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Autophagy is a type of cellular catabolic degradation process that occurs in response to

nutrient starvation or metabolic stress, and is a valuable resource for highly proliferating

cancer cells. Autophagy also facilitates the resistance of cancer cells to antitumor

therapies. However, the involvement of autophagy in regulating CXCL10 expression in

gastric cancer (GC) cells and T lymphocyte migration remains unclear. In this study,

we aimed to investigate the effect of autophagy inhibition on CXCL10 expression and

T lymphocyte infiltration in GC and elucidate the underlying mechanism. Analysis of

public databases revealed a positive correlation between CXCL10 expression and both

prognosis of patients with GC and the expression profile of T lymphocyte markers in

the GCs. Chemotaxis and spheroid infiltration assays revealed that CXCL10 induced T

lymphocyte migration and infiltration into GC spheroids, an in vitro three-dimensional cell

culture model. In addition, in vitro autophagy inhibition in GC cells increased CXCL10

expression under both normal and hypoxic culture conditions. Further investigation on

the underlying mechanism showed that in vitro autophagy inhibition suppressed the JNK

signaling pathway and further enhanced CXCL10 expression in GC cells. Collectively,

our results provide novel insights for understanding the role of autophagy in regulation of

intra-tumor immunity.

Keywords: autophagy, CXCL10, gastric cancer cell lines, JNK, T lymphocyte migration, in vitro

INTRODUCTION

A correlation between the presence of tumor-infiltrating lymphocytes (TILs) and overall patient
survival has been reported in several tumor types (1–4) and the fundamental roles of TILs in
tumor immunity have been investigated intensively (5–10). Therefore, immunomodulation using
immune check-point inhibitors, one of the most rapidly growing cancer drug classes, is currently
being explored as a cancer therapeutic approach. Some immune check-point blockade therapies,
such as those involving monoclonal antibodies targeting cytotoxic T lymphocyte associated protein
4 (CTLA-4), programmed cell death protein 1 (PD-1), and PD-1 ligand (PD-L1), resulted in
T lymphocyte-mediated tumor regression in various malignancies (11–17), including gastric
carcinoma (18).

Gastric cancer (GC) is the fifth most common malignancy diagnosed worldwide, with
952,000 estimated new cases and 723,000 GC related-deaths in 2012 (19). Although immune
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check-point inhibitors have shown promising results for GC
treatment, the objective response rates remain low (18, 20). Thus,
the effectiveness of this immunomodulatory strategy depends not
only on the unleashing of pre-existing immunity but also on
the presence of a baseline immune response (21). In fact, intra-
tumor T lymphocyte recruitment is one of the potential rate-
limiting steps in immunotherapy; therefore, many investigators
have focused on the role of intra-tumoral chemokines in TIL
recruitment into the tumor (22, 23).

It is well-known that T lymphocyte infiltration into the
tumor is always insufficient when the chemokine receptors
expressed on T lymphocytes do not match to the tumor-
secreted chemokines (24). CXCR3, a predominant chemokine
receptor expressed on TILs, is expressed in several solid
tumors, including melanoma (25), colorectal cancer (26), and
breast cancer (27). Moreover, TILs in lymphocyte-rich GCs
predominantly express CXCR3 (28). Among the CXCR3 ligands,
CXCL10 was reported to be associated with T lymphocyte
infiltration into tumors. For example, CXCL10 expression
was associated with T lymphocyte recruitment in melanoma
metastases (25). In addition, intra-tumor induction of CXCL10
enhanced the infiltration of CXCR3+ cytotoxic T lymphocytes,
thereby improving the antitumor effect of other therapies in some
rodent solid tumor models (29, 30). However, the association
between CXCL10 expression and T lymphocyte infiltration in GC
remains poorly understood.

In recent years, autophagy in GC pathogenesis has been
explored extensively, and autophagy inhibition is being
considered as a potential strategy for GC treatment (31).
Autophagy is critical for the digestion of intracellular contents
and generation of energy to control cellular homeostasis
(32). Autophagy was reported to play a pivotal role in GC
cell survival and enhance tumor cell resistance to antitumor
therapies (31). Therefore, autophagy inhibition may alter
this tumor protective mechanism and potentiate anticancer
drug-induced cell death in GC. In fact, an autophagy inhibitor
chloroquine (CQ) was reported to improve the chemosensitivity
of GC cells to platinum-based antitumor drugs (33, 34). Li
et al. demonstrated that treatment with 3-MA, an alternative
autophagy inhibitor, enhanced the curcumin-induced antitumor
effect (35). Interestingly, a recent study showed that autophagy
inhibition could induce CCL5 expression in melanoma cells,
resulting in tumor regression facilitated by NK cell migration
into the tumor bed (36).

