plot of T cell subsets color-coded by pseudotime

ubsets along the pseudotime. Top to bottom: tSNE view of the T cell clusters,

eudotime (each dot represents a single cell), and cell density plots of the T cell

sters of PT, Li, O, LN, and P (left panel). Dot plot showing the top 10 enriched

ll trajectory using KEGG enrichment analysis (right panel). Solid circles indicate
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and other cells. Notably, the strongest cell interactions were

observed between CAFs and endothelial cells in O, PT, and P

(Figures 4B, 4C, 4E, S10B, S10C, and S10E), while CAFs ex-

hibited the strongest interactions with pericytes in LN

(Figures 4D and S10D). In Li, the strongest cell interactions

occurred among monocytes, pericytes, and TAMs (Figures 4A

and S10A).

We also identified several ligand-receptor interactions between

clusters in PT andM, as shown in Figure 4F and TablesS6 andS7.

These interactions revealed that different ligand-receptor pairs

and cells play distinct roles in PT-to-M progression. For example,

chemokine ligand-receptor pairs, including ACKR3-CXCL12,

ACKR1-CCL17, CCR4-CCL17, CCL7-ACKR1, and TNFSF11-

TNFRSF11A (Figures 4F and S11C) were specifically expressed

in PT. Notably, naive CD4+ T cells secreted CCR4, which binds

to CCL17 on macrophages. This interaction has been implicated

in cancer cell metastasis and the activation of Tregs, thereby in-

hibiting antitumor immune responses.34

Additionally, interactions between PT and M showed clearly

differences. For example, in Li, several ligand-receptor pairs,

such as TNFSF9-IL13RA2, DLL1-NOTCH4, LGALS9-MET,

CD8A-CEACAM5, CXCL1-CXCR2, and CXCL3/CXCL2-CXCR1

were observed compared to PT (Figures 4F and S11A). Notably,

IL7R + NK secreted DLL1, which binds to NOTCH4 on endothe-

lial cells, potentially disrupting tumor vascular integrity and

promoting metastatic growth.35 Moreover, macrophages

secreted LGALS9, which binds to MET on endothelial cells.

This interaction was associated with the RTK/RAS pathway

and may serve as a potential marker for poor clinical out-

comes.36 In O, we observed a variety of ligand-receptor pairs,

including TNFRSF13B-TNFSF13, TNFRSF13B-CD70, TIGIT-

NECTIN2, NTRK1-NAMPT, FGFR1-FGF9, EREG-EGFR, and

CXCL1-ACKR1 (Figures 4F and S11B), which are also correlated

with the RTK/RAS pathway.37 Notably, Tregs secreted TIGIT,

which binds to ENCTIN2 on endothelial cells, potentially contrib-

uting to the immunosuppressive environment.38 Monocytes

secreted EREG, which binds to EGFR on endothelial cells, sug-

gesting that targeting the EREG-EGFR axis could have thera-

peutic potential for inhibiting tumor progression.39 In LN, specific

ligand-receptor pairs, such as VGF-NTRK1, NOTCH1-NOV,

NOTCH4-JAG2, PVR-TIGIT, PVR-NECTIN3, CXCR2-CXCL5,

CX3CR1-CX3CL1, and CCR1-CCL14, were highly expressed

(Figures 4F and S11D). Notably, macrophages secreted PVR,

which binds to TIGIT on Tregs, making this interaction a potential

target for immune checkpoint therapy.40 CD3/CD28-stimulated

NK cells secreted CXCR2, which binds to CXCL5 on epithelial

cells, potentially enhancing tumor metastasis.41 In P, we identi-

fied specific ligand-receptor pairs such as TGFB2-TGFbeta
Figure 4. Complex intercellular communication networks in the TME o

(A) The intercellular communication networks from Li, demonstrating the strength

to the strength of the interactions and line color consistent with the ligand cell ty