In this study, we investigated the effect of autophagy inhibition
on CXCL10 expression in GC cells and T lymphocyte migration
toward GC cells. We also attempted to elucidate the mechanism
underlying the observed effects of autophagy inhibition on
CXCL10 expression in GC cells.

MATERIALS AND METHODS

Public Dataset Mining
Kaplan Meier-plotter (http://kmplot.com/analysis/) is an online
database that enables evaluation of the effect of over 54,000 genes
on survival in several cancer types, including GC, breast cancer,
ovarian cancer, and lung cancer (37). This database was used to

obtain prognostic information on CXCL10. Survival information
and gene expression data were from Gene Expression Omnibus
(GEO), European Genome-phenome Archive (EGA), and The
Cancer Genome Atlas (TCGA) database.

Gene Expression Profiling Interactive Analysis (GEPIA;
http://gepia.cancer-pku.cn/index.html) is a customizable online
tool developed by Zhang lab of Peking University to analyze gene
expression data in both tumor and normal tissues on the basis
of TCGA and Genotype-Tissue Expression (GTEx) data (38).
GEPIA was used for correlation analysis and for investigating
the expression levels of autophagy-related genes (ATGs) between
GCs and the normal tissues.

Cell Lines and Reagents
Human GC cell lines AGS, NCI-N87, BGC-823, HGC-27, KATO
III, SGC-7901, SNU-1, SNU-5, and SNU-16 were purchased from
American Type Culture Collection (ATCC). AGS, BGC-823,
HGC-27, KATO III, and SNU-5 cells were cultured in DMEM-
GlutaMAXmedium (Life Technologies) supplemented with 10%
fetal bovine serum (FBS; Life Technologies), penicillin (100
U/ml), and streptomycin (100µg/ml; Life technologies). NCI-
N87, SGC-7901, SNU-1, and SNU-16 cells were cultured in RPMI
1640-GlutaMAX medium (Life Technologies) supplemented
with 10% FBS, penicillin (100 U/ml), and streptomycin
(100µg/ml). All the cells were maintained in a 5% CO2

humidified atmosphere at 37◦C. The ATG5 and ATG7 siRNAs
were purchased from Life Technologies. CQ, cobalt chloride
(CoCl2) and Sp600125 were purchased from Sigma. Anisomycin
was purchased from Cell Signaling Technology. Recombinant
CXCL10 protein, CXCL10 antibody and mouse IgG1 isotype
control were purchased from R&D systems. The plasmid
pIREShyg3 was purchased from GenScript and the coding
sequence (CDS) of CXCL10 gene was cloned in pIREShyg3 using
Nhel / BamHI to obtain the pIREShyg3-CXCL10 plasmid.

Cell Sorting and Activation of CD3+

T lymphocytes
CD3+ T lymphocytes were isolated from cryopreserved human
peripheral blood mononuclear cells (PBMCs; StemExpress)
using MACS microbeads (Miltenyi Biotec). After separation, T
lymphocytes were stimulated using CD3/CD28 Dynabeads (Life
Technologies) for 2 days, as described previously, and re-cultured
without any external stimuli for another 2 days to induce the
expression of CXCR3 (39). The primed T lymphocytes were used
in the chemotaxis and spheroid infiltration assays.

Flow Cytometry Analysis
Cells were incubated with saturating amounts of various
fluorescent-labeled antibody mix composed of PerCP-Cy5.5
labeled mouse anti-CD45 (Clone HI30, IgG1; BD Biosciences),
PE labeled mouse anti-CD3 (Clone OKT3, IgG2a; Thermo
Fisher Scientific), FITC labeled mouse anti-CXCR3 (Clone
G025H7, IgG1; BioLegend) antibodies, and co-stained with
Zombie AquaTM dye (BioLegend). Isotype and fluorochrome-
matched mAbs were used for control staining. Stained cells were
evaluated using the BD LSRFortessa X-200 flow cytometer (BD
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Biosciences), and the data were analyzed using FlowJo software
(Tree Star).

Chemotaxis Assay
The chemotaxis assay was performed in CytoSelectTM 24-well
cell migration assay kit (5µm pore size; Cell Biolabs) per the
manufacturer’s instructions (Figure 2A). Briefly, the primed T
lymphocytes were prepared at density of 3 × 106 cells/ml in
serum-free RPMI 1640 medium containing 0.5% bovine serum
albumin (BSA), 2mM MgCl2, and 2mM CaCl2. For each well,
the cells were placed in upper chamber (3 × 105 cells/100
µl) and the medium was loaded in the lower chamber. The
plate was then incubated in a 37◦C cell culture incubator for
5 h. The migrated cells were dissociated from the membrane,
lysed, and detected using the patented CyQUANT R© GR Dye
(Life Technologies).

Tumor Spheroids and Spheroid Infiltration
Assay
NCI-N87 spheroids were established using 96-well EZSPHERE
SP micro-plates (Nacalai Tesque). The culture plate has a
concave and ultra-low attachment bottom surface so that the
cells adhere to each other, but not with the bottom surface of
the plate. Therefore, the cells did not spread out on plastic,
but formed spheroids. Here, the NCI-N87 cells were transfected
with the pIREShyg3-CXCL10 plasmid; 1 day later, 8 × 104

CXCL10-transfected NCI-N87 cells were seeded with 200 µl
medium in each well. The spheroids were formed 4 days
after seeding. Then, 8 × 105 primed T lymphocytes were
added into each well and incubated overnight (Figure 2C).
The spheroids were then washed three times with PBS to
remove the loosely attached T lymphocytes, fixed in 4%
paraformaldehyde for 2 h, and embedded into paraffin for
immunohistochemistry analysis.

Immunohistochemistry
Paraffin blocks were sectioned using a microtome to obtain 4µm
thick sections for immunostaining. The paraffin sections were
dewaxed in xylene and hydrated in decreasing concentrations
of ethanol. Sections were then incubate in 1 × DIVA Decloaker
antigen retrieval solution (Biocare Medical) at 110◦C for 15min
using the decloaking chamber (Biocare Medical). Following
antigen retrieval, sections were incubated in peroxidazed 1
solution (Biocare Medical) at room temperature for 5min to
quench endogenous peroxidase activity. After blocked with
background sniper at room temperature for 10min, sections were
incubated with a monoclonal rabbit anti-human CD3 antibody
(0.3µg/ml; Biocare Medical) in Dako REAL antibody diluent
(Dako) at room temperature for 1 h. Sections were subsequently
incubated with HRP-labeled goat anti-rabbit IgG polymer (Dako)
at room temperature for 30min. Finally, sections were exposed
to liquid DAB+ substrate chromogen system (Dako) at room
temperature for 5min and counterstaining was performed using
Gill’s hematoxylin (Sigma).

Quantitative RT-PCR
Total RNA was extracted from the GC cell lines using RNeasy
Plus Mini Kits (QIAGEN). Quantitative RT-PCR and data
analysis were performed as described in our previous work
(40, 41). Briefly, the SuperScriptTM IV First-Strand Synthesis
System (Life Technologies) was used to synthesize cDNA. PCR
was performed and quantified using Power SYBR Green PCR
Master Mix (Life Technologies). Primers used in the real-
time quantitative PCR were as follows: CXCL10 (accession no.
NM_001565), sense primer 5′- AAAAGAAGGGTGAGAAGAG-
3′ and antisense primer 5′- AAGAACAATTATGGCTTGAC-
3′; ATG5 (accession no. NM_004849), sense primer 5′-
GCAACTCTGGATGGGATTGC-3′ and antisense primer 5′-
AGGTCTTTCAGTCGTTGTCTGAT-3′; ATG7 (accession no.
NM_ 006395), sense primer 5′-CATGGTGCTGGTTTCCTTGC-
3′ and antisense primer 5′- GCTACTCCATCTGTGGGCTG-
3′; GAPDH (accession no. NM_002046), sense primer 5′-
CGGATTTGGTCGTATTGGG-3′ and antisense primer 5′-
CTGGAAGATGGTGATGGGAT-3′.

The relative target gene mRNA level was calculated using the
1Ct method. The threshold cycle (Ct) values of the target gene
mRNAs were initially normalized to the Ct values of the internal
control GAPDH in the same samples: 1Ct = Ct (the target
gene) – Ct (GAPDH). These values were further normalized
to the control group: 11Ct = 1Ct (sample group) – 1Ct
(control group). The fold change was then determined (2−11Ct).
The relative target gene mRNA level represents an average fold
calculated from separate experiments. PCR was performed at
least three times, and similar results were observed.