(B) The intercellular communication networks from O. Details are described prev

(C) The intercellular communication networks from PT. Details are described pre

(D) The intercellular communication networks from LN. Details are described pre

(E) The intercellular communication networks from P. Details are described prev

(F) Dot plots showing scaled z-scored expression of the genes coding for interact

of PT, Li, O, LN, and P. Specific interacting partners are linked with a matching s
receptor1, CXCL17-GPR35, CXCL11-DPP4, and CCR8-CCL18

were expressed (Figures 4F and S11E). Epithelial cells secreted

CXCL17, which binds toGPR35 on HSCs, influencing tumor pro-

liferation, migration, and invasion through the IL-17 pathway.42

These results suggest that the TME differs significantly between

PT and M, highlighting unique ligand-receptor interactions in

each metastatic niche. This provides valuable insights for devel-

oping targeted therapies aimed at GC primary tumors and spe-

cific organ-associated metastases.

CLOCK favors the mutual attraction and migration of
tumor and immune cells in lymph node metastasis and
poor survival
TFs play crucial roles in regulating chromosome structure, gene

transcription, and expression, with significant implications in

tumorigenesis and cancer development.43 To better understand

the intricate regulatory landscape during tumor progression, we

conducted a comprehensive analysis of the transcriptional regu-

latory mechanisms in the cellular microenvironments of both PT

and M. Using pySCENIC analysis, we predicted 339 TFs across

28 cell types in PT and 329 TFs across 29 cell types in M

(Figures S12A and S12B and Table S8). Notably, 129 TFs were

identified in PT but were absent in M, suggesting that these

TFs may have distinct regulatory roles specific to the tumor

microenvironment of the primary site, which may not be recapit-

ulated in metastatic tissues.

To assess the role of the predicted TFs in cancer development

and metastasis, we conducted survival analysis using data from

The Cancer Genome Atlas (TCGA) gastric adenocarcinoma

cohort (TCGA-STAD.htseq_counts.tsv dataset, n = 407). This

analysis focused on genes linked to cancer cells in both PT

and M, revealing 17 TFs associated with survival prognosis in

PT and 27 TFs in M (Figures S13A and S13B). Intriguingly, we

observed that certain TFs, such as RUNX2, ZNF143, SMAD5,

andMEIS1, were significantly negatively correlated with the sur-

vival of GC patients. Previous studies have suggested that

RUNX2 and ZNF143 are involved in promoting malignant pro-

gression and metastasis in GC.44 In M, we identified 14 TFs spe-

cifically expressed, including KDM5B, ZNF101, SOX5, TCF7L1,

GLIS3, NR1H4, CLOCK, TCF7, FOXD4L5, SOX7, HOXD3,

ZNF471, ZNF571, and SP1. Among of these TFs, KDM5B,

TCF7L1, TCF7,GLIS3, SOX7, ZNF471, and SP1 have previously

been linked to GC development and prognosis.45–51 To further

validate our findings and uncover the transcriptional heterogene-

ity between primaryGC and different organ-specificmetastases,

we integrated data on the DEGs and functional pathways from

five cancer sampleswithin each cellularmicroenvironment, lead-

ing to the identification of 21 key TFs (Figure S12C).
f PT and M

of the interactions between all cell populations, with line thickness proportional

pe. The size of the dots represents the number of cells.

iously.

viously.

viously.

iously.

ing ligand-receptor proteins (CellPhoneDB) in specific cell states from the TME

ymbol. Triangles represent ligands and diamonds represent receptors.
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Transcriptional regulatory network analyses may provide valu-

able insights into gene regulation and the underlying mecha-

nisms of dysfunction.52 In our study, we constructed cell-spe-

cific TGPRNs for both primary and metastatic GC, aiming to

explore the transcriptional heterogeneities. In the TGPRNs of

PT (Figure 5A and Table S9), we observed high expression of

CAFs-specific TF RUNX2. RUNX2 was found to regulate its

target gene COL1A2, which in turn activated the PI3K-Akt

signaling pathway, strengthened cell-to-cell adhesion, and

contributed to tumor cell metastasis.53 Additionally, another

TF, ZNF143, originating from CD3/CD28-stimulated NK cells,

was associations with pathways such as Epstein-Barr virus

infection and Th1 and Th2 cell differentiation. Notably,

ZNF143, by regulating its target gene RUNX3, might influence

immune cell differentiation and immune responses, particularly

in the context of viral infections.54

In the TGPRNs of Li, we observed the specific expression of

the TF SOX7 from epithelial cells and SOX5 from pericytes.