Luminex Assay
The protein level of CXCL10 in the cell culture supernatant
was assessed using the human Magnetic Luminex Assay
(R&D Systems), which was performed per the manufacturer’s
instructions. Briefly, all the samples and standards were first
mixed with the CXCL10 antibody coatedmagneticmicroparticles
and incubated for 2 h at room temperature on a horizontal
orbital microplate shaker set at 800 rpm. After washing the
microparticles, biotinylated detector antibodies were added and
incubated for 1 h at room temperature on the shaker set at 800
rpm. Following a wash to remove any unbound biotinylated
detector antibody, streptavidin-phycoerythrin conjugates were
added and incubated for 30min at room temperature on the
shaker set at 800 rpm. Finally, the protein level of CXCL10 in the
cell culture supernatant was analyzed using the Bio-PlexTM 200
system (Bio-Rad).

Western Blot
Cell lysis, protein extraction, and western blot analyses were
performed as described in our previous work (40). Proteins were
dissolved in a lysis buffer and separated using SDS/PAGE for
western blot analyses. Primary antibodies included rabbit anti-
Phospho-SAPK/JNK (Thr183/Tyr185), anti-SAPK/JNK, anti-
Phospho-c-Jun (Ser73), anti-c-Jun, anti-ATG5, anti-LC3B and
anti-GAPDH (Cell Signaling Technology). Secondary antibody
was HRP-conjugated anti-rabbit IgGs (Life Technologies).
The densitometric analyses of western blotting images
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FIGURE 1 | CXCL10 expression is positively correlated with survival and expression of T lymphocyte markers in patients with GC. (A) Kaplan-Meier analysis of overall

survival in GC patients with high CXCL10 expression and low CXCL10 expression (P = 0.0078, n = 438). (B) Kaplan-Meier analysis of relapse free survival in GC

patients with high CXCL10 expression and low CXCL10 expression (P = 0.029, n = 320 and 321, respectively). (C–G) Scatter plots showing the correlation of

CXCL10 with CD3D (C), CD3E (D), CD3G (E), CD4 (F), and CD8 (G) (Spearman’s correlation test).

were performed using ImageJ software (National Institutes
of Health).

Cell Viability Assay
Cell counting kit-8(CCK-8, Dojindo) was used to evaluate
cell viability based on the dehydrogenase activity. AGS cell
suspensions were first dispensed in a 96-well plate (1 × 104 in
100 µL/well) and cultured in DMEM with 10% FBS at 37◦C
for 24 h, and then were treated with vehicle, 10 and 20µM
CQ, respectively. After incubation for 0, 1, 2, and 3 days, 10
µl CCK-8 solution was added to each well and the plate was

incubated at 37◦C for 1 h. Finally, the absorbance at 450 nm
was measured by using a SpectraMax M5 microplate reader
(Molecular Devices).

Statistical Analysis
Data represent mean ± SE. Experimental data were subjected
to statistical analyses using one-way ANOVA followed by Tukey
post-hoc test or student’s t-test with a significance level of
P < 0.05.
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FIGURE 2 | CXCL10 recruits T lymphocytes in chemotaxis assay and GC spheroid infiltration assay. (A) Schematic representation of chemotaxis assay for T

lymphocyte migration through the polycarbonate membrane toward different concentrations of recombinant CXCL10 protein. (B) Statistic analysis of fold change of

migrated T lymphocytes. (C) Schematic representation of T lymphocyte infiltration into NCI-N87 spheroids. (D,E) Representative images of CD3

immunohistochemistry staining in NCI-N87 spheroids transfected with control vector (D) or CXCL10 plasmid (E). (F) Histogram indicating the density of T

lymphocytes in NCI-N87 spheroids. **P < 0.01, ***P < 0.001. Data represent mean ± SE. Scale bar: 25 µm.

RESULTS

CXCL10 Expression in GC Was Positively
Correlated With Survival and Expression
Profiles of Intra-tumor T lymphocyte
Markers
Analysis of the prognostic information on CXCL10 in cancers
(http://kmplot.com/analysis/) revealed a positive correlation of
CXCL10 expression with both overall survival (Figure 1A,
HR 0.79 [0.67–0.94], logrank P = 0.0078) and relapse free

survival (Figure 1B, HR 0.8 [0.65–0.98], logrank P = 0.029)
in patients with GC, but not in patients with breast cancer
(Figures S1A,D), lung cancer (Figures S1B,E), or ovarian cancer
(Figures S1C,F). In addition, correlation analysis in GEPIA

showed strong positive correlation between CXCL10 expression

and several T lymphocyte markers such as CD3D (Figure 1C,

P = 4.8e−41, R = 0.6), CD3E (Figure 1D, P = 8.4e−40, R
= 0.59), CD3G (Figure 1E, P = 1.9e−39, R = 0.59), CD4
(Figure 1F, P = 6.4e−38, R = 0.58), and CD8 (Figure 1G, P =

5.6e−47, R = 0.63). These results suggested that the CXCL10
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FIGURE 3 | Autophagy is activated in GC. (A–P) GEPIA analysis of the expression of ATG5 (A), ATG7 (B), ATG3 (C), ATG9A (D), ATG9B (E), ATG12 (F), ARBRA1 (G),

NBR1 (H), ATG2A (I), ATG4B (J), ATG10 (K), ATG13 (L), ATG14 (M), ATG16L1 (N), ATG101 (O), and BECN1 (P) in gastric tumors and normal tissues. *P < 0.05.
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FIGURE 4 | ATG5 and ATG7 knockdown induced CXCL10 expression in AGS cells. (A) mRNA expression level of ATG5 in AGS cells transfected with ATG5 siRNA

and control siRNA. (B) mRNA expression level of CXCL10 in AGS cells transfected with ATG5 siRNA and control siRNA. (C) CXCL10 protein level in the culture

supernatant of AGS cells transfected with ATG5 siRNA and control siRNA. (D) mRNA expression level of ATG7 in AGS cells transfected with ATG7 siRNA and control

siRNA. (E) mRNA expression level of CXCL10 in AGS cells transfected with ATG7 siRNA and control siRNA. (F) CXCL10 protein level in the culture supernatant of

AGS cells transfected with ATG7 siRNA and control siRNA. *P < 0.05, ***P < 0.001. Data represent mean ± SE.
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FIGURE 5 | CQ treatment induced CXCL10 expression in AGS cells. (A) Western blots showing LC3 expression in 20µM CQ treated AGS cells. (B) Fold change of

LC3II/LC3I ratio in 20µM CQ treated AGS cells. (C) Time dependent CXCL10 mRNA expression in 20µM CQ treated AGS cells. (D) CXCL10 mRNA expression in

AGS cells treated with different doses of CQ for 3 days. (E) Protein level of CXCL10 in the culture supernatant of AGS cells treated with different doses of CQ. *P <

0.05, **P < 0.01, ***P < 0.001. Data represent mean ± SE.

expression in GCmight be positively correlated with intra-tumor
T lymphocyte infiltration.

CXCL10 Recruited T lymphocytes in the
Chemotaxis and GC Spheroid Infiltration
Assay
Binding specificities of chemokines to their specific receptors are
well-defined (42), and high expression of CXCR3 (the receptor
of CXCL10) on effector T lymphocytes has been reported (43).
Therefore, to confirm whether CXCL10 induces T lymphocyte
infiltration, CXCR3+ T lymphocytes were required for the
chemotaxis and spheroid infiltration assays. Because of the
difficulties in detecting CXCR3 on most of the T lymphocytes
freshly isolated from PBMCs of normal donors (Figure S2),
CD3/CD28 Dynabeads were used to activate the T lymphocytes
and induce the expression of CXCR3. After activation, over
90% of CD3/CD28 Dynabeads treated T lymphocytes were
CXCR3+ (Figure S2). Chemotaxis assays revealed that CXCL10

recruited the primed T lymphocytes in a dose-dependent manner
(Figure 2B).

In addition, to further confirm whether CXCL10 facilitates
T lymphocyte infiltration in GC, GC spheroids were established
using NCI-N87 cells transfected with CXCL10 or control plasmid
(Figures S3, S4). Compared with the control vector-transfected
spheroids, the CXCL10-overexpressing GC spheroids showed
significantly high infiltration of T lymphocytes (Figures 2D–F).

Autophagy Was Activated in GC as
Determined by GEPIA Analysis
Next, we evaluated autophagy activation in GC. Here, GEPIAwas
used to detect the expression levels of a few ATGs between GCs
and normal tissues. Compared with normal tissues, tumor tissues
showed significantly higher mRNA levels of the following key
autophagy genes: ATG5 (Figure 3A), ATG7 (Figure 3B), ATG3
(Figure 3C), ATG9A (Figure 3D), ATG9B (Figure 3E), ATG12
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FIGURE 6 | Autophagy inhibition facilitated T lymphocyte migration by inducing CXCL10 secretion. (A) Schematic representation of chemotaxis assay for T

lymphocyte migration through polycarbonate membrane toward three different mediums. (B) Fold change of migrated T lymphocytes. ***P < 0.001. Data represent

mean ± SE.