These two TFs regulated the target genes LIFR and COL14A1,

respectively. SOX7 and LIFR were associated with cytokine-

cytokine receptor interaction, while SOX5 and COL14A1 were

linked to protein digestion and absorption,55 suggesting their

potential roles in protein breakdown and absorption during the

progression of GC liver metastasis. In the TGPRNs of O, we

observed that the TF THRB from neutrophils regulated the target

gene TNFSF10, which was enriched in the lipid and atheroscle-

rosis pathway. Additionally, the TFKDM5B, originating fromM-B

cells and specifically expressed in the TGPRNs of O, regulated

the immune and inflammatory response through its target gene

CCL3 in the Toll-like receptor signaling pathway, suggesting a

potential therapeutic target in GC ovarian metastasis.56 In the

TGPRNs of P, we observed that GABPB1, a TF from exhausted

CD8+ T cells, and its regulated target gene BATF, were associ-

ated with the PD-1 checkpoint pathway and PD-L1 expression

in cancer.57 This finding indicates thatGABPB1 and BATFmight

regulate the PD-1 and PD-L1 immune checkpoints during the

progression of GC peritoneal metastasis, providing insights

for developing immunotherapy strategies.58 Notably, in the

TGPRNs of LN, there was enrichment in the chemokine signaling

pathway, regulated by the TF CLOCK from NKT cells. CLOCK

and its target gene CCL5 play roles in the attraction and migra-

tion of tumor and immune cells by regulating chemokine

signaling.59 Intriguingly, we found that, in addition to gastric can-

cer, CLOCK is also highly expressed in other cancers, including

breast cancer (BRCA), liver hepatocellular carcinoma (LIHC), and

prostate cancer (PRAD) (Figure S13C) (see STAR Methods).

Notably, high CLOCK expression is associated with poor prog-

nosis in BRCA (Figure S13D), suggesting its potential as a prog-

nostic marker and therapeutic target in GC lymph nodes metas-

tasis. The correlation between decreased expression of key TFs
Figure 5. Key TFs regulating the TGPRNs of PT and M

(A) The TGPRNs of PT, Li, O, LN, and P. Rhombuses represent cell-specific TFs in

that are marker genes in each of the five cancer samples. Rectangles represent th

color intensity representing the magnitude of the p value, where darker colors in

(B) Overall survival curves of the patients with GC in TCGA, stratified by the TF ex

genes. The red line shows the survival curve of the patients exhibiting high TF expr

shows the survival curve of the remaining patients (p value < 0.005).
and improved survival prognosis revealed their critical regulatory

roles in PT-to-M progression (Figure 5B). Our findings regarding

cell-specific TGPRNs for both PT and M provide a theoretical

framework for understanding the key TFs involved in GC pro-

gression and offer potential targets for innovative therapeutic

approaches.
DISCUSSION

The complex intra- and inter-tumor heterogeneity in both primary

and metastatic GC poses a great challenge to the efficacy of

both chemotherapy and immunotherapy, limiting treatment out-

comes and prognosis prediction.60 Despite previous efforts to

classify tumors using whole-sample transcriptomic ap-

proaches,61 the heterogeneous nature of the TME introduces

substantial limitations to the clinical applicability of such

methods. The advent of scRNA-seq has provided insight into

the TME.62 In this study, we performed a detailed single cell anal-

ysis of primary and metastatic tumor sites, uncovering distinct

and dynamic heterogeneity within the TME of GC.

To offer a high-resolution map of the molecular and cellular

mechanisms of the malignant progression of GC, we performed

a multidimensional analysis, including cellular compositions,

developmental trajectories, cell interactions, and transcriptional

regulation. Thus, our study provides a unique insight into

the PT-to-M progression, compared to previous single-cell

studies.8,13,63 We present comprehensive single-cell landscape

of primary and metastatic GC, revealing multiple immune cell

clusters were enriched in liver metastasis and lymph node

metastasis, which has previously been reported.9,11,64 More-

over, we observed that TAMs were predominantly enriched in

ovarian metastases, while exhausted CD8+ T cells and Tregs

were enriched in peritoneal metastases. These cells not only

support immune escape directly but also promote tumor inva-

sion via various non-immunological activities,65 likely contributes

to the establishment of an immunosuppressive microenviron-

ment. More intriguingly, a 30-gene signature of ovarian-derived

TAMs was discovered and validated to predict ovarian metas-

tasis in GC. Although evidence has shown that TAMs closely

related to most solid tumors, such as ovarian cancer,66–68 this

study was the first time to use the gene signature of ovarian-

derived TAM subcluster to forecast ovarian metastasis in

GC. Among the top 30 upregulated DEGs of ovarian-derived

TAMs, SPP1, IGF1, STARD13, A2M, LPL, ASRGL1, FABP5,

SELENOP, FOLR2, HGF, GPR34, and BNC2 have been previ-

ously confirmed to be highly expressed in ovarian cancer,69–80

promoting tumorigenesis and metastasis of ovarian cancer cells

in GC. Thus, these data further support our findings and highlight

the clinical value of the 30-gene signature in TAMs derived from
the same color as the corresponding cell. Circles represent TF-regulated genes

e top 10 KEGG pathways where the TF-regulated genes are enriched, with the

dicate smaller p values.

pression levels of the RUNX2, ZNF143, CLOCK, GABPB1, SOX5, and KDM5B

ession levels in the tumor samples (for the top 50% of all samples); the blue line
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the ovarian metastasis samples to diagnose and prognose

ovarian metastasis of GC.

The roles of immune and stromal cells in the TME are now

increasingly recognized.81 In this study, we conducted a

comprehensive analysis of the cell developmental trajectories

in immune and stromal cell subsets within the TME of both pri-

mary and metastatic GC. Compared to other single-cell

studies of GC,6,13 our findings reveal distinct characteristics

in the cell developmental trajectories during PT-to-M progres-

sion. Intriguingly, in P, we observed that exhausted CD8+

T cells and Tregs were enriched at the early stages of the dif-

ferentiation trajectory of T cell subsets, while TAMs were pre-

dominantly enriched at the early stages of the differentiation

trajectory of myeloid cell subsets in O. This particular phenom-

enon suggests that the establishment of an immunosuppres-

sive environment may drive immune evasion by skewing T

and myeloid cell differentiation. We further examined the

expression dynamics of DEGs across each cell subsets along

the pseudotime axis. This may advance our understanding of

TME heterogeneity and dynamics and reveal a subtle connec-

tion between immunosuppression and cell differentiation, and

with further research, may facilitate potential therapeutic

exploitations.

Cell interactions are critical for facilitating information ex-

change between different cell types, serving as a fundamental

mechanism in various biological processes.82 Therefore, a

comprehensive understanding of the cell interactions between

primary andmetastatic GC is crucial for unraveling the heteroge-

neity during PT-to-M progression. In this study, a heterogeneous

cellular milieu characterized by active crosstalk between stromal

cells and other cell clusters was also highlighted, consistent with

findings reported in previous studies.8,83 Endothelial cells can

receive the potential immunoregulation factor, LGALS9, from

macrophages via MET, may promote proliferation and invasion

of the GC cell line during liver metastasis.36 Additionally, Tregs

can receive the cell adhesion signals, PVR, from macrophage

via TIGIT, may represent a promising target for combined immu-

notherapy in GC lymph nodemetastasis.84More importantly, the

NECTIN2-TIGIT axis has been confirmed as a target for immuno-

therapy in neuroblastoma.85 Our results revealed that NECTIN2-

TIGIT mediated the crosstalk between endothelial cells and

Tregs, suggesting its potential as a therapeutic target for GC

ovarian metastasis. These findings provide important insights

into the molecular mechanisms during tumor metastasis and

offer valuable guidance for the development of future research

directions and therapeutic strategies aimed at targeting these

factors.