(Figure 3F), AMBRA1 (Figure 3G), and NBR1 (Figure 3H).
These data indicate increased autophagy in GCs.

Autophagy Inhibition Enhanced CXCL10
Expression in AGS Cells
It is well-known that ATG proteins are critical for the formation
of autophagosome and the activity of autophagy (44, 45). ATG5
and ATG7 are two of the most important components of the
ATG family; therefore, ATG5 or ATG7 ablation is sufficient to
impair autophagic functions (46–52). In this study, we aimed to
induce ablation of ATG5 or ATG7 in AGS cells, as AGS cells
showed the highest endogenous CXCL10 expression level among
the available GC cell lines (Figure S3). ATG5 siRNA transfection
in AGS cells significantly suppressed ATG5 expression at both
mRNA (Figure 4A) and protein levels (Figures 7A,F). Such
ATG5 knockdown inhibited autophagy, as demonstrated by
decreased LC3II/LC3I ratio (Figures 7A,E). In addition, ATG5
knockdown significantly induced CXCL10 mRNA expression
in AGS cells (Figure 4B) and significantly increased CXCL10
secretion by AGS cells (Figure 4C). Similarly, ATG7 knockdown
significantly induced CXCL10 expression at both mRNA and
protein levels (Figures 4E,F).

CQ inhibits autophagic flux by decreasing the fusion of
autophagosome-lysosome (53). Therefore, we used CQ to further
confirm whether autophagy inhibition could induce CXCL10
expression in AGS cells. Treatment with 20µM CQ significantly
induced the accumulation of LC3-II in a time-dependent manner
(Figures 5A,B), as reported previously (53–55). Furthermore,
20µM CQ significantly induced CXCL10 mRNA expression in

a time-dependent manner in AGS cells without affecting the
cellular viability (Figure 5C, Figure S5). The maximal induction
effect was observed at day 3. When incubation time was fixed for
3 days, Treatment with 10 and 20µM CQ significantly induced
CXCL10 mRNA in AGS cells (Figure 5D). In addition, CXCL10
secretion by AGS cells treated with 20µM CQ was significantly
higher than that by control cells (Figure 5E).

Autophagy Inhibition Facilitated
T lymphocyte Migration by Inducing
CXCL10 Secretion
Chemotaxis assay revealed that T lymphocyte recruitment
by culture supernatant of ATG5-knockdown AGS cells was
significantly higher than that by culture supernatant of control
cells (Figures 6A,B). This T lymphocyte recruitment was
effectively blocked in the presence of neutralizing anti-CXCL10
antibody (Figure 6B).

Autophagy Inhibition Enhanced CXCL10
Expression by Suppressing the Inhibitory
Effect of JNK Signaling
Next, we investigated the mechanism underlying the induction
of CXCL10 expression via autophagy inhibition. Here, we
demonstrated that ATG5 knockdown was sufficient to
inhibit autophagy (Figures 7A,E,F) and investigated the
levels of components of the JNK signaling pathway in AGS
cells. ATG5 knockdown significantly decreased the levels of
phospho-JNK (Figures 7A,B), phospho-c-Jun (Figures 7A,C),
and c-Jun (Figures 7A,D), thereby suppressing JNK signaling.
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FIGURE 7 | Autophagy inhibition induced CXCL10 expression by suppressing the inhibitory effects of JNK signaling. (A) Western blots for phospho-JNK, JNK,

phospho-c-Jun, c-Jun, LC3, ATG5, and GAPDH levels in AGS cells transfected with ATG5 siRNA or control siRNA. (B–F) Relative protein levels of P-JNK (B), P-c-Jun

(C), c-Jun (D), LC3II/LC3I (E), and ATG5 (F). (G) CXCL10 mRNA levels in AGS cells treated with different doses of SP600125. (H) CXCL10 mRNA levels in ATG5

siRNA transfected AGS cells treated with or without 100 ng/ml anisomycin. *P < 0.05, **P < 0.01, ***P < 0.001. Data represent mean ± SE.