With their binding-specific DNA sequences, TFs play pivotal

roles in various biological processes, including tumorigenesis,

migration, and invasion, by regulating downstream genes.86

There is mounting evidence demonstrating the significant regu-

latory functions of specific TFs in the genesis, progression, and

metastasis of GC.87 In this study, we constructed seven cell-

specific TGPRNs for both primary and metastatic GC and

analyzed their heterogeneity by identifying key TFs and eluci-

dating their transcriptional regulatory roles. RUNX2, a member

of the Runt-related TF family, was identified in the TGPRNs of

PT, and it has been previously shown to upregulate extracel-
12 iScience 28, 111843, February 21, 2025
lular matrix-cell interactions, activate the PI3K-Akt signaling

pathway, and promote cell-to-cell adhesion by modulating

the target gene COL1A2.88 In the TGPRNs of M, the target

gene COL14A1, regulated by the TF SOX5, was enriched in

the process of protein digestion and absorption. The regulation

of COL14A1 by SOX5 might facilitate the breakdown and up-

take of proteins, thereby providing essential energy and mate-

rials for cancer cell migration, potentially supporting the metas-

tasis of GC. Of note, we identified a key TF, CLOCK, in the

TGPRNs of LN, which appeared to play a critical role in facili-

tating the mutual attraction and migration of tumor and immune

cells.89 This interaction may contribute to lymph node metas-

tasis and is associated with poor survival outcomes in gastric

cancer. These key TFs identified in the TGPRNs were not

only associated with a poor prognosis but also might promote

PT-to-M progression, providing potential targets for therapeutic

intervention in GC treatment. Taken together, our observations

represent the first attempt to reveal the transcriptional hetero-

geneity of primary and metastatic GC by constructing the

TGPRNs, suggesting the link between key cell-specific TFs

and GC progression.

In conclusion, we constructed a comprehensive single-cell

transcriptional atlas of primary and metastatic GC, deciphering

the multi-dimensional heterogeneities of cellular compositions,

developmental trajectories, cell interactions, and transcriptional

regulation during PT-to-M progression. Our findings not only

identify promising therapeutic targets but also provide a solid

foundation for the development of more effective treatment stra-

tegies, with the potential to significantly improve patient out-

comes in GC.
Limitations of the study
Some limitations need to be acknowledged in this study. First,

due to the use of public datasets in our study, this may limit

the generalizability of our research findings. Nevertheless, our

study offers valuable insights into cellular compositions, devel-

opmental trajectories, cell interactions, and transcriptional regu-

lation during the progression from primary to metastatic GC.

Second, we acknowledge that the sample sizes in this study

might limit the generalizability of our conclusions to all metastatic

gastric cancers. Although our findings were validated in inde-

pendent bulk RNA-seq and scRNA-seq cohort, subsequent

scRNA-seq investigations involving paired samples could poten-

tially offer greater insights into the heterogeneity between pri-

mary and metastatic GC. Third, although this study character-

ized the dynamic heterogeneity of primary and metastatic

gastric cancer from multiple perspectives, further validation is

needed in future studies, especially for comparative analysis

from other perspectives.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

GC scRNA-seq (GSE163558) Jiang et al., 2022 GEO: https://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi

GC scRNA-seq (GSE239676) Cheng et al., 2024 GEO: https://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi

GC bulk RNA-seq (GSE84437) Yoon et al., 2020 GEO: https://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi

GC bulk RNA-seq TCGA-STAD TCGA via cgdsr https://www.cancer.gov/ccg/research/genome-

sequencing/tcga

Software and algorithms

R (v4.2.2) R CRAN https://cran.r-project.org/

clusterProfiler pipeline clusterProfiler package in R v4.0.5

ggplot2 pipeline ggplot2 package in R v3.4.4

cgdsr pipeline cgdsr package in R v1.3.0

monocle2 pipeline monocle package in R v2.26.0

Seurat pipeline Seurat package in R v4.3.0.1

pheatmap pipeline pheatmap package in R v1.0.12

survminer pipeline survminer package in R v0.4.9

survival pipeline survival package in R v3.5-8

RColorBrewer pipeline RColorBrewer package in R v1.1-3

AUCell pipeline AUCell package in R v1.26.0

SCENIC pipeline SCENIC package in R v1.3.1

ggvenn pipeline ggvenn package in R v0.1.10

circlize pipeline circlize package in R v0.4.16

org.Hs.eg.db pipeline org.Hs.eg.db package in R v3.19.1

ktplots pipeline ktplots package in R v2.4.0

CellChat pipeline CellChat package in R v1.6.1

gplots pipeline gplots package in R v3.1.3.1

TCGAplot pipeline TCGAplot package in R v7.0.1

Python (v3.7.0) Python Software Foundation https://www.python.org

CellPhoneDB cellphonedb in python v4.0.0

pySCENIC pySCENIC in python v0.12.1

Cytoscape https://cytoscape.org/ v3.9.1
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Study design and patients
The public GEO dataset GSE163558 was used in this study. The dataset includes a total of 54,687 cells derived from 10 fresh human

tissue samples from six patients. The clinical information of all patients is summarized in Table S10.

Data collection
Public single cell data were obtained from the GEO database. GSE163558 and GSE239676 provided the output files of the

CellRanger (10x Genomics) pipeline.

Public cohorts for bulk transcriptomics
RNA-seq and clinical data frompatients with gastric adenocarcinoma (cancer study ID: STAD TCGA) were obtained fromTCGA using

the R package cgdsr. We also download another large-scale primary GAC dataset (GSE84437) from the GEO database.
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Data download
The single-cell RNA sequencing dataset GSE163558 was obtained from the GEO database (GEO: https://www.ncbi.nlm.nih.gov/

gds). This dataset includes a total of 54,687 cells derived from 10 fresh human tissue samples from six patients. The samples consist

of primary tumor tissue, adjacent non-tumor tissue, and six metastatic samples from various organs, such as the liver, peritoneum,

ovary, and lymph node.

Quality control, cluster annotation, and data integration
For data normalization, dimensionality reduction, and clustering, we employed Seurat v.4.3.0.1 in R v.4.2.2, accessed from https://

github.com/satijalab/seurat. The quality of cells was assessed based on total UMI count per cell, total detected genes per cell, and

proportion of mitochondrial genes per cell. Low-quality cells were filtered following these criteria: (1) cells with < 200 genes; (2) cells

with < 700 UMI count or ranked in the top 1% of UMI counts; (3) cells with > 20%mitochondrial gene count. Genes detected in less

than three cells were also excluded from downstream analyses. Subsequently, data integration was performed using the Integrate-

Data() function. After quality control, a total of 42,968 cells were retained. To identify cluster-specific marker genes, we utilized the

Seurat FindMarkers function with default parameters and applied the Wilcoxon rank-sum test for the analysis of DEGs between the

specific cluster and all other clusters. Significant DEGs were defined as |log2(Fold Change)| > 1 and p-value < 0.05. In addition, mito-

chondrial and ribosomal genes were filtered out from the DEG lists. Finally, we performed manual cell annotation based on the

expression of these significant cell marker genes for subsequent downstream analyses.

Inference of developmental trajectory
The Monocle2 algorithm was employed to infer potential cell lineage trajectories between diverse cell phenotypes. The UMI count

matrix served as the input data. To reduce dimensionality, a CellDataSet object was created using the newCellDataSet function

with the expressionFamily = Negbinomial.size() parameter, and the DDRTree algorithm was applied. Cell clusters and pseudotem-

poral cell trajectories were deduced based on cell clustering and pseudotemporal cell sorting, by utilizing Monocle2’s default param-

eters. The resulting trajectories were visualized using the Plot_cell_Track function. Pseudotime-dependent genes, indicating expres-

sion differences over pseudotime, were identified along the cell developmental trajectories through the Differential GeneTest

function. The Plot_gene_in_Passotime and Plot_Passotime_heatmap functions were employed to visually represent the dynamic

changes in gene expression dependent on pseudotime. The heatmaps were generated to illustrate the top 30 significant genes

that exhibited pseudotime-dependent expression during PT-to-M progression.

Cell interaction analysis
CellPhoneDB (version 4.0.0) was used to analyze cell interactions between diverse cell types.90 In brief, for each gene in each cell

type, the average expression value of the gene and the percentage of cells expressing the gene were calculated. Potential recep-

tor-ligand interactions between cell types were inferred based on the expression of receptors in one cell type and ligands in the other.

The cell type labels of all cells were then randomly permuted 1000 times to test the statistical significance of the estimated receptor-

ligand interaction. The intensity of the receptor-ligand interactions was assessed based on the expression of the ligand-receptor

pairs in two cell types.

Regulon activity analysis
The gene regulatory network (GRN) was constructed using the pySCENIC91 algorithm, in conjunction with the GRNBoost2

algorithm in the Arboreto software package and the cis-Target human motif database (V9) for all cells. Raw expression data

and labeled clusters from the Seurat data were utilized and subjected to filtration using the default parameters of the pySCENIC

pipeline. Subsequently, the GRNBoost2 method was employed to compute the GRNs. CisTarget databases, including hg19-

500bp-upstream-10species.mc9nr.genes_vs_motifs.rankings.feather and hg19-tss-centered-10kb-10species.mc9nr.genes_vs_

motifs.rankings.feather, were used to identify the enriched motifs, along with the TF motif annotation database (v9). The Aucell

function scored all cells to display the regulon activities. The similarity score for the regulons in each cluster was computed and trans-

ferred to the specific score using Jensen-Shannon divergence.

Survival analysis
RNA-seq and clinical data frompatients with gastric adenocarcinoma (cancer study ID: STAD TCGA) were obtained from TCGAusing

the R package cgdsr. Tumor samples were classified into two groups based on the median expression of key TFs between all pa-

tients. Survival analysis was performed using the Kaplan-Meier method in the R package Survival. The survival curve was visualized

using the ggsurvplot function from the R package survminer. Both survival analysis and visualization were conducted using the R

package. In addition, CLOCK expression was verified in other cancers using the R package TCGAplot.92
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KEGG enrichment analysis
To assess gene expression signatures and pathway activation, KEGG analysis was performed using the DEGs of five cancer samples

in the TME of primary andmetastatic GC. The enrichKEGG function from the clusterProfiler R packagewas utilized for this analysis.93

A significance threshold of p-value < .05 was set, and the top 10most significant pathways were visualized using ggplot2 R package.

GO enrichment analysis
The top 100 upregulated DEGs of each cluster were then used to perform GO analysis using clusterProfiler R package, and the func-

tional gene sets belonging to biological process were focused on this study. The q value was used to select the significantly enriched

results with a cutoff value of .05. The results of GO enrichment analysis are filtered according to the q value (qvalueCutoff = .05).

QUANTIFICATION AND STATISTICAL ANALYSIS

The statistical tests used here are indicated in the relevant figure legends. Data are presented as the mean ± standard deviation (SD)

or median (interquartile range, IQR). We used the Wilcoxon rank-sum test to assess differences in AUCell scores of the 30-gene

signature from ovarian-derived TAMs between non-ovarian metastasis groups. The distribution of CLOCK gene expression levels

in tumor samples versus normal samples for multiple cancer types was analyzed using the Wilcoxon rank-sum test. To identify

marker genes expressed in each subset and the differentially expressed genes between the Student’s t-test, we used the Student’s

t-test implemented in Seurat. Statistical analyses and graph generation were conducted in R (version 4.2.2) and Python (version

3.7.0). A p value of less than 0.05 was considered statistically significant, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.
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