Treatment with the JNK inhibitor SP600125 resulted in
a dose-dependent increase in CXCL10 mRNA expression
in AGS cells, and 20 and 40µM SP600125 showed a
significant increase in CXCL10 mRNA levels (Figure 7G).
In addition, treatment with 100 ng/ml anisomycin, a JNK
activator, significantly inhibited CXCL10 mRNA expression
in control-vector transfected AGS cells and significantly
suppressed the ATG5 knockdown-induced increase in
CXCL10 mRNA expression (Figure 7H). Collectively, these
data suggest that autophagy inhibition induced CXCL10

expression via suppression of the inhibitory effects of
JNK signaling.

Autophagy Inhibition Induced CXCL10
Expression in CoCl2-Treated AGS Cells
Intra-tumor hypoxia is an important characteristic of 50–60%
malignant tumors (56). Moreover, GEPIA showed that mRNA
level of HIF1α, the hypoxia marker, in GCs was significantly
higher than that in normal gastric tissues (Figure 8A). Therefore,
we investigated the effect of autophagy inhibition on CXCL10
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FIGURE 8 | Autophagy inhibition induced CXCL10 expression in CoCl2-treated AGS cells. (A) GEPIA analysis of HIF1α expression in gastric tumors and normal

tissues. (B) Western blots for HIF1α and LC3 in AGS cells treated with different concentrations of CoCl2. (C,D) Relative protein levels of HIF1α (C) and LC3II/LC3I ratio

(D) in AGS cells treated with different concentrations of CoCl2. (E) CXCL10 mRNA levels of in CoCl2-treated AGS cells. (F) CXCL10 mRNA levels in ATG5 siRNA

transfected AGS cells treated with or without CoCl2. (G) CXCL10 protein levels in the culture supernatant of ATG5 siRNA transfected AGS cells treated with or without

CoCl2. *P < 0.05, **P < 0.01, ***P < 0.001. Data represent mean ± SE.

expression under hypoxia mimetic conditions. Treatment
with CoCl2, a hypoxia mimetic reagent, significantly increased
HIF1α protein level in AGS cells (Figures 8B,C). Treatment
with 200µM CoCl2 significantly increased the LC3II/LC3I
ratio, indicating increased autophagic activity in AGS cells
(Figures 8B,D). Furthermore, CoCl2 decreased CXCL10
expression in a dose-dependent manner, and both 50 and
200µM CoCl2 significantly decreased CXCL10 mRNA levels in
AGS cells (Figure 8E). ATG5 knockdown significantly increased
CXCL10 expression in CoCl2 treated AGS cells at both mRNA
and protein levels (Figures 8F,G).

DISCUSSION

In this study, we demonstrated that intra-tumor CXCL10 is an
important chemokine that contributes to intra-tumor infiltration
of T lymphocytes in GC. We also showed that autophagy

inhibition could effectively facilitate T lymphocytemigration into
the tumor microenvironment by inhibiting the JNK pathway
and further inducing the expression of CXCL10 (Figure 9). This
might represent a novel therapeutic strategy to enhance the
effectiveness of solid tumor immunotherapies such as immune
check-point blockade.

It is well-known that the levels of T lymphocyte infiltration
into the tumor determine the efficacy of immunotherapy. Primed
T lymphocytes gain the expression of certain homing molecules
(such as CXCR3) on their surface and thus obtain the capability
to migrate toward the tumor site (24). In our study, CXCL10, the
well-accepted CXCR3 ligand, functioned as a chemoattractant
for T lymphocytes (Figures 2A,B) and recruited T lymphocytes
to GC spheroids (Figures 2C–F). Moreover, CXCL10 expression
was positively correlated with overall survival (Figure 1A) and
relapse-free survival (Figure 1B) in patients with GC. Consistent
with our observations, Barash et al. indicated that CXCL10
administration not only induced the infiltration of T cells
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FIGURE 9 | Schematic representation of the mechanism underlying the

increased CXCL10 expression in autophagy inhibited GC cells. In GC cells,

autophagy inhibition suppressed JNK signaling and subsequently induced

CXCL10 expression. As a result, increased CXCL10 recruited more T

lymphocytes into gastric tumors.

and NK cells into myeloma tumors but also reduced the
accumulation of Treg cells at the tumor site, thereby suppressing
tumor progression (57). In addition, CD26 inhibition was
reported to enhance T lymphocyte trafficking into melanoma
tumor by inducing the intra-tumor expression of CXCL10,
further improving the efficacy of immunotherapy (58). In
addition to being a potent chemoattractant for T lymphocytes,
CXCL10 also inhibits tumor growth via suppressing angiogenesis
(59–63). Furthermore, CXCL10 overexpression improved the
radiosensitivity of tumors in a rodent cervical cancer model (64).
In total, the evidence suggests that CXCL10 could be a potential
novel candidate for the GC targeted therapy.

Considering the fact that autophagy was not measurable, the
indicators for autophagy activation were judged by expression
of ATGs. In our study, GEPIA indicated that the expression of
some key autophagy genes in GC were significantly higher than
that in normal tissue (Figure 3). These results were consistent
with previous observations in established solid tumors (32, 65).
However, previous findings on the regulatory effect of autophagy
inhibition on CXCL10 expression are not consistent. For
instance, two studies showed that ATG5 knockdown significantly
suppressed influenza-virus induced CXCL10 expression in
macrophages (66, 67). Two other studies reported that deletion
of some other key autophagy genes, FIP200 or BECN1, led to

increased CXCL10 production in mammary tumor cells (68) or
melanoma cells (36). Nevertheless, the regulation of CXCL10
expression in GC cells has not yet been reported.

Data from our study showed that autophagy inhibition
induced CXCL10 expression in AGS cells. Autophagy inhibition
was achieved by two approaches: genetic approach (ATG5
knockdown or ATG7 knockdown) and chemical treatment (CQ).
Of note, ATGs is critical for the formation of autophagosome.
Autophagy deficiency has been confirmed in cells lacking
ATG3 (69), ATG5 (70), BECN1 (71), ATG7 (52), ATG9A (72),
ATG16L1 (73), FIP200 (74), and AMBRA1 (75). In addition,
CQ, a widely used autophagy inhibitor, is known to inhibit
autolysosome formation and lysosomal protein degradation (76).
In our study, both genetic approach (ATG5 knockdown or
ATG7 knockdown) and chemical treatment (CQ) significantly
induced CXCL10 expression in AGS cells, but the mechanism for
induction of CXC10 expression was still unclear. Furthermore,
our data showed that ATG5 knockdown facilitated T lymphocyte
migration by increasing CXCL10 expression.

We next investigated themechanism underlying the induction
of CXCL10 expression by autophagy inhibition. We found that
JNK activator decreased and JNK inhibitor increased CXCL10
expression in AGS cells. In addition, autophagy inhibition
significantly decreased the activity of JNK signaling pathway.
Thus, these data suggest that autophagy inhibition induces
CXCL10 expression by suppressing the inhibitory effect of JNK
signaling in AGS cells. In contrast, Mgrditchian et al. reported
that BECN1 deletion induced CCL5 expression by activating
the JNK signaling pathway, which in turn recruited more NK
cells into melanoma tumors (36). This difference in the effect of
autophagy inhibition on JNK signaling may be associated with
tumor types.

Next, we investigated whether autophagy inhibition also
induced CXCL10 expression under hypoxia mimetic conditions.
Because of the inadequate oxygen supply and increased
energy consumption within the tumor microenvironment,
hypoxia is one of the most important characteristics of solid
tumors, especially in the advanced stages (77). In the hypoxic
microenvironment, autophagy flux is enhanced along with
increased tumor growth (78). Advanced tumors have been shown
to use autophagy to promote tumor survival (79, 80). Our
current observations that ATG5 knockdown induced CXCL10
expression in CoCl2-treated AGS cells support a scientific basis
of autophagy inhibition as a potential combinational therapy
strategy for immunotherapy.

Apart from recruiting T lymphocytes into solid tumors
and enhancing the sensitivity to anti-tumor therapy, autophagy
deficiency was also reported to cause some cancer related
pathology (81, 82). For instance, the mutation of ATGs was
reported in tumor cells (83). Because of the function of autophagy
in counteracting cellular stress, some ATGs were considered
as tumor suppressors in rodent tumor models (45, 84–86). In
addition, Yang et al. indicated that fluorouracil inhibited the
growth of GC cells via ATG6 activation (87). In this case,
autophagy also sometimes seems as a protective mechanism
in tumor initiation period. Overall, autophagy might regulate
tumorigenesis in a tumor stage-specific manner.
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In summary, to the best of our knowledge, this is the
first report on the regulatory effects of in vitro autophagy
inhibition on CXCL10 expression in GC cells and its potential
mechanism in recruiting T lymphocytes into the tumor.
These findings provide novel insights into understanding the
functions of autophagy in immunotherapy. Furthermore, our
results highlight the potential of autophagy inhibition to be
used in combination with immunotherapy approaches such
as immune checkpoint blockade. Our findings also suggest
CXCL10 as a potential novel candidate for targeted therapy
against GC.
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